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Abstract. In open environments, agents need to reason with knowl-
edge from various sources, represented in different languages. Managed
Multi-Context Systems (mMCSs) allow for the integration of knowledge
from different heterogeneous sources in an effective and modular way,
where so-called bridge rules express how information flows between the
contexts. The problem is that mMCSs are essentially static as they were
not designed to run in a dynamic scenario. Some recent approaches,
among them evolving Multi-Context Systems (eMCSs), extend mMCSs
by allowing not only the ability to integrate knowledge represented in
heterogeneous KR formalisms, but at the same time to both react to,
and reason in the presence of commonly temporary dynamic observa-
tions, and evolve by incorporating new knowledge. These approaches,
however, only consider the dynamics of the knowledge bases, whereas
the dynamics of the bridge rules, i.e., the dynamics of how the informa-
tion flows, is neglected. In this paper, we fill this gap by building upon
the framework of eMCSs by further extending it with the ability to up-
date the bridge rules of each context taking into account an incoming
stream of observed bridge rules. We show that several desirable proper-
ties are satisfied in our framework, and that the important problem of
consistency management can be dealt with in our framework.

1 Introduction

In Open Multi-Agent Systems, the paradigm for knowledge representation and
reasoning (KRR) is rapidly changing from one where each agent has its own
monolithic knowledge base written in some language into one where each agent
has to deal with several external heterogeneous sources of knowledge, possibly
written in different languages (see, e.g.,[1,22,25] and references therein). These
sources of knowledge include the large number of available ontologies and rule
sets, as well as the norms and policies published by the institutions, the infor-
mation communicated by other agents, to name only a few.

Each agent needs to be able to deal with such distributed sources of knowl-
edge, taking into account the interactions and possible flows of information be-
tween them. For example, the agent may use inferences drawn from some ontol-
ogy to justify the conclusions drawn from some rules in another knowledge base;
or the agent may use some piece of information published by some other agent



to infer that some action it is about to undertake will not violate some norm
published by some institution. Unlike approaches that aim to integrate several
knowledge bases to obtain a common view of the system, our focus is on how a
particular agent can integrate several knowledge bases to obtain its own view of
the system. One consequence of our focus is that no coordination between agents
is involved since the way knowledge bases are combined, how they interact, and
how information flows between them, is internal, and ultimately private, to the
agent in question.

Two common ways of integrating heterogeneous knowledge exist, namely ei-
ther relying on hybrid languages (e.g., [20,27], and [24] with its reasoner NoHR
[23]), to which other languages can be translated, or modular approaches (e.g.,
[9,14]) in which different formalisms and knowledge bases are considered as mod-
ules, and means are provided to model the flow of information between them.
Among the latter, Multi-Context Systems (MCSs) [9,19,28] are particularly gen-
eral and have gained some attention by agent developers [7,12,29].

MCSs consist of a set of contexts, each of which is a knowledge base in
some KR formalism, such that each context can access information from other
contexts using so-called bridge rules. Such non-monotonic bridge rules add their
head to the context’s knowledge base provided the queries (to other contexts)
in the bodies are successful. Managed Multi-Context Systems (mMCSs) were
introduced in [10] to extend MCSs by allowing operations, other than simple
addition, to appear in the heads of bridge rules. This allows mMCSs to properly
deal with the problem of consistency management within contexts.

A recent challenge for KR languages is the shift from static scenarios which
assume a one-shot computation, usually triggered by a user query, to open and
dynamic scenarios where there is a need to react and evolve in the presence
of incoming information. Examples include EVOLP [2], Reactive ASP [17,16],
C-SPARQL [6], Ontology Streams [26] and ETALIS [4], to name only a few.

Whereas mMCSs are quite general and flexible to address the problem of in-
tegration of different KR formalisms, they are essentially static in the sense that
the contexts do not evolve to incorporate the changes in the dynamic scenarios.
In such scenarios, new knowledge and information is dynamically produced, of-
ten from several different sources – for example a stream of raw data produced
by some sensors, new ontological axioms written by some user, newly found
exceptions to some general rule, etc.

To address this issue, two recent frameworks, evolving Multi-Context Sys-
tems (eMCSs) [21] and reactive Multi-Context Systems (rMCSs) [8,15,11] have
been proposed sharing the broad motivation of designing general and flexible
frameworks inheriting from mMCSs the ability to integrate and manage knowl-
edge represented in heterogeneous KR formalisms, and at the same time be able
to incorporate knowledge obtained from dynamic observations.

Whereas some differences set eMCSs and rMCSs apart, namely regarding how
observations are handled, and the kind of state transitions that can be made,
both focus only on the dynamics of the context’s knowledge bases, thus not
allowing the bridge rules of the contexts to change. However, as the world evolves,



it is also quite natural that the way in which information flows between contexts
be subject to change. For example, as bridge rules represent how contexts are
accessed, and their knowledge used, changes in the level of trust of these contexts
can lead to changes in the way their knowledge is used, i.e., changes in the bridge
rules that appeal to those contexts. Even if not triggered by issues such as trust,
we may simply want to change the bridge rules, e.g., by adding exceptions to
existing ones. To address this drawback, we should allow the initial set of bridge
rules to undergo change, at runtime, triggered by the observation of new bridge
rules, which act as updates to the previous ones. This update naturally needs to
go beyond the simple addition of the new rules since consistency between new
and previously existing bridge rules needs to be ensured.

In this paper we fill this gap by presenting an extension to eMCSs, called
bridge-rule evolving Multi-Context Systems (beMCSs), which combines the abil-
ity to both react to, and reason in the presence of commonly temporary dynamic
observations, and evolve by incorporating new knowledge, inherited from eMCS,
with the ability to update the bridge rules of each context, taking into account
an incoming stream of observed bridge rules. We show that our framework sat-
isfies several desirable properties and how the important problem of consistency
management can be dealt with.

The remainder of this paper is structured as follows. After introducing the
main concepts regarding mMCSs, we define beMCSs and prove some properties
of the framework. Then, we discuss consistency management. We conclude with
discussing related work and possible future directions.

Example 1 (Running example). Throughout this paper, we will illustrate some of
our concepts using the scenario of an airport, where there is an agent responsible
for its security.1 Such an agent should build its knowledge based on existing
knowledge distributed across several heterogeneous knowledge sources. First of
all, the agent should have access to an airport ontology, which describes airport
concepts, e.g., terminals, gates, etc., to avoid creating and maintaining its own.
Another important component is that of the security norms, usually published by
a national authority, that describe what is obligatory, permitted and forbidden
with respect to airport security. As in any true multi-agent system, the agent
should have a model of every other relevant agent, e.g., other security agents
working in cooperation. Here, such models are meant to be the idealization
the security agent has about the other agents based on observations about and
communication with them. In this scenario, the security agent will have to react
and evolve given incoming streams of information, e.g., provided by sensors (e.g.,
passengers arriving to the airport, images from cameras, etc.) or from other
agents, but it should also be able to change its specification regarding how all
this information flows between contexts and is combined.

1 This example is partially inspired by an example presented in [25].



2 Preliminaries: Managed Multi-Context Systems

Following [9], a Multi-Context System (MCS) consists of a collection of compo-
nents, each of which contains knowledge represented in some logic, defined as
a triple L = 〈KB,BS,ACC〉 where KB is the set of well-formed knowledge
bases of L, BS is the set of possible belief sets, and ACC : KB → 2BS is a
function describing the semantics of L by assigning to each knowledge base a set
of acceptable belief sets. We assume that each element of KB and BS is a set,
and we define F = {s : s ∈ kb ∧ kb ∈ KB}.

In addition to the knowledge base in each component, bridge rules are used
to interconnect the components, specifying what knowledge to assert in one com-
ponent given certain beliefs held in the components of the MCS. Bridge rules
in MCSs only allow adding information to the knowledge base of their corre-
sponding context. In [10], an extension of MCSs, called managed Multi-Context
Systems (mMCSs), is introduced in order to allow other types of operations to
be performed on a knowledge base. For that purpose, each context of an mMCS
is associated with a management base, which is a set of operations that can be
applied to the possible knowledge bases of that context. Given a management
base OP and a logic L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set of oper-
ational formulas over OP and L. Each context of an mMCS gives semantics to
operations in its management base using a management function over a logic L
and a management base OP , mng : 2OF ×KB→ (2KB \{∅}), i.e., mng(Op, kb)
is the (non-empty) set of possible knowledge bases that result from applying the
operations in Op to the knowledge base kb. We assume that mng(∅, kb) = {kb}.

Let L = 〈L1, . . . , Ln〉 be a sequence of logics and OPi a management base.
We denote by OFi the set of operational formulas over OPi and Li. Then a
bridge rule σ for Li and OPi over L, 1 ≤ i ≤ n, is a rule of the form op(s) ←
a1, . . . , ak,not ak+1, . . . ,not an, where op(s) ∈ OFi, and, for each 1 ≤ i ≤ n,
ai is of the form (r :b) where r ∈ {1, . . . , n} and b is a belief formula of Lr.
Given a bridge rule σ of the above form, the head and the body of σ are defined
as H(σ) = op(s) and B(σ) = {a1, . . . , ak,not ak+1, . . . ,not an}, respectively.
As we will specify below, intuitively, the operational formula in the head will
be applied to the knowledge base using mng if all elements in the body are in
accordance with the beliefs held in the corresponding contexts r.

Putting all the above together, a managed Multi-Context System (mMCS)
is a sequence M = 〈C1, . . . , Cn〉, where each Ci, 1 ≤ i ≤ n, called a managed
context, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where

– Li = 〈KBi,BSi,ACCi〉 is a logic
– kbi ∈ KBi

– OPi is a management base
– br i is a set of bridge rules for Li and OPi over 〈L1, . . . , Ln〉
– mngi is a management function over Li and OPi.

For the sake of readability, we consider a slightly restricted version of mMCSs
where each ACCi is a function and not a set of functions as for logic suites [10].



Example 2 (Ctd.). We now briefly sketch an mMCS for the airport scenario as
outlined in Sect. 1. The idea is not to present a full detailed description of the
mMCS, but rather to describe parts of the example which will help us illustrat-
ing our approach. We present a simplified modeling of the airport security agent
using an mMCS with five contexts, one for each relevant entity: the airport ontol-
ogy, the normative entity, the security agent, and two other agents, agent A and
agent B, which work in cooperation with the security agent. The airport ontology
is a Description Logic (DL) [5] context, since DLs are well-suited for hierarchical
information. Both the normative institution and the security agent are modeled
by Logic Programming (LP) [18] contexts, since LP is well-suited to represent
rule-based languages. For simplicity, we also assume that the representation of
information the security agent has about the other two agents is modeled by a
context in classical logic. We now present part of the configuration of the knowl-
edge bases of the five contexts and refer for the (standard) definitions of their
logics to [13] and [10]. The knowledge base of the ontology context includes tax-
onomic information based on usual airport vocabulary, such as Onboard, Flight,
Passenger. The set of taxonomic axioms, usually denoted the TBox of the on-
tology, contains, for example, the axiom ∃ Onboard.> v Passenger, stating that
someone onboard is a passenger. Besides the hierarchical information in the
TBox, with a more static nature, the ontology can also have more dynamic data,
in this case about flights, airlines, etc., usually denoted the ABox of the ontology.
The ABox contains, for example, Flight(KM101) and Onboard(John,KM101).

The knowledge base of the normative context contains the LP rules:

TakeOffNotAllowed(f)← Flight(f), IntDest(f),Onboard(x,f),not HasPassport(x)

HasPassport(x)← Passenger(x),Passport(p),Carries(x,p)

The first rule states that an international flight is not allowed to take off if there
is someone onboard which is not known to carry a passport. The second rule
defines when a passenger has a passport.

The knowledge base of the security agent includes the rule

Investigate(f)← BoardingProblem(f),not UnderInvestigation(f)

stating that the agent should investigate a flight for which there is a boarding
problem and it is not known that the flight is already being investigated (by
another agent). The knowledge bases of agents A and B contain the formula
Investigating(f) whenever they are investigating flight f . Then, as we will see
later, UnderInvestigation(f) will be added to the knowledge base of the security
agent’s context via bridge rules whenever Investigating(f) is believed true in the
context of either agent A or agent B.

For an mMCS M = 〈C1, . . . , Cn〉, a belief state of M is a sequence S =
〈S1, . . . , Sn〉 such that each Si is an element of BSi. For a bridge literal (r : b),
S |= (r : b) if b ∈ Sr and S |= not (r : b) if b /∈ Sr; for a set of bridge literals B,
S |= B if S |= L for every L ∈ B. We say that a bridge rule σ of a context Ci

is applicable given a belief state S of M if S satisfies B(σ). We can then define



appi(S), the set of heads of bridge rules of Ci which are applicable in S, by
setting appi(S) = {H(σ) : σ ∈ br i ∧ S |= B(σ)}.

Equilibria are belief states that simultaneously assign an acceptable belief
set to each context in the mMCS such that the applicable operational formulas
in bridge rule heads are taken into account. Let M = 〈C1, . . . , Cn〉 be an mMCS
and S = 〈S1, . . . , Sn〉 a belief state of M . Then, S is an equilibrium of M if, for
every 1 ≤ i ≤ n, we have Si ∈ ACCi(kb) for some kb ∈ mngi(appi(S), kbi).

3 Evolving bridge rules

Evolving Multi-Context Systems (eMCSs) [21] admit so-called observation con-
texts whose knowledge bases are constantly changing over time according to the
observations made, similar, e.g., to streams of data from sensors.2 As outlined in
Sect. 1, such eMCSs do not consider potential changes in the bridge rules that
may be the result of simple observations, a learning process of the agent itself or
indicated by the programmer at runtime. In this section, we introduce beMCSs,
that extend eMCSs by also allowing that each context receives an incoming
stream of sets of such bridge rules, which is meant to incrementally update the
set of bridge rules of the context. For that purpose, rather than first recalling
eMCSs and then presenting its extension beMCSs, we present the combined for-
malism beMCSs right away and point out concrete differences when discussing
the formalization of updating bridge rules.

Following [21], regarding the observations made by the observation contexts,
these will also affect the other contexts by means of the bridge rules. As we
will see, such effect can either be instantaneous and temporary, i.e., limited to
the current time instant, similar to (static) mMCSs, where the body of a bridge
rule is evaluated in a state that already includes the effects of the operation in
its head, or persistent, but only affecting the next time instant. To achieve the
latter, we extend the operational language with a unary meta-operation next
that can only be applied on top of operations.

Definition 1. The evolving operational language over a management base OP
and a logic L is defined as eOF = OF ∪ {next(op(s)) : op(s) ∈ OF}.

The idea of observation contexts is that each such context has a language
describing the set of possible observations of that context, along with its cur-
rent observation. The elements of the language of the observation contexts can
then be used in the body of bridge rules to allow contexts to access the observa-
tions. Formally, an observation context is a tuple O = 〈ΠO, π〉 where ΠO is the
observation language of O and π ⊆ ΠO is its current observation.

We can now adapt beMCSs from eMCSs.

Definition 2. A beMCS is a sequence Me = 〈C1, . . . , Cn, O1, . . . , O`〉, such that
each Oj = 〈ΠOj

, πj〉, j ∈ {1, . . . , `}, is an observation context, and each evolving
context Ci, i ∈ {1, . . . , n}, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where

2 For simplicity of presentation, discrete steps in time are considered.



– Li = 〈KBi,BSi,ACCi〉 is a logic
– kbi ∈ KBi

– br i is a set of bridge rules of the form

H(σ)← a1, . . . , ak,not ak+1, . . . ,not an (1)
such that H(σ) ∈ eOFi, and each ai, i ∈ {1, . . . , n}, is either of the form
(r :b) with r ∈ {1, . . . , n} and b a belief formula of Lr, or of the form (r@o)
with r ∈ {1, . . . , `} and o ∈ ΠOr

– OPi is a management base
– mngi is a management function over Li and OPi.

We denote by BRi the set of possible bridge rules of the form (1) for Ci.

Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS. As for mMCSs, the notion
of belief state for Me is defined as a sequence S = 〈S1, . . . , Sn〉 such that, for
each 1 ≤ i ≤ n, we have Si ∈ BSi.

The notion appi(S) of the set of heads of bridge rules of Ci which are ap-
plicable in a belief state S = 〈S1, . . . , Sn〉, cannot be directly transferred from
mMCSs to beMCS since bridge rule bodies can now contain atoms of the form
(r@o), whose satisfaction depends on the current observation.

The satisfaction of bridge literals of the form (r :b) carries over from mMCSs.
The satisfaction of bridge literal of the form (r@b) depends on the current obser-
vations, i.e., we have that S |= (r@o) if o ∈ πr and S |= not (r@o) if o /∈ πr. As
before, for a set B of bridge literals, we have S |= B if S |= L for every L ∈ B.

We say that a bridge rule σ of a context Ci is applicable given a belief state
S for Me if S |= B(σ). Then, given a belief state S for Me and a set br of bridge
rules for Me, we can define app(S, br) = {H(σ) : σ ∈ br and S |= B(σ)}, the set
of heads of bridge rules in br which are applicable given S.

Recall that the heads of bridge rules in a beMCS are more expressive than
in an mMCS, since they may be of two types: those that contain next and
those that do not. As already mentioned, the former are to be applied to the
current knowledge base and not persist, whereas the latter are to be applied in
the next time instant and persist. Therefore, we distinguish these two subsets of
app(S, br) by setting:

Definition 3. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS, br a set of bridge
rules with br ⊆

⋃
i BRi, and S a belief state for Me. Then, consider the sets:

– appnext(S, br) = {op(s) : next(op(s)) ∈ app(S, br)}
– appnow(S, br) = {op(s) : op(s) ∈ app(S, br)}

This definition is a generalization of Def. 3 [21] to arbitrary sets of bridge rules.
Nevertheless, for the set of bridge rules of a context Ci, br i, we can use the nota-
tion appnexti (S) and appnowi (S) as in [21] to denote, respectively, appnext(S, br i)
and appnow(S, br i).

Note that we can easily model a scenario where we want an effect to be
instantaneous and persistent. This can be achieved using two bridge rules with
identical body, one with and one without next in the head.



Example 3 (Ctd.). We now sketch a beMCS modeling the airport security agent.
Let Me = 〈C1, C2, C3, C4, C5, O1〉 be composed of five evolving contexts C1, C2,
C3, C4 and C5, corresponding to the airport ontology, the normative entity,
the security agent, agent A, and agent B, respectively, whose knowledge bases
are partially given in Example 2. The observation context, O1, now models
incoming information arriving to the system, which allows each context, through
its bridge rules, to react and evolve given such observations. For simplicity, we
consider just one observation context, which is responsible for monitoring flight
gates, and omit here more sophisticated observations, e.g., readings of electronic
passports, images from cameras, etc. The language of O1 contains elements such
as enterPlane(John,1234), stating that John has just entered the plane with
identification 1234.

The ontology context C1 contains the following bridge rule:

next(add(Onboard(x,f)))←1@EnterPlane(x,p), 1:Assigned(p,f)

stating that if it is observed that a person enters a plane which is assigned to a
flight, then this person is onboard that flight. Note the use of next in the head
of the rule to guarantee that Onboard(x,f) is persistently added to the ontology.

The normative context C2 contains the following bridge rules, importing the
relevant information from the ontology context C1:

upd(Flight(f)←)← 1:Flight(f)

upd(Onboard(x,f)←)← 1:Onboard(x,f)

Note that, to not duplicate information already in the ontology, the above rules
only import information temporarily to C2, without using the operator next.

The security agent context C3 has the following bridge rules:

upd(UnderInvestigation(f)←)← 4:Investigating(f)

upd(UnderInvestigation(f)←)← 5:Investigating(f)

stating that some flight is under investigation if some of the other agents is
already investigating it. Note that these rules are not meant to be persistent,
since whenever Investigating(f) does not hold for the other agents, UnderInves-
tigation(f) should immediately not hold for the security agent.

The context of agent A, C4, has an empty set of bridge rules, and the context
of agent B, C5, contains the following bridge rules:

add(goHelpSA)← 3:NeedHelp

add(goHelpA)← 4:NeedHelp

stating that agent B should help any of the other agents that asked for help.

Similar to equilibria in mMCS, the (static) equilibrium is defined to incor-
porate instantaneous effects based on appnowi (S) alone.



Definition 4. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS. A belief state
S = 〈S1, . . . , Sn〉 for Me is a static equilibrium of Me iff for each 1 ≤ i ≤ n,
there exists some kb ∈ mngi(appnowi (S), kbi) such that Si ∈ ACCi(kb).

To assign meaning to a beMCS evolving over time we consider sequences of
belief states, evolving belief states, each referring to a subsequent time instant.

Definition 5. Let Me be a beMCS. An evolving belief state of size s for Me is
a sequence S = 〈S1, . . . , Ss〉 where each Sj, 1 ≤ j ≤ s, is a belief state for Me.

So far, apart from the generalization in Def. 3, the notions for eMCSs and
beMCSs coincide. Next, we discuss how to update a beMCS, which unlike for
eMCSs requires considering how to update bridge rules.

To be able to update the knowledge bases and the sets of bridge rules of the
evolving contexts, we need the following notation. Given an evolving context
Ci, a knowledge base k ∈ KBi and a set of bridge rules b ⊆ BRi, we denote
by Ci[k, b] the evolving context in which kbi and br i are replaced by k and b
respectively, i.e., Ci[k, b] = 〈Li, k, b, OPi,mngi〉. For an observation context Oi,
given a set π ⊆ ΠOi

of observations for Oi, we denote by Oi[π] the observation
context in which its current observation is replaced by π, i.e., Oi[π] = 〈ΠOi

, π〉.
To enable beMCSs to react to incoming observations and evolve, an observa-

tion sequence defined in the following has to be processed. The idea is that, at
each time instant, we have two types of observations. On the one hand, we have
a set of observations for each observation context Oi, which is meant to replace
its current observation. On the other hand, we have a set of bridge rules for each
evolving context Ci, which is meant to update the set of bridge rules br i of Ci.

Recall from the Introduction that there are two main motivations for up-
dating the set of bridge rules of a context. One the one hand, we may want to
substitute an existing rule with a more recent one, since, based for example on
a change of trust, we may want to change the sources of information in a rule.
On the other hand, we may want to add exceptions to existing rules. Given such
motivations, and since the bridge rules in a beMCS, as in the case of mMCSs, are
similar to logic programming rules, we build the updates of bridge rules upon the
work done in updates of logic programs, namely on Dynamic Logic Programs
(DLP) [3]. In this approach, the use of default negation in the head of rules
is fundamental to allow explicit rejection of rules and also the introduction of
exceptions to existing rules. Therefore, to update the set of bridge rules of a con-
text Ci we consider more expressive bridge rules, which allow default negation
in the head. Formally, for each 1 ≤ i ≤ n, we consider eBRi, the set of evolving
bridge rules for Ci, defined as eBRi = BRi ∪ {not H(σ)← B(σ) : σ ∈ BRi}.

We can now define the notion of observation sequence for a beMCS.

Definition 6. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS. An observation
sequence for Me is a sequence Obs = 〈O1, . . . ,Om〉, where, for each 1 ≤ j ≤
m, Oj = 〈oj , obr j〉, is an instant observation containing observations oj =
〈oj1, . . . , o

j
`〉 such that, for each 1 ≤ i ≤ `, oji ⊆ ΠOi , and observed bridge rules

obr j = 〈obr j
1, . . . , obr j

n〉 such that, for each 1 ≤ i ≤ n, obr j
i ⊆ eBRi.



Our aim now is to show how, given an observation sequence O, the beMCS
Me is able to react and evolve. As mentioned before, the observation contexts
evolve by replacing their set of current observations according to the observation
sequence. We still need to define how the bridge rules of each evolving context are
updated given an observation sequence. Our goal is to define for each context Ci

the set Upd(S, br , B) of possible updates of a set br ⊆ BRi of bridge rules by a
sequence B = 〈obr1

i , . . . , obrk
i 〉 of sets of evolving bridge rules with obr j

i ⊆ eBRi

for 1 ≤ j ≤ k, given the belief state S for Me. The idea is to combine two
update mechanisms, both building upon the notion of rejected bridge rule: one
is based on the existence of an explicit conflict between an operation and its
default negation in the head of bridge rules; the other is based on an implicit
notion of inconsistency between operational formulas, which depends on each
context.

To define update operators based on conflicts which arise due to the use of
default negation in the head of rules we follow the ideas of DLP [3]. The intuition
is that a rule σ is rejected in state S if there is a more recent rule which is
applicable in S, and whose head is the default negation of the head of σ. Formally,
let Me be a beMCS, S a belief state for Me, and B = 〈obr1

i , . . . , obrk
i 〉 a sequence

of sets of evolving bridge rules of some evolving context Ci of Me, i.e., each
obr j

i ⊆ eBRi. We can then define ExpRej(S, 〈obr1
i , . . . , obrk

i 〉), the sequence of
sets of bridge rules that result from B by removing the rules explicitly rejected
by a more recent rule, by setting ExpRej(S, 〈obr1

i , . . . , obrk
i 〉) = 〈Br1, . . . , Brk〉

such that, for each 1 ≤ j ≤ k, we have Brj = (obr j
i ∩BRi) \Rejj where

Rejj = {σ ∈ obr j
i : there is σ′ ∈ obr j′

i with j′ > j such that

H(σ′) = not H(σ) and S |= B(σ′)}.

Example 4 (Ctd.). Continuing the airport example, suppose that the security
agent no longer trusts agent A. In that case he wants to cancel the existing rule,
and still investigate a flight even though agent A is already investigating it. In
that case, he can update its set of bridge rules with the evolving bridge rule:

not upd(UnderInvestigation(f)←)← 4:Investigating(f)

In this case, whenever Investigating(f) is true in C4 this more recent bridge
rule rejects the initial one, and therefore the security agent does not update its
knowledge base with the LP fact UnderInvestigation(f)←.

We now focus on the notion of update of bridge rules based on a notion
of implicit inconsistency between operational formulas. This makes sense since
the language of the heads of bridge rules is so general and potentially quite ex-
pressive. Therefore, besides the explicit notion of rejected bridge rule mentioned
above, we also consider a notion of rejected bridge rule based on a notion of in-
consistency over operational formulas, which depends on each evolving context.
More precisely, we assume that, for each evolving context Ci of Me, there is a
relation Inci : BSi × 2OFi . The intuitive idea is that 〈Si, Op〉 ∈ Inci if Op is an
inconsistent set of operational formulas w.r.t. Si. This notion of inconsistent set



of operations depends on each context. Interesting examples include the case in
which there is a conflict between two contrary operations, for example adding
and removing, add(p) and rm(p). We can also have conflicts with the same oper-
ation, for example addition of two complementary literals, add(p) and add(¬p).
Just as a last example, let Ci be a Classical Logic (CL) context and suppose
that OPi = {add} where add is simple addition. We could then define Inci based
on whether, for a set of operational formulas Op, the set {ϕ : add(ϕ) ∈ Op} is
consistent in CL. Given such definition, we have, for every Si, for example that
〈Si, {add(a⇒ b), add(a), add(¬b)}〉 ∈ Inci.

Note that, contrarily to the above examples, there are cases where conflicts
depend on the belief state. Take, for example, the case of Logic Programming
(LP). The notion of conflict between LP rules depends on the belief state.

We assume that the notion of operational inconsistency satisfies the following
natural condition. Given a belief state S, for all 1 ≤ i ≤ n, we assume that the
set IncSi = {Op : 〈Si, Op〉 ∈ Inci} is an upper set of the partially ordered set
〈2OFi ,⊆〉, i.e., if 〈Si, Op〉 ∈ Inci and Op ⊆ Op′, then 〈Si, Op

′〉 ∈ Inci.
Let br1 and br2 be two sets of bridge rules of a context Ci. Our aim is to

define the possible sets of bridge rules that result from updating br1 with br2.
For that, as we said, we define a notion of rejected rule based on operational
inconsistency. Given a belief state S of Me, we define Rej(S, br1, br2), the set
of sets of rejected bridge rules, as:

Rej(S, br1, br2) = {b ⊆ br1 : appnow(S, b ∪ br2) ∈ IncSi or

appnext(S, b ∪ br2) ∈ IncSi }.

When updating a set of rules br1 by a set of rules br2 we are interested
in minimizing the set of rejected rules of br1. Therefore, we consider the set
MinRej(S, br1, br2) of all minimal elements of Rej(S, br1, br2).

Using the set of minimal set of rejected bridge rules, we can define, for a
belief state S of Me, the set of sets of acceptable bridge rules given S as:

Acpt(S, br1, br2) = {b ⊆ br1 : b′ 6⊆ b s.t. ∀b′ ∈MinRej(S, br1, br2)}.

The set Acpt(S, br1, br2) is the set of all subsets of br1 which can be consis-
tently added to br2 in the context of state S. As usual, when updating a set of
rules br1 by a set of rules br2 we are interested in maximizing the set of elements
of br1 in the final result. Therefore, we define MaxAcpt(S, br1, br2) as the set of
maximal elements of Acpt(S, br1, br2), i.e., those b ∈ Acpt(S, br1, br2) for which
there is no b′ ∈ Acpt(S, br1, br2) such that b ⊂ b′.

Example 5 (Ctd.). Recall that the context of agent B, C5, has two bridge rules,
denoted here by σ1 and σ2, which are meant to react to the fact that the other
agents asked for help, and let br1 = {σ1, σ2}. Now imagine that, for some reason
(efficiency, design decision, etc.), agent B cannot help both agents at the same
time. For incorporating this information, he can consider an update of br1 by
the set br2 = {add(¬(goHelpSA∧ goHelpA)) ← 3 : NeedHelp, 4 : NeedHelp}.
Suppose also that C5 has the following natural inconsistency relation: for every



belief state S, 〈S5, Op〉 ∈ Inc5 if the set {p : add(p) ∈ Op} is inconsistent in
CL. Then, taking Op = {add(goHelpSA), add(goHelpA), add(¬(goHelpSA ∧
goHelpA))} we have, for every S, that 〈S5, Op〉 ∈ Inc5. We can easily check
that MinRej(S, br1, br2) = {br1}. This implies that MaxAcpt(S, br1, br2) =
{{σ1}, {σ2}}, meaning that the possible updates of br1 by br2 should contain
σ1 or σ2, but not both.

We now extend the notion of MaxAcpt to sequences of sets of bridge rules:

MaxAcpt(S, 〈br1, . . . , brk〉) = {brk : there exists 〈b1, . . . , bk〉 satisfying

− b1 = br1

− bj+1 = br j+1 ∪ b where b ∈MaxAcpt(S, br j , br j+1)}.

The following result states the connection between the set of all maximal sets
of accepted bridge rules and the set of all minimal sets of rejected rules.

Proposition 1. Let b ⊆ br1 such that b ∈MaxAcpt(S, br1, br2). Then we have
that br1 \ (

⋃
MinRej(S, br1, br2)) ⊆ b.

We can now define Upd(S, br , 〈br1, . . . , brk〉) the set of possible results of
updating the set br of bridge rules by the sequence S = 〈br1, . . . , brk〉 of sets
of evolving bridge rules. The idea is to combine the two update mechanisms
described above: rejection based on conflict between an operation and its default
negation, and rejection based on the operational inconsistency relation Inci.

Formally, given a set br of bridge rules of Ci, a sequence B = 〈br1, . . . , brk〉
of sets of evolving bridge rules of Ci, and S a belief state of Me, we can define
the set Upd(S, br , B) of possible results of updating br by the sequence B as:

Upd(S, br , B) = MaxAcpt(S,ExpRej(S, 〈br , br1, . . . , brk〉)).

One basic property that we need to guarantee is that, when updating by a
sequence of sets of bridge rules, the most recent bridge rules are always contained
in every possible result of the update. The following result states this property,
taking into account that bridge rules with default negation in the head cannot
appear in the result of an update.

Proposition 2. Let S be a belief state of Me, br a set of bridge rules of Ci, and
B = 〈br1

i , . . . , brk
i 〉 a sequence of sets of evolving bridge rules of Ci. Then, for

every b ∈ Upd(S, br , B), we have that (brk
i ∩BRi) ⊆ b.

Now that we have defined how the observation contexts and the sets of bridge
rules evolve, we can define the notion of evolving equilibrium of a beMCS Me =
〈C1, . . . , Cn, O1, . . . , O`〉 given an observation sequence Obs = 〈O1, . . . ,Om〉 for
Me. The intuitive idea is that, given an evolving belief state S = 〈S1, . . . , Ss〉
for Me, in order to check if S is an evolving equilibrium, we need to consider
a sequence of beMCSs, M1, . . . ,Ms, representing a possible evolution of Me

according to the observations in Obs, such that Sj is a static equilibrium of M j .



For each M j the sets of current observations of the observation contexts are
exactly their corresponding elements πj

i in Oj . For each of the evolving contexts
Ci, its knowledge base in M j is obtained from the one in M j−1 by applying the
operations in appnexti (Sj−1). Moreover the set of bridge rules of each evolving

context is updated using Upd(Sj , br i, 〈obr1
i , . . . , obr j

i 〉).

Definition 7. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS, S = 〈S1, . . . , Ss〉
an evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me such that m ≥ s. Then, S is an evolving equilibrium of size
s of Me given Obs iff, for each 1 ≤ j ≤ s, Sj is a static equilibrium of M j =
〈C1[kj1, b

j
1], . . . , Cn[kjn, b

j
n], O1[oj1], . . . , O`[o

j
` ]〉 where, for each 1 ≤ i ≤ n,

– bji ∈ Upd(Sj , bri, 〈obr1
i , . . . , obr j

i 〉)
and kji is defined inductively as follows:

– k1i = kbi
– kj+1

i ∈ mngi(appnext(Sj , bji ), k
j
i ).

Note that the set of bridge rules of a context can change from one time
instant to the other even if no bridge rule of that context is observed. This
happens because the set of updates depends also on the current state. For a
simple example, let σ1 = (add(p)←) be a bridge rule of a context in a beMCS,
and suppose that at time 1 the rule σ2 = (not add(p) ← 1 :not q) is observed,
which can be seen as an exception for the original rule. Suppose that q is not
true in context C1 at time 1. Then, both rules are applicable and their heads
are conflicting, leading to the rejection of the first rule. Suppose that in the next
time instant no bridge rule is observed, but q is true. Then, since the second rule
is not applicable, the rules are not conflicting. Therefore, σ1 is not rejected and
it is now part of the set of bridge rules of C1.

We now prove some properties of the notion of evolving equilibrium. In Def. 7,
the size of the observation sequence is assumed to be greater or equal than the
size of the evolving belief state. The intuition is that an equilibrium may also
be defined for only a part of the observation sequence. As a consequence, any
subsequence of an evolving equilibrium is still an evolving equilibrium.

Proposition 3. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. If S = 〈S1, . . . , Ss〉 is an evolving equilibrium of size s of Me

given Obs, then, for each 1 ≤ j ≤ s, and every j ≤ k ≤ m, 〈S1, . . . , Sj〉 is an
evolving equilibrium of size j of Me given the observation sequence 〈O1, . . . ,Ok〉.

It is not hard to see that an mMCS is a particular case of a beMCS with no
observation context, the heads of bridge rules do not contain the operator next,
and there are no updates to the bridge rules.

Proposition 4. Let M = 〈C1, . . . , Cn〉 be an mMCS. Then, S = 〈S1, . . . , Sn〉
is an equilibrium of M iff S = 〈S〉 is an evolving equilibrium of size 1 of M
for some observation sequence Obs = 〈O1, . . . ,Om〉 for M with m ≥ 1 and such
that, for every 1 ≤ i ≤ n, we have that obr1

i = ∅.



4 Inconsistency Management

Inconsistency management is an important topic for frameworks that aim at
integrating knowledge from different sources and has been extensively studied
for MCSs and mMCSs [13,10]. In [21], inconsistency management for eMCSs is
investigated, and it is shown that essential notions and results carry over from
static mMCSs to dynamic eMCSs. In this section, we adapt these results from
eMCSs to beMCSs and can confirm that the same favorable characteristics hold.

For the case of mMCSs, three forms of inconsistency are considered: nonex-
istence of equilibria, local inconsistency, and operator inconsistency [10]. The
first form has been extensively studied for MCSs [13] and is also termed global
inconsistency, while the second one deals with inconsistent belief sets potentially
occurring in an equilibrium provided the contexts in the considered mMCS ad-
mit such a notion. The third form aims at detecting conflicts between operations
in the heads of bridge rules.

We start by introducing the notion of (global) consistency.

Definition 8. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. Then, Me is consistent with respect to Obs if it has an evolving
equilibrium of size m given Obs.

From Prop. 3, we immediately obtain that if there is a subsequence of Obs
such that the considered beMCS is inconsistent, then the beMCS is also incon-
sistent for the entire sequence (and vice-versa).

Corollary 1. Let Me be a beMCS and let Obs = 〈O1, . . . ,Om〉 be an observation
sequence for Me. Then, Me is consistent w.r.t. Obs iff Me is consistent w.r.t.
〈O1, . . . ,Oj〉 for every 1 ≤ j ≤ m.

We now focus on two notions that together are sufficient to ensure consis-
tency. The first one focuses on the existence of an acceptable belief set for each
knowledge base. Formally, an evolving context Ci in a beMCS Me is totally
coherent iff, for every kb ∈ KBi, ACCi(kb) 6= ∅. The second notion focuses
on cycles between bridge rules. Let B = 〈b1, . . . , bn〉 a tuple of sets of evolving
bridge rules, one for each evolving context Ci of Me, i.e., each bi ⊆ eBRi. The
idea is to describe cycles between the bridge rules that essentially may cause
inconsistency. Formally we write refr(i, j) iff r is a bridge rule of bi and (j : b)
occurs in the body of r. Let r1, . . . , rk ∈

⋃
1≤i≤n bi, then we say that (r1, . . . , rk)

forms a cycle iff refr1(i1, i2), . . . , refrk−1
(ik−1, ik), and refrk(ik, i1) hold. Then

B = 〈b1, . . . , bn〉 is acyclic if no such cycles exist. We can show the following.

Proposition 5. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS and Obs =
〈O1, . . . ,Om〉 an observation sequence for Me. Then, if B = 〈b1, . . . , bn〉 is
acyclic, where, for each 1 ≤ i ≤ n, bi = br i ∪ (

⋃
j≤m obr j

i ), then Me is con-
sistent with respect to Obs.

A similar property holds for mMCSs, indicating that the extension to beMCSs
as such does not decrease the likelihood of existence of evolving equilibria.



An adequate treatment of local inconsistency was one of the motivations for
the introduction of mMCSs, and this is also the case in beMCSs with incoming
observations that also should be subject to consistency management. As de-
scribed in [10], we need to assume that each context has a notion of inconsistent
belief state, which usually exists or is easily definable. Assuming such notion, a
knowledge base kbi ∈ KBi of a context Ci is said to be consistent if ACCi(kbi)
does not contain an inconsistent belief set. A management function mngi of a
context Ci is said to be locally consistency preserving (lc-preserving), if for every
set Opi ⊆ OFi and consistent knowledge base kbi ∈ KBi, we have that every
element of mngi(Opi, kbi) is a consistent knowledge base.

Definition 9. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. Then, Me is said to be locally consistent with respect to Obs
if every evolving equilibrium S = 〈S1, . . . , Ss〉 of Me with respect to Obs is such
that, for each 1 ≤ j ≤ s, all belief sets in Sj are consistent.

Recall that observations are subject to consistency management in each con-
text. If the management functions are lc-preserving, then consistent observations
do not make a consistent beMCS inconsistent.

Proposition 6. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS such that, for
each Ci, kbi is consistent and mngi is lc-preserving. Then, for every observation
sequence Obs for Me, we have that Me is locally consistent with respect to Obs.

Since we are assuming the existence of a notion of inconsistent set of operators
for each context of a beMCS, we end this section by briefly studying this form
of inconsistency. We extend to sets of bridge rules the notion of inconsistent set
of operational formulas, as introduced in Sect. 3.

Definition 10. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS, and S a belief
state for Me. A set br ⊆ eBRi of evolving bridge rules of Ci is inconsistent with
respect to S if appnow(S, br) ∈ IncSi or appnext(S, br) ∈ IncSi . A set of bridge
rules is consistent with respect to S if it is not inconsistent with respect to S.

The following proposition guarantees the desirable property that a set of
bridge rules resulting from an update with respect to a sequence of consistent
sets of bridge rules is itself consistent.

Proposition 7. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be a beMCS, and Obs =
〈O1, . . . ,Om〉 an observation sequence for Me, and S = 〈S1, . . . , Ss〉 an evolving
equilibrium of Me given Obs. If each set of bridge rules in Obs is consistent
with respect to Ss then, for each 1 ≤ i ≤ n, we have that every element of
Upd(Ss, br i, 〈br1i , . . . , brsi 〉) is consistent with respect to Ss.

5 Related and Future Work

In this paper we introduced beMCS, and extension of evolving Multi-Context
Systems (eMCS) [21] to allow not only the evolution of the knowledge bases of



the contexts, but also of their sets of bridge rules. Closely related to eMCSs is
the framework of reactive Multi-Context Systems (rMCSs) [8,15,11] inasmuch
as both aim at extending mMCSs to cope with dynamic observations. The main
difference between and eMCSs and rMCSs is that eMCSs have the meta operator
next that allows for a clear separation between persistent and non-persistent
effects, and also the specification of transitions based on the current state.

Another framework closely related to beMCSs is that of evolving logic pro-
grams EVOLP [2] which deals with updates of generalized logic programs, and
the two frameworks of reactive ASP, one implemented as a solver oclingo [17]
and one described in [8]. Whereas EVOLP employs an update predicate that is
similar in spirit to the next predicate of our beMCSs, and uses the update se-
mantics of Dynamic Logic Programming in a way that is similar to how conflicts
between bridge rules dealt with in beMCSs, it does not deal with distributed
heterogeneous knowledge, neither do both versions of Reactive ASP.

Regarding future work, an important non-trivial topic is the study of the no-
tion of minimal change within an evolving equilibrium. Whereas minimal change
may be desirable to obtain more coherent evolving equilibria, there are also argu-
ments against adopting a one-size-fits-all approach embedded in the semantics.
Different contexts, i.e., KR formalisms, may require different notions of mini-
mal change, or even require to avoid it – e.g., suppose we want to represent
some variable that can non-deterministically take one of two values at each time
instant: minimal change could force a constant value.

Also interesting is to study how to perform AGM style belief revision at the
(semantic) level of the equilibria, as in Wang et al [34], though different since
knowledge is not incorporated in the contexts.

Another important issue open for future work is a more fine-grained charac-
terization of updating bridge rules (and knowledge bases) in light of the encoun-
tered difficulties when updating rules [30,31,33] and the combination of updates
over various formalisms [31,32].

Finally, we may also consider the generalization of the notions of minimal
and grounded equilibria [9] to beMCSs to avoid, e.g., self-supporting cycles in-
troduced by bridge rules, or the use of preferences to deal with several evolving
equilibria a beMCS can have for the same observation sequence.

Acknowledgments We would like to thank the referees for their comments,
which helped improve this paper considerably. Matthias Knorr and João Leite
were partially supported by FCT under project “ERRO – Efficient Reasoning
with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010). Ricardo Gonçalves
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21. Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Schaub,
T., Friedrich, G., O’Sullivan, B. (eds.) ECAI. IOS Press (2014), to appear

22. Homola, M., Knorr, M., Leite, J., Slota, M.: MKNF knowledge bases in multi-
context systems. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G.
(eds.) CLIMA. LNCS, vol. 7486, pp. 146–162. Springer (2012)

23. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules. In:
Alani, H., Kagal, L., Fokoue, A., Groth, P.T., Biemann, C., Parreira, J., Aroyo,
L., Noy, N.F., Welty, C., Janowicz, K. (eds.) ISWC. LNCS, vol. 8218, pp. 216–231.
Springer (2013)

24. Knorr, M., Alferes, J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9-10), 1528–1554 (2011)

25. Knorr, M., Slota, M., Leite, J., Homola, M.: What if no hybrid reasoner is available?
Hybrid MKNF in multi-context systems. J. Log. Comput. (2013)
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