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Abstract. Managed Multi-Context Systems (mMCSs) provide a general frame-
work for integrating knowledge represented in heterogeneous KR formalisms.
Recently, evolving Multi-Context Systems (eMCSs) have been introduced as an
extension of mMCSs that add the ability to both react to, and reason in the pres-
ence of commonly temporary dynamic observations, and evolve by incorporating
new knowledge. However, the general complexity of such an expressive formal-
ism may simply be too high in cases where huge amounts of information have
to be processed within a limited short amount of time, or even instantaneously.
In this paper, we investigate under which conditions eMCSs may scale in such
situations and we show that such polynomial eMCSs can be applied in a practical
use case.

1 Introduction

In this paper, we investigate conditions under which reasoning within evolving Multi-
Context Systems [1] can be performed in polynomial time.

Evolving Multi-Context Systems [1] are a recent extension of Multi-Context Sys-
tems (MCSs) [2] and Managed Multi-Context Systems (mMCSs) [3] to combine the
ability to integrate and manage knowledge represented in heterogeneous KR formalisms,
inherited from MCSs and mMCSs, with the ability to incorporate knowledge obtained
from dynamic observations.

Building on the work in [4,5], Multi-Context Systems [2] were introduced to address
the need for a general framework that integrates knowledge bases expressed in hetero-
geneous KR formalisms. Intuitively, instead of designing a unifying language (see e.g.,
[6,7], and [8] with its reasoner NoHR [9]) to which other languages could be translated,
in an MCS the different formalisms and knowledge bases are considered as modules,
and means are provided to model the flow of information between them (cf. [10,11,12]
and references therein for further motivation on hybrid languages and their connection
to MCSs). More specifically, an MCS consists of a set of contexts, each of which is a
knowledge base in some KR formalism, such that each context can access information
from the other contexts using so-called bridge rules. Such non-monotonic bridge rules
add their heads to the context’s knowledge base provided the queries (to other contexts)
in their bodies are successful. Managed Multi-Context Systems were introduced in [3]
to provide an extension of MCSs by allowing operations, other than simple addition,
to be expressed in the heads of bridge rules, thus allowing to properly deal with the
problem of consistency management within contexts.



Whereas mMCSs are quite general and flexible to address the problem of integra-
tion of different KR formalisms, they are essentially static in the sense that the con-
texts do not evolve to incorporate the changes in dynamic scenarios. In such scenarios,
new knowledge and information is dynamically produced, often from several different
sources – for example a stream of raw data produced by some sensors, new ontological
axioms written by some user, newly found exceptions to some general rule, etc. The
dynamic requirements imposed by these scenarios – where there is a need to react and
evolve in the presence of incoming information, as opposed to the classical static scenar-
ios which assume a one-shot computation usually triggered by a user query – have been
recently guiding research in KR languages, resulting in systems such as EVOLP [13],
Reactive ASP [14,15], C-SPARQL [16], Ontology Streams [17] and ETALIS [18].

To address the requirements posed by such dynamic scenarios, evolving Multi-
Context Systems (eMCSs) [1] were recently introduced with the broad motivation of
designing general and flexible frameworks inheriting from mMCSs the ability to inte-
grate and manage knowledge represented in heterogeneous KR formalisms, and at the
same time be able to incorporate knowledge obtained from dynamic observations.

Just like an mMCS, an eMCS is composed of a collection of components, each
of which contains knowledge represented in some logic, interconnected by bridge rules
which can specify different ways to share knowledge. Some contexts of an eMCS called
observation contexts, are reserved for dynamic incoming observations, changing at each
state according to what is observed. Additionally, eMCSs’ bridge rules have additional
expressiveness to allow the specification of how contexts should react and evolve. The
semantics of the resulting system is based on the so-called evolving equilibrium which
extends the notion of equilibrium from mMCSs to the dynamic setting.

Whereas the semantics based on the evolving equilibrium adequately addresses the
semantic issues of incorporating dynamic incoming observations in the contexts, other
results in [1] show that worst-case complexity is in general high. The source for the high
complexity can be traced to the high complexity of the KR formalism used by each of
the contexts, although the bridge rules also contribute, up to a certain level, to such
overall complexity. This can be a major problem in scenarios where the overall system
needs to evolve and react interactively. This is all the more true for huge amounts of data
– for example raw sensor data is likely to be constantly produced in large quantities –
and systems that are capable of processing and reasoning with such data are required.

In this paper, illustrated by an example inspired by a real-world use-case, we inves-
tigate conditions under which reasoning with eMCSs can be done in polynomial time,
along two distinct ways: by characterizing a subclass of eMCSs whose semantics can be
computed efficiently; and by defining a well-founded semantics which can be computed
efficiently for the general class of reducible eMCSs (i.e., eMCSs where the contexts are
not the source of high complexity). While addressing these complexity problems, we
also tackle an additional issue with eMCSs, inherited from MCSs and discussed in [2],
namely that equilibria may be non-minimal, which potentially admits that certain pieces
of information are considered true based solely on self-justification. Whereas such issue
can in principle be solved by indicating for each context whether it requires minimality
or not [2], avoiding self-justifications for those contexts where minimality is desired has
not been considered in eMCSs. Thus, the main contributions of the paper are:



– we study the notion of minimality under which self-justifications in eMCSs can
be avoided and introduce reducible eMCSs for which so-called evolving grounded
equilibria can be computed without additional minimality checks;

– we introduce definite eMCSs, a subclass of eMCSs for which evolving grounded
equilibria can be computed in polynomial time;

– we introduce a well-founded semantics for the more general class of reducible
eMCSs, which can be computed in polynomial time;

– we illustrate eMCSs with a use-case inspired by a real-world scenario on cargo
shipment assessment taken from [19].

2 Evolving Multi-Context Systems

In this section, we revisit evolving Multi-Context Systems as introduced in [1], already
including one simplification, which will be pointed out appropriately.

An evolving multi-context system (eMCS) consists of a collection of components,
each of which contains knowledge represented in some logic, defined as a triple L =
〈KB,BS,ACC〉 where KB is the set of well-formed knowledge bases of L, BS the
set of possible belief sets, and ACC : KB→ 2BS a function describing the semantics
of L by assigning to each knowledge base a set of acceptable belief sets. We assume
that each element of KB and BS is a set, and define F = {s : s ∈ kb ∧ kb ∈ KB}.

In addition to the knowledge base in each component, bridge rules are used to in-
terconnect the components, specifying what operations to perform on its knowledge
base given certain beliefs held in the components of the eMCS. For that purpose, each
component of an eMCS is associated with a management base, which is a set of oper-
ations that can be applied to the possible knowledge bases of that component. Given a
management base OP and a logic L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set
of operational formulas over OP and L. Each component of an eMCS gives semantics
to operations in its management base using a management function over a logic L and
a management base OP , mng : 2OF ×KB → KB, i.e., mng(op, kb) is the knowl-
edge base that results from applying the operations in op to the knowledge base kb. We
also assume that mng(∅, kb) = kb. Note that ensuring that mng is deterministic is the
restriction on eMCSs in [1] we introduce here for the sake of efficiency.

As indicated in [1], some of the contexts in an eMCS are so-called observation
contexts whose knowledge bases will be constantly changing over time according to
the observations made, similar, e.g., to streams of data from sensors.1 The changing
observations then will also affect the other contexts by means of the bridge rules. As
we will see, such effect can either be instantaneous and temporary, i.e., limited to the
current time instant where the body of a bridge rule is evaluated in a state that already
includes the effects of the operation in its head, or persistent, but only affecting the
next time instant. To achieve the latter, the set of operational formulas is extended with
a unary meta-operation next that can only be applied on top of operations. Given a
management baseOP and a logicL, eOF , the evolving operational language, is defined
as eOF = OF ∪ {next(op(s)) : op(s) ∈ OF}.

1 For simplicity of presentation, we consider discrete steps in time here.



Now, for a sequence of logics L = 〈L1, . . . , Ln〉 and a management base OPi, an
Li-bridge rule σ over L, 1 ≤ i ≤ n, is of the formH(σ)← B(σ) whereH(σ) ∈ eOFi
andB(σ) is a set of bridge literals of the forms (r : b) and not (r : b), 1 ≤ r ≤ n, with
b a belief formula of Lr. Then evolving Multi-Context Systems are defined as follows.

Definition 1. An eMCS is a sequence Me = 〈C1, . . . , Cn〉, where each evolving con-
text Ci, i ∈ {1, . . . , n} is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where Li =
〈KBi,BSi,ACCi〉 is a logic, kbi ∈ KBi, br i is a set of Li-bridge rules, OPi is a
management base, and mngi is a management function over Li and OPi.

As already outlined, evolving contexts can be divided into regular reasoning contexts
and special observation contexts that are meant to process a stream of observations
which ultimately enables the entire eMCS to react and evolve in the presence of in-
coming observations. To ease the reading and simplify notation, w.l.o.g., we assume
that the first ` contexts, 0 ≤ ` ≤ n, in the sequence 〈C1, . . . , Cn〉 are observation
contexts, and, whenever necessary, such an eMCS Me can be explicitly represented by
〈Co1 , . . . , Co` , C`+1, . . . , Cn〉. Then, a belief state forMe is a sequence S = 〈S1, . . . , Sn〉
such that, for each 1 ≤ i ≤ n, we have Si ∈ BSi.

Recall that the heads of bridge rules in an eMCS may be of two types: those that
contain next and those that do not. As already mentioned, the former are to be applied
to the current knowledge base and not persist, whereas the latter are to be applied in the
next time instant and persist. Therefore, we distinguish these two subsets.

Definition 2. Let Me = 〈C1, . . . , Cn〉 be an eMCS and S a belief state for Me. Then,
for each 1 ≤ i ≤ n, consider the following sets:

– appnexti (S) = {op(s) : next(op(s)) ∈ appi(S)}
– appnowi (S) = {op(s) : op(s) ∈ appi(S)}

If we want an effect to be instantaneous and persistent, then this can also be achieved
using two bridge rules with identical body, one with and one without next in the head.

The (static) equilibrium is defined to incorporate instantaneous effects based on
appnowi (S) alone.

Definition 3. Let Me = 〈C1, . . . , Cn〉 be an eMCS. A belief state S = 〈S1, . . . , Sn〉
for Me is a static equilibrium of Me iff we have Si ∈ ACCi(mngi(app

now
i (S), kbi))

for each 1 ≤ i ≤ n.

To assign meaning to an eMCS evolving over time, we recall evolving belief states,
which are sequences of belief states, each referring to a subsequent time instant.

Definition 4. Let Me = 〈C1, . . . , Cn〉 be an eMCS. An evolving belief state of size s
for Me is a sequence Se = 〈S1, . . . , Ss〉 s.t. all Sj , 1 ≤ j ≤ s, are belief states for Me.

To enable an eMCS to react to incoming observations and evolve, an observation
sequence defined in the following has to be processed. The idea is that the knowledge
bases of the observation contexts Coi change according to that sequence.

Definition 5. Let Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 be an eMCS. An observation se-
quence for Me is a sequence Obs = 〈O1, . . . ,Om〉, such that, for each 1 ≤ j ≤ m,
Oj = 〈oj1, . . . , o

j
`〉 is an instant observation with oji ∈ KBi for each 1 ≤ i ≤ `.



To be able to update the knowledge bases in the evolving contexts, we need one
further notation. Given an evolving context Ci and k ∈ KBi, we denote by Ci[k] the
evolving context in which kbi is replaced by k, i.e., Ci[k] = 〈Li, k, br i, OPi,mngi〉.

We can now define that certain evolving belief states are evolving equilibria of
an eMCS Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 given an observation sequence Obs =
〈O1, . . . ,Om〉 for Me. The intuitive idea is that, given an evolving belief state Se =
〈S1, . . . , Ss〉 for Me, in order to check if Se is an evolving equilibrium, we need to
consider a sequence of eMCSs, M1, . . . ,Ms (each with ` observation contexts), repre-
senting a possible evolution of Me according to the observations in Obs, such that Sj

is a (static) equilibrium of M j . The knowledge bases of the observation contexts in M j

are exactly their corresponding elements oji in Oj . For each of the other contexts Ci,
`+1 ≤ i ≤ n, its knowledge base inM j is obtained from the one inM j−1 by applying
the operations in appnexti (Sj−1).

Definition 6. Let Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 be an eMCS, Se = 〈S1, . . . , Ss〉
an evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me such that m ≥ s. Then, Se is an evolving equilibrium of size s of Me

given Obs iff, for each 1 ≤ j ≤ s, Sj is an equilibrium of the eMCS M j obtained as
M j = 〈Co1 [o

j
1], . . . , C

o
` [o

j
` ], C`+1[k

j
`+1], . . . , Cn[k

j
n]〉 where, for each ` + 1 ≤ i ≤ n,

kji is defined inductively as follows:

k1i = kbi kj+1
i = mngi(app

next
i (Sj), kji )

Note that next in bridge rule heads of observation contexts are thus without any effect.

3 Use Case Scenario

We illustrate eMCSs adapting a scenario on cargo shipment assessment taken from [19].
The customs service for any developed country assesses imported cargo for a variety

of risk factors including terrorism, narcotics, food and consumer safety, pest infestation,
tariff violations, and intellectual property rights.2 Assessing this risk, even at a prelim-
inary level, involves extensive knowledge about commodities, business entities, trade
patterns, government policies and trade agreements. Some of this knowledge may be
external to a given customs agency: for instance, the broad classification of commodi-
ties according to the international Harmonized Tariff System (HTS), or international
trade agreements. Other knowledge may be internal to a customs agency, such as lists
of suspected violators or of importers who have a history of good compliance with reg-
ulations. While some of this knowledge is relatively stable, much of it changes rapidly.
Changes are made not only at a specific level, such as knowledge about the expected
arrival date of a shipment; but at a more general level as well. For instance, while the
broad HTS code for tomatoes (0702) does not change, the full classification and tariffs
for cherry tomatoes for import into the US change seasonally.

Here, we consider an eMCS Me = 〈Co1 , Co2 , C3, C4〉 composed of two observation
contexts Co1 and Co2 , and two reasoning contexts C3 and C4. The first observation con-
text is used to capture the data of passing shipments, i.e., the country of their origination,

2 The system described here is not intended to reflect the policies of any country or agency.



the commodity they contain, their importers and producers. The knowledge base and
belief set language of Co1 is composed of all the ground atoms over ShpmtCommod/2,
ShpmtDeclHTSCode/2, ShpmtImporter/2, ShpmtProducer/2, ShpmtCountry/2, and
also GrapeTomato/1 and CherryTomato/1. The second observation context Co2 serves
to insert administrative information and data from other institutions. Its knowledge
base and belief set language is composed of all ground atoms over NewEUMember/1,
Misfiling/1, and RandomInspection/1. Both observation contexts have no bridge rules.

The reasoning context C3 is an ontological Description Logic (DL) [20] context
for which the standard definition of L3 can be found, e.g., in [21] and [3]. This con-
text contains a geographic classification, along with information about producers who
are located in various countries, and a classification of commodities based on their
harmonized tariff information (HTS chapters, headings and codes, cf. http://www.
usitc.gov/tata/hts). Then kb3 is given as follows:

Commodity ≡ (∃HTSCode.>) EdibleVegetable ≡ (∃HTSChapter. { ‘07’ })
Tomato v EdibleVegetable Tomato ≡ (∃HTSHeading. { ‘0702’ })
CherryTomato v Tomato CherryTomato ≡ (∃HTSCode. { ‘07020020’ })
GrapeTomato v Tomato GrapeTomato ≡ (∃HTSCode. { ‘07020010’ })
CherryTomato u GrapeTomato v ⊥
EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditImporter.>) u (∃CommodCountry.EUCountry)
EUCountry(portugal) RegisteredProducer(p1 , portugal)
EUCountry(slovakia) RegisteredProducer(p2 , slovakia)

OP3 contains operations to add (add) and remove (rm) factual knowledge. The
bridge rules br3 are given as follows:

add(CherryTomato(x))← (1 :CherryTomato(x))
add(GrapeTomato(x))← (1 :GrapeTomato(x))
next(add(EUCountry(x)))← (2 :NewEUMember(x))
next(rm(EUCountry(x)))← (2 :LeftEU(x))
add(CommodCountry(x,y))← (1 :ShpmtCommod(z,x)), (1 :ShpmtCountry(z,y))
add(ExpeditImporter(x,y))← (1 :ShpmtCommod(z,x)), (1 :ShpmtImporter(z,y)),

(4 :AdmissibleImporter(y)), (4 :ApprovedImporterOf(y,x))

Note that kb3 can indeed be expressed in the DL EL++ [22] for which standard reason-
ing tasks, such as subsumption, can be computed in PTIME.

Finally, C4 is a logic programming (LP) indicating information about importers,
and about whether to inspect a shipment either to check for compliance of tariff infor-
mation or for food safety issues. For L4 we consider that KBi is the set of normal logic
programs over a signature Σ, BSi is the set of atoms over Σ, and ACCi(kb) returns
a singleton set containing only the set of true atoms in the unique well-founded model.
The latter is a bit unconventional, since this way undefinedness under the well-founded
semantics [23] is merged with false information. However, as long as no loops over
negation occur in the LP context (in combination with its bridge rules), undefinedness
does not occur, and the obvious benefit of this choice is that computing the well-founded
model is PTIME-data-complete [24]. We consider OP4 = OP3, and kb4 and br4:

http://www.usitc.gov/tata/hts
http://www.usitc.gov/tata/hts


AdmissibleImporter(x)← ∼SuspectedBadGuy(x). SuspectedBadGuy(i1 ).
PartialInspection(x)← RandomInspection(x).
FullInspection(x)← ∼CompliantShpmt(x).

next((SuspectedBadGuy(x))← (2 :Misfiling(x))
add(ApprovedImporterOf(i2 ,x))← (3 :EdibleVegetable(x))
add(ApprovedImporterOf(i3 ,x))← (1 :GrapeTomato(x))
add(CompliantShpmt(x))← (1 :ShpmtCommod(x,y)), (3 :HTSCode(y, z)),

(1 :ShpmtDeclHTSCode(x, z))
add(RandomInspection(x))← (1 :ShpmtCommod(x,y)), (2 :Random(y))
add(PartialInspection(x))← (1 :ShpmtCommod(x,y)),

not (3 :LowRiskEUCommodity(y))
add(FullInspection(x))← (1 :ShpmtCommod(x,y)), (3 :Tomato(y)),

(1 :ShpmtCountry(x, slovakia))

To illustrate how this eMCS can evolve, consider the observation sequence Obs =
〈O1,O2,O3〉 where o11 consists of the following atoms on s1 (where s stands for ship-
ment, c for commodity, and i for importer):

ShpmtCommod(s1 , c1 ) ShpmtDeclHTSCode(s1 , ‘07020010’)
ShpmtImporter(s1 , i1 ) CherryTomato(c1 )

o21 of the following atoms on s2 :

ShpmtCommod(s2 , c2 ) ShpmtDeclHTSCode(s2 , ‘07020020’)
ShpmtImporter(s2 , i2 ) ShpmtCountry(s2 , portugal)
CherryTomato(c2 )

and o31 of the following atoms on s3 :

ShpmtCommod(s3 , c3 ) ShpmtDeclHTSCode(s3 , ‘07020010’)
ShpmtImporter(s3 , i3 ) ShpmtCountry(s3 , portugal)
GrapeTomato(c3 ) ShpmtProducer(s3 , p1 )

while o12 = o32 = ∅ and o22 = {Misfiling(i3 )}. Then, an evolving equilibrium of size
3 of Me given Obs is the sequence Se = 〈S1, S2, S3〉 such that, for each 1 ≤ j ≤ 3,
Sj = 〈Sj1, S

j
2, S

j
3, S

j
4〉. Since it is not feasible to present the entire Se, we just high-

light some interesting parts related to the evolution of the system. E.g., we have that
FullInspection(s1 ) ∈ S1

4 since the HTS code does not correspond to the cargo; no in-
spection on s2 in S2

4 since the shipment is compliant, c2 is a EU commodity, and s2
was not picked for random inspection; and PartialInspection(s3 ) ∈ S3

4 , even though s3
comes from a EU country, because i3 has been identified at time instant 2 for misfiling,
which has become permanent info available at time 3.

Besides illustrating eMCSs, what this use case scenario also shows is that efficient
reasoning is a very important matter in the sense that the decision whether to (partially)
inspect a shipment or not should be essentially instantaneous once the sensor data is re-
ceived. To this end, in the next section, we focus on conditions under which reasoning



with eMCSs becomes efficient w.r.t. the worst-case complexity. At the same time, ba-
sically orthogonal to that, we can also speed-up computation utilizing only a restricted
part of the sequence of evolving MCSs for computing evolving equilibria (or even only
one for which the static equilibrium suffices). This is matched accordingly in the next
section, as notions are introduced that also cover the static case.

4 Grounded Equilibria and Well-founded Semantics

Even if we only consider MCSs M , which are static and where an implicit mng al-
ways returns precisely one knowledge base, such that reasoning in all contexts can be
done in PTIME, then deciding whether M has an equilibrium is still in NP [2,3]. The
same result necessarily also holds for eMCSs, which can also be obtained from the
considerations on eMCSs [1].

A number of notions were studied in the context of MCSs that tackle this problem
[2]. In fact, minimal equilibria were introduced with the aim of avoiding potential self-
justifications. Then, grounded equilibria as a special case for so-called reducible MCSs
were presented for which the existence of minimal equilibria can be effectively checked.
Subsequently, a well-founded semantics for such reducible MCSs was defined under
which an approximation of all grounded equilibria can be computed more efficiently.
In the following, we transfer these notions from static MCSs in [2] to dynamic eMCSs
and discuss under which (non-trivial) conditions they can actually be applied.

First, given an eMCS Me = 〈C1, . . . , Cn〉, a static equilibrium S = 〈S1, . . . , Sn〉
is minimal if there is no equilibrium S′ = 〈S′1, . . . , S′n〉 such that S′i ⊆ Si for all i with
1 ≤ i ≤ n and S′j ( Sj for some j with 1 ≤ j ≤ n.

This notion of minimality ensures avoiding self-justifications in evolving equilibria.
The problem with it is that such minimization in general adds an additional level in the
polynomial hierarchy. Therefore, we now formalize conditions under which minimal
equilibria can be effectively checked. The idea is that the grounded equilibrium will be
assigned to an eMCS Me if all the logics of all its contexts can be reduced to special
monotonic ones using a so-called reduction function. In the case where the logics of all
contexts in Me turn out to be monotonic, the minimal equilibrium will be unique.

Formally, a logic L = (KB,BS,ACC) is monotonic if

1. ACC(kb) is a singleton set for each kb ∈ KB, and

2. S ⊆ S′ whenever kb ⊆ kb′, ACC(kb) = {S }, and ACC(kb′) = {S′ }.
Furthermore, L = (KB,BS,ACC) is reducible if for some KB∗ ⊆ KB and

some reduction function red : KB×BS→ KB∗,

1. the restriction of L to KB∗ is monotonic,

2. for each kb ∈ KB, and all S, S′ ∈ BS: red(kb, S) = kb whenever kb ∈ KB∗,
red(kb, S) ⊆ red(kb, S′) whenever S′ ⊆ S, and ACC(red(kb, S)) = {S } iff
S ∈ ACC(kb).

An evolving context C = (L, kb, br , OP,mng) is reducible if its logic L is reducible
and, for all op ∈ OP and all belief sets S, red(mng(op, kb), S) = mng(op, red(kb, S)).



An eMCS is reducible if all of its contexts are. Note that a context is reducible
whenever its logic L is monotonic. In this case KB∗ coincides with KB and red is the
identity with respect to the first argument.

As pointed out in [2], reducibility is inspired by the reduct in (non-monotonic) an-
swer set programming. The novel condition in our case is the one saying that the re-
duction function red and the management function mng have to be applicable in an
arbitrary order. This may restrict to some extent the sets of operations OP and mng,
but in our use case scenario in Sect. 3, all contexts are indeed reducible.

A particular case of reducible eMCSs, definite eMCSs, does not require the reduc-
tion function and admits the polynomial computation of minimal evolving equilibria as
we will see next. Namely, a reducible eMCS Me = 〈C1, . . . , Cn〉 is definite if

1. none of the bridge rules in any context contains not , and

2. for all i and all S ∈ BSi, kbi = red i(kbi, S).

In a definite eMCS, bridge rules are monotonic, and knowledge bases are already in
reduced form. Inference is thus monotonic and a unique minimal equilibrium exists,
which we call the grounded equilibrium. LetMe be a definite eMCS. A belief state S of
Me is the grounded equilibrium ofMe, denoted by GE(Me), if S is the unique minimal
(static) equilibrium of Me. This notion gives rise to evolving grounded equilibria.

Definition 7. Let Me = 〈C1, . . . , Cn〉 be a definite eMCS, Se = 〈S1, . . . , Ss〉 an
evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉 an observation se-
quence for Me s.t. m ≥ s. Then, Se is the evolving grounded equilibrium of size s of
Me given Obs iff, for each 1 ≤ j ≤ s, Sj = GE(M j) with M j defined as in Def. 6.

Grounded equilibria for definite eMCSs can indeed be efficiently computed. The
only additional requirement is that OF is monotonic for each context, i.e., for any kb
and each op(s) ∈ OF with H(σ) = op(s) for some σ ∈ br , we have that kb ⊆
mng(op(s), kb). Note that this is in fact a restriction not covered by reducible eMCSs,
yet it does not affect operations occurring under next. Now, for 1 ≤ i ≤ n, let kb0i =
kbi and define, for each successor ordinal α+ 1,

kbα+1
i = mng(appnowi (Eα), kbαi ),

where Eα = (Eα1 , . . . , E
α
n ) and ACCi(kb

α
i ) = {Eαi }. Furthermore, for each limit

ordinal α, define kbαi =
⋃
β≤α kb

β
i , and let kb∞i =

⋃
α>0 kb

α
i . Then we have:

Proposition 1. Let Me = 〈C1, . . . , Cn〉 be a definite eMCS s.t. all OFi are monotonic.
A belief state S = 〈S1, . . . , Sn〉 is the grounded equilibrium of Me iff ACCi(kb

∞
i ) =

{Si}, for 1 ≤ i ≤ n.

As pointed out in [2], for many logics, kb∞i = kbωi holds, i.e., the iteration stops after
finitely many steps. This is indeed the case for the use case scenario in Sect. 3.

For evolving belief states Se of size s and an observation sequenceObs forMe, this
proposition yields that the evolving grounded equilibrium for definite eMCSs can be
obtained by simply applying this iteration s times.

This same iteration cannot be applied to arbitrary reducible eMCSs right away. In-
stead, grounded equilibria for general reducible eMCSs are defined based on a reduct
which generalizes the Gelfond-Lifschitz reduct to the multi-context case:



Definition 8. Let Me = 〈C1, . . . , Cn〉 be a reducible eMCS and S = 〈S1, . . . , Sn〉 a
belief state of Me. The S-reduct of Me is defined as MS

e = 〈CS1 , . . . , CSn 〉 s.t., for each
Ci = 〈Li, kbi, br i, OPi,mngi〉, we define CSi = (Li, red i(kbi, Si), br

S
i , OPi,mngi).

Here, brSi results from br i by deleting all rules with not (r : p) in the body such that
S |= (r : p), and all not literals from the bodies of remaining rules.

For each reducible eMCS Me and each belief set S, the S-reduct of Me is definite.
We can thus check whether S is a grounded equilibrium in the usual manner, and it can
be shown that grounded equilibria of reducible eMCSs are minimal.

Definition 9. Let Me be a reducible eMCS such that all OFi are monotonic. A belief
state S of Me is a grounded equilibrium of Me if S = GE(MS

e ).

Proposition 2. Every grounded equilibrium of a reducible eMCSMe such that allOFi
are monotonic is a minimal equilibrium of Me.

This can again be generalized to evolving grounded equilibria.

Definition 10. Let Me = 〈C1, . . . , Cn〉 be a reducible eMCS such that all OFi are
monotonic, Se = 〈S1, . . . , Ss〉 an evolving belief state of size s for Me, and Obs =
〈O1, . . . ,Om〉 an observation sequence forMe such thatm ≥ s. Then, Se is the evolv-
ing grounded equilibrium of size s of Me given Obs iff, for each 1 ≤ j ≤ s, Sj is the
grounded equilibrium of (M j)Sj with M j defined as in Def. 6.

For reducible eMCSs in general, this computation is not polynomial, since, intu-
itively, we have to guess and check the (evolving) equilibrium, which is why we intro-
duce the well-founded semantics for reducible eMCSsMe following the ideas in [2]. Its
definition is based on the operator γMe

(S) = GE(MS
e ), provided BSi for each logic

Li in all the contexts of Me has a least element S∗. Such eMCSs are called normal.
It can be shown that γMe is antitonic which means that applying γMe twice yields a

monotonic operator. Hence, by the Knaster-Tarski theorem, (γMe)
2 has a least fixpoint

which determines the well-founded semantics.

Definition 11. Let Me be a normal, reducible eMCS s.t. all OFi are monotonic. The
well-founded semantics of Me, denoted WFS(Me), is the least fixpoint of (γMe

)2.

Starting with the least belief state S∗ = 〈S∗1 , . . . , S∗n〉, this fixpoint can be iterated,
establishing the relation between WFS(Me) and the grounded equilibria of Me.

Proposition 3. Let Me = 〈C1, . . . , Cn〉 be a normal, reducible eMCS such that all
OFi are monotonic, WFS(Me) = 〈W1, . . .Wn〉, and S = 〈S1, . . . , Sn〉 a grounded
equilibrium of Me. Then Wi ⊆ Si for 1 ≤ i ≤ n.

The well-founded semantics can thus be viewed as an approximation of the belief
state representing what is accepted in all grounded equilibria, even though WFS(Me)
may itself not necessarily be an equilibrium. Yet, if all ACCi deterministically return
one element of BSi and the eMCS is acyclic (i.e., no cyclic dependencies over bridge
rules exist between beliefs in the eMCS see [1]), then the grounded equilibrium is
unique and identical to the well-founded semantics. This is indeed the case for the use
case in Sect. 3.

As before, the well-founded semantics can be generalized to evolving belief states.



Definition 12. LetMe = 〈C1, . . . , Cn〉 be a normal, reducible eMCS such that allOFi
are monotonic, and Obs = 〈O1, . . . ,Om〉 an observation sequence for Me such that
m ≥ s. The evolving well-founded semantics of Me of size s, denoted WFSse(Me),
is the evolving belief state Se = 〈S1, . . . , Ss〉 of size s for Me such that Sj is the
well-founded semantics of M j defined as in Definition 6.

Finally, as intended, we can show that computing the evolving well-founded seman-
tics of Me can be done in polynomial time under the restrictions established so far. For
analyzing the complexity in each time instant, we can utilize output-projected belief
states [21]. The idea is to consider only those beliefs that appear in some bridge rule
body. Formally, given an evolving context Ci within Me = 〈C1, . . . , Cn〉, we can de-
fine OUTi to be the set of all beliefs of Ci occurring in the body of some bridge rule in
Me. The output-projection of a belief state S = 〈S1, . . . , Sn〉 of Me is the belief state
S′ = 〈S′1, . . . , S′n〉, S′i = Si ∩OUTi, for 1 ≤ i ≤ n.

Following [21,3], we can adapt the context complexity of Ci from [1] as follows:

(CC) Decide, given Opi ⊆ OFi and S′i ⊆ OUTi, if exist kb′i = mngi(Opi, kbi) and
Si ∈ ACCi(kb

′
i) s.t. S′i = Si ∩OUTi.

Problem (CC) can intuitively be divided into two subproblems: (MC) compute some
kb′i = mngi(Opi, kbi) and (EC) decide whether Si ∈ ACC(kb′i) exists s.t. S′i =
Si ∩ OUTi. Here, (MC) is trivial for monotonic operations, so (EC) determines the
complexity of (CC).

Theorem 1. Let Me = 〈C1, . . . , Cn〉 be a normal, reducible eMCS such that all OFi
are monotonic, Obs = 〈O1, . . . ,Om〉 an observation sequence for Me, and (CC) is in
PTIME for all Ci. Then, for s ≤ m, computing WFSse(Me) is in PTIME.

This, together with the observation that WFSse(Me) coincides with the unique evolving
grounded equilibrium of size s, allows us to verify that computing the results in our use
case scenario can be done in polynomial time.

5 Related and Future Work

In this paper, we have investigated how to obtain efficient eMCSs. On the one hand, we
have considered notions of minimality that avoid self-support of beliefs in eMCSs, on
the other hand, we have studied how to revise eMCSs such that polynomial reasoning
becomes possible. We have also discussed an example use case to which these results
successfully apply.

Closely related to eMCSs is the framework of reactive Multi-Context Systems (rM-
CSs) [25,26,27] since both aim at extending mMCSs to cope with dynamic observa-
tions. The main difference between and eMCSs and rMCSs is that eMCSs have the meta
operator next that allows for a clear separation between persistent and non-persistent
effects, and also the specification of transitions based on the current state, while rM-
CSs utilize explicit time stamps thus making it easier to write bridge rules that refer
to specific sequences of observations. In general, rMCSs have also an associated high
complexity, which is again problematic in dynamic scenarios where the overall system



needs to evolve and react interactively. An interesting question is whether the techniques
presented here for eMCSs could be adapted and applied to rMCSs to make polynomial
reasoning possible.

Another framework closely related to eMCSs is that of evolving logic programs
EVOLP [13] which deals with updates of generalized logic programs, and the two
frameworks of reactive ASP, one implemented as a solver clingo [14] and one described
in [25]. Whereas EVOLP employs an update predicate that is similar in spirit to the next
predicate of eMCSs, it does not deal with distributed heterogeneous knowledge, neither
do both versions of Reactive ASP.

An important issue open for future work is a more fine-grained characterization of
updating bridge rules (and knowledge bases) as studied in [28] in light of the encoun-
tered difficulties when updating rules [29,30,31] and the combination of updates over
various formalisms [30,32].

Also interesting is to study how to perform AGM style belief revision at the (se-
mantic) level of the equilibria, as in Wang et al [33], though different since knowledge
is not incorporated in the contexts.
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