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Abstract. In open environments, agents need to reason with knowledge from
various sources, possibly represented in different languages. The framework of
Multi-Context Systems (MCSs) offers an expressive, yet flexible, solution since
it allows for the integration of knowledge from different heterogeneous sources
in an effective and modular way. However, MCSs are essentially static as they
were not designed for dynamic scenarios. The recently introduced evolving Multi-
Context Systems (eMCSs) extend MCSs by also allowing the system to both react
to, and reason in the presence of dynamic observations, and evolve by incorporat-
ing new knowledge, thus making it even more adequate in Multi-Agent Systems
characterised by their dynamic and open nature.
In dynamic scenarios which admit several possible alternative evolutions, the no-
tion of minimal change has always played a crucial role in determining the most
plausible choice. However, different KR formalisms – as combined within eM-
CSs – may require different notions of minimal change, making their study and
their interplay a relevant highly non-trivial problem. In this paper, we study the
notion of minimal change in eMCSs, by presenting and discussing alternative
minimal change criteria.

1 Introduction

Open and dynamic environments create new challenges for knowledge representation
languages for agent systems. Instead of having to deal with a single static knowledge
base, each agent has to deal with multiple sources of distributed knowledge possibly
written in different languages. These sources of knowledge include the large number
of available ontologies and rule sets, as well as the norms and policies published by
institutions, the information communicated by other agents, to name only a few.

The need to incorporate in agent-oriented programming languages the ability to
represent and reason with heterogeneous distributed knowledge sources, and the flow of
information between them, has been pointed out in [1–4], although a general adequate
practical solution is still not available.

Recent literature in knowledge representation and reasoning contains several pro-
posals to combine heterogeneous knowledge bases, one of which – Multi-Context Sys-
tems (MCSs) [5–7] – has attracted particular attention because it provides an elegant so-
lution by considering each source of knowledge as a module and then providing means
to model the interaction between these modules. More specifically, an MCS consists
of a set of contexts, each of which is a knowledge base in some KR formalism, such
that each context can access information from the other contexts using so-called bridge



rules. Such non-monotonic bridge rules add their heads to the context’s knowledge base
provided the queries (to other contexts) in their bodies are successful. Managed Multi-
Context Systems (mMCSs) [8] extend MCSs by allowing operations, other than simple
addition, to be expressed in the heads of bridge rules, thus allowing mMCSs to properly
deal with the problem of consistency management within contexts. MCSs have gained
some attention by agent developers [9–11].

Whereas mMCSs are quite general and flexible to address the problem of integra-
tion of different KR formalisms, they are essentially static in the sense that the con-
texts do not evolve to incorporate the changes in dynamic scenarios. In such scenarios,
new knowledge and information is dynamically produced, often from several different
sources – e.g., a stream of raw data produced by some sensors, new ontological axioms
written by some user, newly found exceptions to some general rule, observations, etc.

Evolving Multi-Context Systems (eMCSs) [12] inherit from mMCSs the ability to
integrate and manage knowledge represented in heterogeneous KR formalisms, and at
the same time are able to react to dynamic observations, and evolve by incorporating
knowledge. The semantics of eMCSs is based on the stable model semantics, and al-
lows alternative models for a given evolution, in the same way as answer sets represent
alternative solutions to a given ASP program.

One of the main principles of belief revision is minimal change, which in case of
eMCSs means that information should be maintained by inertia unless it is required to
change. In dynamic scenarios where systems can have alternative evolutions, it is thus
desirable to have some minimal change criteria to be able to compare possible alter-
natives. This problem is particularly interesting and non-trivial in dynamic frameworks
based on MCSs, because of the heterogeneity of KR frameworks that may exist in an
MCS – each of which may require different notions of minimal change –, and also be-
cause the evolution of such systems is based not only on the semantics, but also on the
evolution of the knowledge base of each context.

In this paper, we study minimal change in eMCSs, by presenting different minimal
change criteria to be applied to the possible evolving equilibria of an eMCS, and by
discussing the relation between them.

The remainder of this paper is as follows. We introduce the framework of eMCSs in
Sect. 2. Then, we present and study some minimal change criteria in eMCSs in Sect. 3,
and conclude with a discussion of related work and possible future directions in Sect. 4.

2 Evolving Multi-Context Systems

In this section, we revisit evolving Multi-Context Systems as introduced in [12], which
generalize mMCSs [8] to dynamic scenarios in which contexts are enabled to react to
external observations and evolve.

An evolving multi-context system (eMCS) consists of a collection of components,
each of which contains knowledge represented in some logic, defined as a triple L =
〈KB,BS,ACC〉 where KB is the set of well-formed knowledge bases of L, BS the
set of possible belief sets, and ACC : KB→ 2BS a function describing the semantics
of L by assigning to each knowledge base a set of acceptable belief sets. We assume
that each element of KB and BS is a set, and define F = {s : s ∈ kb ∧ kb ∈ KB}.



In addition to the knowledge base in each component, bridge rules are used to in-
terconnect the components, specifying what operations to perform on its knowledge
base given certain beliefs held in the components of the eMCS. For that purpose, each
component of an eMCS is associated with a management base, which is a set of oper-
ations that can be applied to the possible knowledge bases of that component. Given a
management base OP and a logic L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set
of operational formulas over OP and L. Each component of an eMCS gives semantics
to operations in its management base using a management function over a logic L and
a management base OP , mng : 2OF ×KB → (2KB \ {∅}), i.e., mng(op, kb) is the
(non-empty) set of knowledge bases that result from applying the operations in op to
the knowledge base kb. We assume that mng(∅, kb) = {kb}.

In an eMCS some contexts are assumed to be observation contexts whose knowl-
edge bases will be constantly changing over time according to the observations made,
similar, e.g., to streams of data from sensors.1 The changing observations will then af-
fect the other contexts by means of the bridge rules. As we will see, such effect can
either be instantaneous and temporary, i.e., limited to the current time instant, similar
to (static) mMCSs, where the body of a bridge rule is evaluated in a state that already
includes the effects of the operation in its head, or persistent, but only affecting the next
time instant. To achieve the latter, the operational language is extended with a unary
meta-operation next that can only be applied on top of operations. Given a manage-
ment base OP and a logic L, we define eOF , the evolving operational language, as
eOF = OF ∪ {next(op(s)) : op(s) ∈ OF}.

The idea of observation contexts is that each such context has a language describing
the set of possible observations of that context, along with its current observation. The
elements of the language of the observation contexts can then be used in the body
of bridge rules to allow contexts to access the observations. Formally, an observation
context is a tuple O = 〈ΠO, π〉 where ΠO is the observation language of O and π ⊆
ΠO is its current observation.

We can now define evolving Multi-Context Systems (eMCS).

Definition 1. An eMCS is a sequence Me = 〈C1, . . . , Cn, O1, . . . , O`〉, such that, for
each i ∈ {1, . . . , `}, Oi = 〈ΠOi

, πi〉 is an observation context, and, for each i ∈
{1, . . . , n}, Ci is an evolving context defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where

– Li = 〈KBi,BSi,ACCi〉 is a logic
– kbi ∈ KBi

– br i is a set of bridge rules of the form

H(σ)← a1, . . . , ak,not ak+1, . . . ,not an (1)

such that H(σ) ∈ eOFi, and each ai, i ∈ {1, . . . , n}, is either of the form (r : b)
with r ∈ {1, . . . , n} and b a belief formula of Lr, or of the form (r@b) with r ∈
{1, . . . , `} and b ∈ ΠOr

– OPi is a management base
– mngi is a management function over Li and OPi.

1 For simplicity of presentation, we consider discrete steps in time here.



Given an eMCS Me = 〈C1, . . . , Cn, O1, . . . , O`〉 we denote by KBMe
the set of

knowledge base configurations for Me, i.e., KBMe
= {〈k1, . . . , kn〉 : ki ∈ KBi for

each 1 ≤ i ≤ n}. A belief state for Me = 〈C1, . . . , Cn, O1, . . . , O`〉 is a sequence
S = 〈S1, . . . , Sn〉 such that, for each 1 ≤ i ≤ n, we have Si ∈ BSi. We denote by
BSMe

the set of belief states for Me.
An instant observation for Me is a sequence O = 〈o1, . . . , o`〉 such that, for each

1 ≤ i ≤ `, we have that oi ⊆ ΠOi
.

Given a belief state S = 〈S1, . . . , Sn〉 for Me and an instant observation O =
〈o1, . . . , o`〉 for Me, we define the satisfaction of bridge literals of the form (r : b)
as S,O |= (r : b) if b ∈ Sr and S,O |= not (r : b) if b /∈ Sr. The satisfaction of
bridge literal of the form (r@b) depends on the current observations, i.e., we have that
S,O |= (r@b) if b ∈ or and S |= not (r@b) if b /∈ or. For a set B of bridge literals,
we have that S,O |= B if S,O |= L for every L ∈ B.

We say that a bridge rule σ of a contextCi is applicable given a belief state S and an
instant observationO if its body is satisfied by S andO, i.e., S,O |= B(σ). We denote
by appi(S,O) the set of heads of bridges rules of the context Ci which are applicable
given the belief state S and the instant observation O. Recall that the heads of bridge
rules in an eMCS may be of two types: those that contain next and those that do not.
The former are to be applied to the current knowledge base and not persist, whereas the
latter are to be applied in the next time instant and persist. Therefore, we distinguish
these two subsets.

Definition 2. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS, S a belief state for
Me, and O an instant observation for Me. Then, for each 1 ≤ i ≤ n, consider the
following sets:

– appnexti (S,O) = {op(s) : next(op(s)) ∈ appi(S,O)}
– appnowi (S,O) = {op(s) : op(s) ∈ appi(S,O)}

If we want an effect to be instantaneous and persistent, this can be achieved using
two bridge rules with identical body, one with and one without next.

Similar to equilibria in mMCS, the (static) equilibrium is defined to incorporate
instantaneous effects based on appnowi (S,O) alone.

Definition 3. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS, and O an instant ob-
servation forMe. A belief state S = 〈S1, . . . , Sn〉 forMe is an equilibrium ofMe given
O iff for each 1 ≤ i ≤ n, Si ∈ ACCi(kb) for some kb ∈ mngi(appnowi (S,O), kbi).

To be able to assign meaning to an eMCS evolving over time, we introduce evolving
belief states, which are sequences of belief states, each referring to a subsequent time
instant.

Definition 4. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS. An evolving belief
state of size s for Me is a sequence Se = 〈S1, . . . , Ss〉 where each Sj , 1 ≤ j ≤ s, is a
belief state for Me.

To enable eMCSs to react to incoming observations and evolve, a sequence of ob-
servations (defined below) has to be processed. The idea is that the knowledge bases of
the observation contexts Oi change according to that sequence.



Definition 5. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS. A sequence of obser-
vations for Me is a sequence Obs = 〈O1, . . . ,Om〉, such that, for each 1 ≤ j ≤ m,
Oj = 〈oj1, . . . , o

j
`〉 is an instant observation for Me, i.e., oji ⊆ ΠOi for each 1 ≤ i ≤ `.

To be able to update the knowledge bases and the sets of bridge rules of the evolv-
ing contexts, we need the following notation. Given an evolving context Ci, and a
knowledge base k ∈ KBi, we denote by Ci[k] the evolving context in which kbi is
replaced by k, i.e., Ci[k] = 〈Li, k, bri, OPi,mngi〉. For an observation context Oi,
given a set π ⊆ ΠOi

of observations for Oi, we denote by Oi[π] the observation con-
text in which its current observation is replaced by π, i.e., Oi[π] = 〈ΠOi

, π〉. Given
K = 〈k1, . . . , kn〉 ∈ KBMe

a knowledge base configuration for Me, we denote by
Me[K] the eMCS 〈C1[k1], . . . , Cn[kn], O1, . . . , O`〉.

We now define when certain evolving belief states are evolving equilibria of an
eMCS Me given a sequence of observations Obs = 〈O1, . . . ,Om〉 for Me. The intu-
itive idea is that, given an evolving belief state Se = 〈S1, . . . , Ss〉 for Me, in order
to check if Se is an evolving equilibrium, we need to consider a sequence of eMCSs,
M1, . . . ,Ms (each with ` observation contexts), representing a possible evolution of
Me according to the observations in Obs, such that each Sj is a (static) equilibrium of
M j . The current observation of each observation context Oi in M j is exactly its corre-
sponding element oji in Oj . For each evolving context Ci, its knowledge base in M j is
obtained from the one in M j−1 by applying the operations in appnexti (Sj−1,Oj−1).

Definition 6. Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS, Se = 〈S1, . . . , Ss〉
an evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me such that m ≥ s. Then, Se is an evolving equilibrium of size s of
Me given Obs iff, for each 1 ≤ j ≤ s, the belief state Sj is an equilibrium of M j =
〈C1[k

j
1], . . . , Cn[k

j
n], O1[o

j
1], . . . , O`[o

j
` ]〉 where, for each 1 ≤ i ≤ n, kji is defined

inductively as follows:
– k1i = kbi
– kj+1

i ∈ mngi(appnext(Sj ,Oj
i ), k

j
i ).

3 Minimal change

In this section, we discuss some alternatives for the notion of minimal change in eMCSs.
What makes this problem interesting is that there are different parameters that we may
want to minimize in a transition from one time instant to the next one. In the following
discussion we focus on two we deem most relevant: the operations that can be applied
to the knowledge bases, and the distance between consecutive belief states.

We start by studying minimal change at the level of the operations. In the following
discussion we consider fixed an eMCS Me = 〈C1, . . . , Cn, O1, . . . , O`〉.

Recall from the definition of evolving equilibrium that, in the transition between
consecutive time instants, the knowledge base of each context Ci of Me changes ac-
cording to the operations in appnexti (S,O), and these depend on the belief state S and
the instant observationO. The first idea to compare elements of this set of operations is
to, for a fixed instant observation O, distinguish those equilibria of Me which generate
a minimal set of operations to be applied to the current knowledge bases to obtain the



knowledge bases of the next time instant. Formally, given a knowledge base configura-
tion K ∈ KBMe

and an instant observation O for Me, we can define the set:
MinEq(K,O) = {S : S is an equilibrium of Me[K] given O and there is no

equilibrium S′ of Me[K] given O such that, for all 1 ≤ i ≤ n,
appnexti (S′,O) ⊂ appnexti (S,O)}

This first idea of comparing equilibria based on inclusion of the sets of operations
can, however, be too strict in most cases. Moreover, different operations usually have
different costs,2 and it may well be that, instead of minimizing based on set inclusion,
we want to minimize the total cost of the operations to be applied. For that, we need
to assume that each context has a cost function over the set of operations, i.e., costi :
OPi → N, where costi(op) represents the cost of performing operation op.

Let S be a belief state for Me and O an instant observation for Me. Then, for each
1 ≤ i ≤ n, we define the cost of the operations to be applied to obtain the knowledge
base of the next time instant as:

Costi(S,O) =
∑

op(s)∈appnext
i (S,O)

costi(op)

Summing for all evolving contexts, we obtain the global cost of S given O:

Cost(S,O) =
n∑

i=1

Costi(S,O)

Now that we have defined a cost function over belief states, we can define a mini-
mization function over possible equilibria of eMCS Me[K] for a fixed knowledge base
configuration K ∈ KBMe

. Formally, givenO an instant observation for Me, we define
the set of equilibria ofMe[K] givenO which minimize the global cost of the operations
to be applied to obtain the knowledge base configuration of the next time instant as:

MinCost(K,O) = {S : S is an equilibrium of Me[K] given O and
there is no equilibrium S′ of Me[K] given O
such that Cost(S′,O) < Cost(S,O)}

Note that, instead of using a global cost, we could have also considered a more fine-
grained criterion by comparing costs for each context individually, and define some or-
der based on these comparisons. Also note that the particular case of taking costi(op) =
1 for every i ∈ {1, . . . , n} and every op ∈ OPi, captures the scenario of minimizing
the total number of operations to be applied.

The function MinCost allows for the choice of those equilibria that are minimal
with respect to the operations to be performed to the current knowledge base con-
figuration in order to obtain the knowledge base configuration of the next time in-
stant. Still, for each choice of an equilibrium S, we have to deal with the existence
of several alternatives in the set mngi(appnexti (S,O), kbi). Our aim now is to dis-
cuss how we can apply some notion of minimal change that allows us to compare the
elements in mngi(appnexti (S,O), kbi). The intuitive idea is to compare the distance
between the current equilibria and the possible equilibria resulting from the elements in

2 We use the notion of cost in an abstract sense, i.e., depending on the context, it may refer to,
e.g., the computational cost of the operation, or its economic cost.



mngi(app
next
i (S,O), kbi). Of course, given the possible heterogeneity of contexts in

an eMCS, we cannot assume a global notion of distance between belief sets. Therefore,
we assume that each evolving context has its own distance function between its beliefs
sets. Formally, for each 1 ≤ i ≤ n, we assume the existence of a distance function di,
i.e., di : BSi ×BSi → R satisfying for all S1, S2, S3 ∈ BSi:
1. di(S1, S2) ≥ 0

2. di(S1, S2) = 0 iff S1 = S2

3. di(S1, S2) = di(S2, S1)

4. di(S1, S3) ≤ di(S1, S2) + di(S2, S3)

There are some alternatives to extend the distance function of each context to a
distance function between belief states. In the following we present two natural choices.
One is to consider the maximal distance between belief sets of each context. The other is
to consider the average of distances between belief sets of each context. Formally, given
S1 and S2 belief states of Me we define two functions dmax : BSMe

×BSMe
→ R and

davg : BSMe
×BSMe

→ R as follows:

dmax(S
1, S2) =Max{di(S1

i , S
2
i ) | 1 ≤ i ≤ n}

davg(S
1, S2) =

∑n
i=1 di(S

1
i , S

2
i )

n

We can prove that dmax and davg are distance functions between belief states.

Proposition 1. The functions dmax and davg defined above are both distance functions,
i.e., satisfy the axioms 1) - 4).

We now study how we can use one of these distance functions between belief states
to compare the possible alternatives in the sets mngi(appnexti (S,O), kbi), for each
1 ≤ i ≤ n. Recall that the intuitive idea is to minimize the distance between the current
belief state S and the possible equilibria that each element ofmngi(appnexti (S,O), kbi)
can give rise to. We explore here two options, which differ on whether the minimiza-
tion is global or local. The idea of global minimization is to choose only those knowl-
edge base configurations 〈k1, . . . , kn〉 ∈ KBMe with ki ∈ mngi(appnexti (S,O), kbi),
which guarantee minimal distance between the original belief state S and the possi-
ble equilibria of the obtained eMCS. The idea of local minimization is to consider all
possible tuples 〈k1, . . . , kn〉 with ki ∈ mngi(appnexti (S,O), kbi), and only apply min-
imization for each such choice, i.e., for each such knowledge base configuration we
only allow equilibria with minimal distance from the original belief state.

We first consider the case of pruning those tuples 〈k1, . . . , kn〉 such that ki ∈
mngi(app

next
i (S,O), kbi), which do not guarantee minimal change with respect to

the original belief state. We start by defining an auxiliary function. Let S be a belief
state for Me, K = 〈k1, . . . , kn〉 ∈ KBMe

a knowledge base configuration for Me, and
O = 〈o1, . . . , o`〉 an instant observation for Me. Then we define the set of knowledge
base configurations that are obtained from K given the belief state S and the instant



observation O as:
NextKB(S,O, 〈k1, . . . , kn〉) = {〈k′1, . . . , k′n〉 ∈ KBMe

: for each 1 ≤ i ≤ n
we have that k′i ∈ mngi(appnexti (S,O), ki)}

For each choice d of a distance function between belief states, we define the set of
knowledge base configurations that minimize the distance to the original belief state.
Let S be a belief state for Me, K = 〈k1, . . . , kn〉 ∈ KBMe a knowledge base configu-
ration for Me, and Oj and Oj+1 instant observations for Me.
MinNext(S,Oj ,Oj+1,K) = {(S′,K ′) : K ′ ∈ NextKB(S,Oj ,K) and

S′ ∈MinCost(Me[K
′],Oj+1) s.t. there is no

K ′′ ∈ NextKB(S,Oj ,K) and no

S′′ ∈MinCost(Me[K
′′],Oj+1) with

d(S, S′′) < d(S, S′)}.
Note thatMinNext applies minimization over all possible equilibria resulting from

every element ofNextKB(S,Oj ,K). UsingMinNext, we can now define a minimal
change criterion to be applied to evolving equilibria of Me.

Definition 7. LetMe = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,Obs = 〈O1, . . . , Om〉
an observation sequence forMe, and let Se = 〈S1, . . . , Ss〉 be an evolving equilibrium
of Me given Obs. We assume that 〈K1, . . . ,Ks〉, with Kj = 〈kj1, . . . , kjn〉, is the se-
quence of knowledge base configurations associated with Se as in Definition 6. Then, Se

satisfies the strong minimal change criterion for Me given Obs if, for each 1 ≤ j ≤ s,
the following conditions are satisfied:

– Sj ∈MinCost(Me[K
j ],Oj)

– (Sj+1,Kj+1) ∈MinNext(Sj ,Oj ,Oj+1,Kj)

We call this minimal change criterion the strong minimal change criterion because
it applies minimization over all possible equilibria resulting from every possible knowl-
edge base configuration in NextKB(S,Oj ,K).

The following proposition states the desirable property that the existence of an equi-
librium guarantees the existence of an equilibrium satisfying the strong minimal change
criterion. We should note that this is not a trivial statement since we are combining min-
imization of two different elements: the cost of the operations and the distance between
belief states. This proposition in fact follows from their careful combination in the def-
inition of MinNext.

Proposition 2. Let Obs = 〈O1, . . . , Om〉 be an observation sequence for Me. If Me

has an evolving equilibrium of size s given Obs, then at least one evolving equilibrium
of size s given Obs satisfies the strong minimal change criterion.

Note that in the definition of the strong minimal change criterion, the knowledge
base configurations K ∈ NextKB(Sj ,Oj ,Kj), for which the corresponding possible
equilibria are not at a minimal distance from Sj , are not considered. However, there
could be situations in which this minimization criterion is too strong. For example, it



may well be that all possible knowledge base configurations in NextKB(Sj ,Oj ,Kj)
are important, and we do not want to disregard any of them. In that case, we can re-
lax the minimization condition by applying minimization individually for each knowl-
edge base configuration in NextKB(Sj ,Oj ,Kj). The idea is that, for each fixed
K ∈ NextKB(Sj ,Oj ,Kj) we choose only those equilibria of Me[K] which min-
imize the distance to Sj .

Formally, let S be a belief state for Me, K ∈ KBMe
a knowledge base configura-

tion forMe, andO an instant observation forMe. For each distance function d between
belief states, we can define the following set:

MinDist(S,O,K) ={S′ : S′ ∈MinCost(Me[K],O) and
there is no S′′ ∈MinCost(Me[K],O)
such that d(S, S′′) < d(S, S′)}

Using this more relaxed notion of minimization we can define an alternative weaker
minimal change criterion to be applied to evolving equilibria of an eMCS.

Definition 8. LetMe = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,Obs = 〈O1, . . . , Om〉
an observation sequence forMe, and Se = 〈S1, . . . , Ss〉 an evolving equilibrium ofMe

given Obs. We assume that 〈K1, . . . ,Ks〉, with Kj = 〈kj1, . . . , kjn〉, is the sequence of
knowledge base configurations associated with Se as in Definition 6. Then, Se satisfies
the weak minimal change criterion ofMe givenObs, if for each 1 ≤ j ≤ s the following
conditions are satisfied:

– Sj ∈MinCost(Me[K
j ],Oj)

– Sj+1 ∈MinDist(Sj ,Kj+1,Oj+1)

We can now prove that the existence of an evolving equilibrium implies the exis-
tence of an equilibrium satisfying the weak minimal change criterion. Again note that
the careful combination of the two minimizations – cost and distance – in the definition
of MinDist is fundamental to obtain the following result.

Proposition 3. Let Obs = 〈O1, . . . , Om〉 be an observation sequence for Me. If Me

has an evolving equilibrium of size s given Obs, then at least one evolving equilibrium
of size s of Me given Obs satisfies the weak minimal change criterion.

We can now prove that the strong minimal change criterion is, in fact, stronger than
the weak minimal change criterion.

Proposition 4. Let Me be an eMCS, Obs = 〈O1, . . . , Om〉 an observation sequence
for Me, and Se = 〈S1, . . . , Ss〉 an evolving equilibrium of Me given Obs. If Se sat-
isfies the strong minimal change criterion of Me given Obs, then Se satisfies the weak
minimal change criterion of Me given Obs.

4 Related and Future Work

In this paper we have studied the notion of minimal change in the context of the dy-
namic framework of eMCSs [12]. We have presented and discussed some alternative
definitions of minimal change criteria for evolving equilibria of an eMCS.



Closely related to eMCSs is the framework of reactive Multi-Context Systems (rM-
CSs) [13–15] inasmuch as both aim at extending mMCSs to cope with dynamic obser-
vations. The key difference between them is that the operator next of eMCSs allows for
a clear separation between persistent and non-persistent effects, and the specification of
transitions based on the current state.

Another framework closely related to eMCSs is that of evolving logic programs
EVOLP [16] which deals with updates of generalized logic programs, and the two
frameworks of reactive ASP, one implemented as a solver oclingo [17] and one de-
scribed in [13]. Whereas EVOLP employs an update predicate that is similar in spirit to
the next predicate of eMCSs, it does not deal with heterogeneous knowledge, neither
do both versions of Reactive ASP. Moreover, no notion of minimal change is studied
for these frameworks.

This work raises several interesting paths for future research. Immediate future work
includes the study of more global approaches to the minimization of costs of operations,
namely by considering the global cost of an evolving equilibrium, instead of minimiz-
ing costs at each time instant. A topic worth investigating is how to perform AGM-style
belief revision at the (semantic) level of the equilibria, as in Wang et al [18], though
necessarily different since knowledge is not incorporated in the contexts. Also inter-
esting is to study a paraconsistent version of eMCSs, grounded on the work in [19]
on paraconsistent semantics for hybrid knowledge bases. Another important issue open
for future work is a more fine-grained characterization of updating bridge rules (and
knowledge bases) as studied in [20] in light of the encountered difficulties when up-
dating rules [21–23] and the combination of updates over various formalisms [22, 24].
Also, as already outlined in [25, 26], we can consider generalized notions of minimal
and grounded equilibria [5] for eMCSs to avoid, e.g., self-supporting cycles introduced
by bridge rules, or the use of preferences to deal with several evolving equilibria an
eMCS can have for the same observation sequence. Also interesting is to apply the
ideas in this paper to study the dynamics of frameworks closely related to MCSs, such
as those in [27–30].

Finally, and in line with the very motivation set out in the introduction, we believe
that the research in MCSs – including eMCSs with the different notions of minimal
change – provides a blue-print on how to represent and reason with heterogeneous dy-
namic knowledge bases which could (should) be used by developers of practical agent-
oriented programming languages, such as JASON [31], 2APL [32], or GOAL [33], in
their quest for providing users and programmers with greater expressiveness and flex-
ibility in terms of the knowledge representation and reasoning facilities provided by
such languages. To this end, an application scenario that could provide interesting and
rich examples would be that of norm-aware multi-agent systems [34–39].
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26. Knorr, M., Gonçalves, R., Leite, J.: On efficient evolving multi-context systems. In Pham,
D.N., Park, S., eds.: Procs. of PRICAI. Volume 8862 of LNCS., Springer (2014) 284–296

27. Knorr, M., Slota, M., Leite, J., Homola, M.: What if no hybrid reasoner is available? hybrid
MKNF in multi-context systems. J. Log. Comput. 24(6) (2014) 1279–1311
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