
On Combining Ontologies and Rules

Matthias Knorr1[0000−0003−1826−1498]

Universidade Nova de Lisboa, Portugal mkn@fct.unl.pt

Abstract. Ontology languages, based on Description Logics, and non-
monotonic rule languages are two major formalisms for the representa-
tion of expressive knowledge and reasoning with it, that build on funda-
mentally different ideas and formal underpinnings. Within the Semantic
Web initiative, driven by the World Wide Web Consortium, standardized
languages for these formalisms have been developed that allow their us-
age in knowledge-intensive applications integrating increasing amounts
of data on the Web. Often, such applications require the advantages of
both these formalisms, but due to their inherent differences, the integra-
tion is a challenging task. In this course, we review the two formalisms
and their characteristics and show different ways of achieving their inte-
gration. We also discuss an available tool based on one such integration
with favorable properties, such as polynomial data complexity for query
answering when standard inference is polynomial in the used ontology
language.

1 Introduction

Though the central idea of Artificial Intelligence (AI) – creating autonomous
agents that are able to think, act, and interact in a rational manner [69] – is far
from being fullfilled, the results of the scientific advances of this major endavour
already affect our daily lifes and our society. Such applications of AI technolo-
gies include, among others, clinical decision support systems in Healthcare, fraud
dectection in financial transactions, (semi-)autonomous vehicles, crop and soil
monitoring in agriculture, surveillance for border protection, but also in the form
of personal assistants in cell phones. In these cases, technologies from different
subareas of AI are applied, such as Learning, Vision, Reasoning, Planning, or
Speech Recognition, but common to them is the requirement of efficiently pro-
cessing and taking advantage of huge amounts of data, for example, for finding
patterns in a data set, or for determining a conclusion based on the given data
to aid making a decision.

Knowledge Representation and Reasoning (KRR) [14] in particular is an
area in AI that aims at representing knowledge about the world or a domain of
interest, commonly relying on logic-based formalisms, and that allows the us-
age of automated methods to reason with this knowledge and draw conclusions
from it to aid in the beforementioned applications. Due to the structured for-
malization of knowledge, technologies based on KRR provide provenly correct
conclusions and are commonly amenable to complement these with justifications

2 M. Knorr

or explanations for such derived results, which is important for accountabilility
in applications where critical decisions need to be made, such as in Healthcare
or in the financial sector. Yet, though KRR formalisms are responsible for many
early success stories in the history of AI, namely in the form of expert systems,
it has been pointed out that creating such formalizations often requires a major
effort for each distinct such application [69].

As it turns out, a solution to the latter problem can be found in the area of
the Semantic Web [39]. The central idea of the Semantic Web can be described
as extending the World Wide Web, mainly targetted at human consumers, to
one where data on the internet would be machine-processable, giving rise to
advanced applications [12]. To achieve that goal, web pages are extended with
machine-processable data written in standardized languages developed by the
World Wide Web Consortium1 (W3C) that allow the specification and identifi-
cation of common terms in a uniformized way. In this context, the Linked Open
Data initiative appeared leading to the publication of large interlinked datasets,
utilizing these standardized languages, that are distributed over the Web. The
resulting Linked Open Data Cloud2 covers areas such as geography, government,
life sciences, linguistics, media, scientific publications, and social networking, in-
cluding data from, e.g., DBpedia [52], containing data extracted from Wikipedia,
and prominent industry contributers such as the BBC, with accounted industry
adopters, such as the New York Times Company or Facebook.

These developments facilitate the access and reuse of data and knowledge
published on the Web in these standardized languages and thus also the cre-
ation of knowledge-intensive applications. The standards include the Resource
Description Framework (RDF) [70] for describing information on directed, la-
belled and typed graphs, based on XML syntax; the Web Ontology Language
(OWL) [40] for specifying shared conceptualizations and taxonomic knowledge;
the Rule Interchange Format (RIF) [60] for expressing inferences structured in
the form of rules, and SPARQL [38] for querying RDF knowledge. Among them,
two are of particular interest for the representation of expressive knowledge,
namely ontology languages and rule languages with different characteristics.

Ontology languages are widely used to represent and reason over formal concep-
tualizations of hierarchical, taxonomic knowledge. OWL in particular is founded
on Description Logics (DLs) [5], which are commonly decidable fragments of
first-order logic. Due to that, DLs are monotonic by nature, which means that
acquiring new information does not invalidate previously drawn conclusions.
Also, they apply the Open World Assumption (OWA), which means that no
conclusions can be drawn merely based on the absence of some piece of infor-
mation. They also allow us to reason over abstract relations between classes of
objects, without the need to refer to concrete instances or objects, as well as to
reason with unknown individuals, i.e., objects that are inferred to exist though
they do not correspond to any known object in the represented knowledge. Dif-

1 http://www.w3.org
2 https://lod-cloud.net/

On Combining Ontologies and Rules 3

ferent DLs are defined based on varying combinations of logical operators that
are admitted to be used, which allows one to choose a concrete language that
balances between the required expressiveness of representation of the language
and the resulting complexity of reasoning with it. This is why, in addition to
the language standard OWL 2, which is very expressive but also comes with a
high worst-complexity of reasoning, so-called profiles [61] of OWL 2 have been
defined, each with different application areas in mind, that limit the admitted
operators, but allow for polynomial reasoning.

Rule languages There is a large variety of rule languages, which in their essence
can be described as expressing IF - THEN relationships. They are commonly
divided into production rules, that can be viewed as describing conditional ef-
fects, and declarative rules that describe knowledge about the world. This is
reflected in RIF in the sense that it is actually not a single language standard,
but rather a number of different formats, so-called dialects, that can be inte-
grated by means of RIF. Here, our interest resides on declarative languages to
represent knowledge and reason with it, in that they represent inferences from
premises to conclusions, commonly on the level of concrete instances. Among
these languages, nonmonotonic rules as established originally in Logic Program-
ming (LP) [10] are of particular interest. Such nonmonotonic rules employ the
Closed World Assumption (CWA), i.e., if something cannot be derived to be
true, it is assumed false. These conclusions may be revised in the presence of
additional information, hence the term nonmonotonic. Nonmonotonic rules are
thus well-suited for modelling default knowledge and exceptions, in the sense
that commonly a certain conclusion can be drawn unless some exceptional char-
acteristic prevents the conclusion, as well as integrity constraints that allow us
to ensure that certain required specifications on the data are met.

Integration Due to the different characteristics of the two formalisms, their inte-
gration is often necessary in a variety of applications (see e.g., [65, 1, 74, 55, 45]).
To illustrate these requirements, we present some examples of such use cases,
starting with an example which we will revisit throughout the paper.

Example 1. Consider a customs service that needs to assess incoming cargo in
a port for a variety of risk factors including terrorism, narcotics, food and con-
sumer safety, pest infestation, tariff violations, and intellectual property rights.
The assessment of the mentioned risks requires taking into consideration exten-
sive knowledge about commodities, business entities, trade patterns, government
policies and trade agreements. While some of this knowledge is external to the
considered customs agency, such as the classification of commodities according
to the international Harmonized Tariff System (HTS), or knowledge about in-
ternational trade agreements, other parts are internal, such as policies that help
determine which cargo to inspect (under which circumstances), as well as, for
example, records on the history of prior inspections that allow one to identify
importers with a history of good compliance with the regulations and those that
require closer monitoring due to previous infractions.

4 M. Knorr

In this setting, ontologies are a natural choice to model among others the in-
ternational taxonomy of commodities, whereas rules are more suitable to model,
e.g., the policies that determine which cargo to inspect. Notably, the distinct
characteristics of the two formalisms are important to represent different parts
of the desired knowledge. On the one hand, when reasoning about whether a
certain importer requires close monitoring, the fact that we cannot find any
previous infractions suffices to conclude by default that this importer is not a
suspect. This aligns well with the CWA usually employed in nonmonotonic rules.
On the other hand, the fact that we do not know whether a certain product is
contained in a cargo container, should not allow us to conclude that it is not
there. Here, the OWA of ontology languages is more suitable. At the same time,
with ontology languages we are able to reason abstractly with commodities, for
example listed in the manifest of a container without having to refer to concrete
objects.

Another example can be found in clinical health care, where large ontolo-
gies, such as SNOMED CT,3 are used for electronic health record systems and
clinical decision support, but where nonmonotonic rules are required to express
conditions such as dextrocardia, i.e., that the heart is exceptionally on the right
side of the body. Also, when matching patient records with clinical trials criteria
[65], modeling pharmacy data of patients using the CWA is cleary preferable (to
avoid listing all the medications not taken), because usually it can be assumed
that a patient is not under a specific medication unless explicitly known, whereas
conclusions on medical conditions (or the absence of them) require explicit proof,
e.g., based on test results. A further use-case can be found in the maintainance
of a telecommunications inventory [45], where an ontology is used to represent
the hierarchy of existing equipment (with a uniform terminology used for such
equipment in different countries), and nonmonotonic rules are applied to detect
different failures based on current sensor data.

However, the combination of ontologies and nonmonotonic rules is difficult
due to the inherent differences between the underlying base formalisms and the
way how decidability of reasoning is achieved in them (see, e.g., [27, 62, 28]). This
raises several questions, such as:

– How to achieve such an integration given the inherent technical differences?
– What is a suitable topology, i.e., should both formalisms be on equal terms or

should one’s inferences only serve as input for the other (and not vice-versa)?
– How and when should Open or Closed World Assumption be applied?
– How to ensure decidability for the integration?
– Can we obtain efficient reasoning procedures?

In this lecture, we discuss how to answer these questions. For this purpose,
after giving an overview on the two base formalisms, we review major approaches
that have been introduced in the literature to tackle this problem, and we identify
essential criteria along which these (and many other such) integrations have been

3 http://www.ihtsdo.org/snomed-ct/

On Combining Ontologies and Rules 5

introduced. These criteria may also help choose the most suitable appproach
among them for a concrete application. We then also discuss an available tool
based on one such integration with favorable properties along the established
criteria, including efficient reasoning procedures.

The remainder of this document is structured as follows. We provide neces-
sary notions on Description Logic ontologies and nonmonotonic rules in Sections
2 and 3, respectively. We then discuss the principles along which integrations
between the two formalisms have been developed in Section 4, and show, in
Section 5 four such integrations in more detail. We proceed with presenting a
tool for answering queries over such an integration in Section 6 and finish with
concluding remarks in Section 7.

2 Description Logic Ontologies

Description Logics (DLs) are fragments of first-order logics for which reasoning is
usually decidable. They are commonly used as expressive ontology languages, in
particular as the formal underpinning for the Web Ontology Language (OWL)
[40]. In this section, we provide an overview on DLs to facilitate the under-
standing of the remaining material and refer for more details and additional
background to text books in related work [5, 41].

On a general level, DLs allow us represent information about objects, called
individuals, classes of objects, called concepts, that share common characteris-
tics, and relations between objects as well as between classes of objects, called
roles. For example, Bob is an individual, Person a concept, and hasSSN a role
abbreviating “has social security number” allowing us to state that Bob is a
person and that he has a specific social security number.

More formally, DLs are defined over disjoint countably infinite sets of con-
cept names NC, corresponding to classes of individuals, role names NR, that
express relationships, and individual names NI, corresponding to objects, which,
in terms of first-order logic, match unary and binary predicates, and constants,
respectively.

Complex concepts (and complex roles) can be defined based on these sets
and logical constructors (indicated here in DL syntax), which include the stan-
dard Boolean operators, i.e., negation (¬), conjunction (u), and disjunction (t),
universal and existential quantifiers (∀ and ∃), as well as numeric restrictions on
(binary) roles (≤ mR and ≥ nR for numbers m,n and role R), and inverses of
roles (R− for role R).

For example, we can define concepts that represent persons that have a social
security number (Personu∃hasSNN.>), or those whose heart is on the left- or
on the right-hand-side of the body (HeartLeft tHeartRight), or those having
at most one social security number (≤ 1HasSNN.>) or the role “is the social
security number of” as the inverse of the role of having a social security number
(hasSSN−).

It should be noted that each DL, i.e., each fragment of first-order logic, can be
distinguished by the admitted constructors, by means of which complex concepts

6 M. Knorr

Name Syntax Semantics

inverse role R− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

nominals {a} {aI}
universal restriction ∀R.C {x ∈ ∆I | (x, y) ∈ RI implies y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I , (x, y) ∈ RI ∧ y ∈ CI}
Self concept ∃R.Self {x ∈ ∆I | (x, x) ∈ RI}
qualified number 6 nR.C {x ∈ ∆I |]{(x, y) ∈ RI and y ∈ CI} ≤ n}
restrictions > nR.C {x ∈ ∆I |]{(x, y) ∈ RI and y ∈ CI} ≥ n}

Fig. 1. Syntax and semantics of role and concept expressions in SROIQ for an inter-
pretation I with domain ∆I , where C,D are concepts, R a role, and a ∈ NI.

and roles are inductively formed. An overview on the admitted constructors in
the DL underlying the OWL 2 language, i.e., the description logic SROIQ [42],
can be found in Figure 1.

Based on complex concepts and roles, we can define an ontology contain-
ing axioms that specify a taxonomy/conceptualization of a domain of interest.
Such axioms allow us to indicate that a concept is subsumed by another, i.e.,
corresponding to a subclass relation, or that two concepts are equivalent (≡)
as a shortcut for subsumption in both directions, and likewise that some role is
subsumed by (or equivalent to) another role, as well as assertions indicating that
some individual is an instance of a class (or a pair of individuals an instance of
a role), and even certain role characteristics, such as transitivity, reflexivity or
symmetry of roles.

For example, the following set of axioms

Person v HeartLeft tHeartRight (1)

Person v ∃hasSNN.> (2)

isSSNOf ≡ hasSSN− (3)

Person(Bob) (4)

indicates that every person has the heart on the left or on the right-hand-side
(1), every person has a social security number (2), the relation referring to the
person corresponding to an SSN is the inverse of the relation indicating the SSN
of a person (3), and that Bob is a person (4).

On Combining Ontologies and Rules 7

Formally, an ontology O is a set of axioms divided into three components, a
TBox, an RBox, and an ABox. A TBox is a finite set of concept inclusions of the
form C v D where C and D are both (complex) concepts. An RBox is a finite
set of role chains of the form R1 ◦ . . . ◦ Rn v R, including role inclusions with
n = 1, where Ri and R are (complex) roles, and of role assertions, allowing us to
express that a role is transitive (Tra), reflexive (Ref), irreflexive (Irr), symmetric
(Sym) or asymmetric (Asy), and that two roles are disjoint (Dis). Finally, an
ABox is a finite set of assertions of the form C(a) or R(a, b) for concepts C,
roles R, and individuals a, b.

The semantics of DL ontologies, i.e., their meaning, is defined in terms of
interpretations I = (∆I , ·I) consisting of a non-empty set ∆I , its domain, and a
mapping ·I that specifies how the basic language elements are to be interpreted.
More concisely, such a mapping ensures that

– aI ∈ ∆I for each a ∈ NI;
– AI ⊆ ∆I for each A ∈ NC; and
– RI ⊆ ∆I ×∆I for each R ∈ NR.

That is, every individual is interpreted as one domain element, every concept as
a subset of the domain, and every role as a set of pairs of domain elements. This
mapping can be extended to arbitrary role and concept expressions as indicated
in Figure 1 for the constructors usable in SROIQ.

The semantics of axioms α is based on a satisfaction relation w.r.t. an inter-
pretation I, denoted I |= α, which is presented in Figure 2. In this case, we also
say that I is a model of α, and likewise that I is a model of ontology O if I
satisfies all axioms in O. It should be noted that an alternative way to define the
semantics of ontologies is obtained by a direct translation into first-order logic.
For example, (2) can be translated into

∀x.(Person(x)→ (∃y.hasSNN(x, y)))

Note that the syntax of DLs does not explicitly mention the variables introduced
in their first-order translation. They are left implicit, and, due to the restriction
to unary and binary predicates (concepts and roles) and their particular struc-
ture, no ambiguity exists. We refer for the details of this translation to [5].

Based on the semantics in place, we can consider reasoning and what kinds
of inferences can be drawn. For example, from

Person v ∃has.SpinalColumn (5)

∃has.SpinalColumn v V ertebrate (6)

we can conclude that Person v V ertebrate holds and we can draw this con-
clusion without needing to know any particular individual person. In addition,
together with (4), we can also conclude that Bob in particular is a vertebrate,
and, by (2) and (4), that there is some object which is a social security number,
although we do not know precisely which one.

8 M. Knorr

Axiom α Condition for I |= α

R1 ◦ . . . ◦Rn v R RI1 ◦ . . . ◦RIn v RI

Tra(R) if RI ◦RI ⊆ RI

Ref(R) (x, x) ∈ RI for all x ∈ ∆I

Irr(R) (x, x) 6∈ RI for all x ∈ ∆I

Dis(R, S) if (x, y) ∈ RI , then (x, y) 6∈ SI for all x, y∆I

Sym(R) if (x, y) ∈ RI , then (y, x) ∈ RI for all x, y ∈ ∆I

Asy(R) if (x, y) ∈ RI , then (y, x) 6∈ RI for all x, y ∈ ∆I

C v D CI ⊆ DI

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

¬R(a, b) (aI , bI) 6∈ RI

a 6≈ b aI 6= bI

Fig. 2. Semantics of SROIQ axioms for an interpretation I with domain ∆I , where
C,D are concepts, R,S are roles, and a, b ∈ NI.

In more general terms, a number of standard inference problems are defined
for DLs. For example, we can test if a DL ontologyO is consistent by determining
if it has a model. We can also determine if a concept is satisfiable by finding a
model I in which the interpretation of C is not empty (CI 6= ∅). Also, concept C
is subsumed by concept D w.r.t.O, i.e., C is a subclass of D, if CI ⊆ DI holds for
all models I of O. Moreover, we can check whether an individual a is an instance
of a concept C w.r.t. O, if aI ∈ CI holds for all models I of O. Frequently,
these reasoning tasks can be reduced to each other, e.g., C is subsumed by D
iff C u ¬D is unsatisfiable, which means that it suffices to consider only one
of them. Also, based on these standard inference problems, advanced reasoning
tasks are considered, such as classification which requires the computation of the
subsumptions between all concept names in the ontology, or instance retrieval
which determines all individuals that are true for a given concept.

Decidability is achieved by carefully restricting the admitted constructors
such that models satisfy certain desirable properties. This is necessary, as the
domain of an interpretation ∆I may be infinite. Note that DLs only allow the
usage of unary and binary predicates which together with the admitted con-
structors ensures that basic DLs satisfy the tree-model property, i.e., domain
elements in a model are related in a tree-shaped manner, which avoids cycles,
and thus ensures decidability. For more expressive DLs such as SROIQ this
does not suffice. In fact, if we were allowed to use the constructors in Figures 1
and 2 without additional restrictions, reasoning in SROIQ would be undecid-
able. Instead, role hierarchies, i.e., essentially axioms involving role inclusions,
are restricted to so-called regular ones, which intuitively limits the usage of cer-

On Combining Ontologies and Rules 9

tain roles in, e.g., qualified number restrictions and role chains, so that a strict
order can be established in between the roles. We refer for the details to [42].

While the applied restrictions ensure that SROIQ is decidable, this DL
underlying the W3C standard OWL 2 is still very general and highly expressive,
which in turn implies that reasoning with it is highly complex, in fact, it is
N2ExpTime-complete [46]. But general purpose DL reasoners exist for this highly
expressive language such as FaCT++ [79], Pellet [71], RACER [37] or Konclude
[75]. Still, one of the central themes in DLs is the balance between expressiveness
and the computational complexity for the required reasoning tasks. This is why
the profiles OWL 2 EL, OWL 2 QL and OWL 2 RL have been defined [61], i.e.,
considerable restrictions of the admitted language of OWL 2, for which reasoning
is tractable. Here, we briefly overview these languages.

The DL underlying OWL 2 EL is EL++ [6]. Often, EL+
⊥, a large fragment of

it is used that only allows conjunctions and existential restrictions of concepts,
hierarchies of roles, and disjoint concepts. EL+

⊥ is tailored towards reasoning
with large conceptual models, i.e., large TBoxes, and used in particular in large
biomedical ontologies, and specifically tailored, highly efficient reasoners such as
ELK [47] exist.

DL-LiteR, one of the languages of the DL-Lite family [4] which underlies
OWL 2 QL, admits in addition inverse roles and even disjoint roles, but, in
exchange, it only allows for simple role hierarchies, no conjunction (on the left-
hand side of axioms), and it imposes limitations on the usage of existential
restrictions in particular on the left-hand side of inclusion axioms. The focus of
this profile is on answering queries over large quantities of data, and combining
relational database technology in the context of ontology-based data access [81].

Finally, OWL 2 RL, which builds on Description Logic Programs [36], is de-
fined in a way that avoids inferring the existence of unknown individuals (e.g., a
social security number though we do not know which) as well as nondetermin-
istic knowledge, for the sake of efficient reasoning. OWL 2 RL allows more of
the available DL constructors than the other two OWL profiles, but their usage
is often restricted to one side of the inclusion axioms. This makes efficient RDF
and rule reasoners applicable such as RDFox [64].

3 Nonmonotonic Rules

Nonmonotonic rules in Logic Programming (LP) have been intensively studied
in the literature and a large body of theoretical results for different semantics of
such rules has been presented (see e.g. [59]). Among them, the most widely used
today are the answer set semantics [32] and the well-founded semantics [31], for
which efficient implementations exist. In this section, we give a brief overview on
nonmonotonic rules and these two semantics in particular, as they are essential
for the integration of ontologies and rules.

In a broad sense, rules are used to represent that if a certain condition is
true, then so is the indicated consequence. This includes the usage of default
negation (in the condition) using operator not, which can be used to represent

10 M. Knorr

that something holds unless some condition is verified. We can for example state
a rule that indicates that, for any vertebrate, the heart is on the left-hand-side
of the body unless it is explicitly known to be on the right-hand-side:

HeartLeft(x)← V ertebrate(x),not HeartRight(x) (7)

This rule is in principle applicable to arbitrary individuals due to the usage
of variables, in this case x, and it intuitively allows us to infer for any x that
HeartLeft(x) holds unless HeartRight(x) holds.

In terms of syntax, we note that the basic building blocks of rules are rather
easy to define. All we need is a set of predicates of some arity, i.e., the number
of arguments they admit, and a set of terms over constants and variables as
these arguments. These, in turn, allow us to define rules as implications over
such atoms possibly with default negation in the condition.

More formally, we consider disjoint sets of constants Σc, variables Σv, and
predicate symbols Σp.4 Then a term is a constant c ∈ Σc or a variable v ∈ Σv,
and an atom is of the form p(t1, . . . , tn), where p is an n-nary predicate symbol
in Σp and the ti, for i = 1, . . . , n and n ≥ 0, are terms. Atoms with n = 0 are
also commonly called propositional. Such atoms allow us to express that certain
n-nary relations hold, or, using default negation not, that they do not hold in
absence of information to the contrary. Atoms and default negated atoms are
also called literals.

Logic programs then consist of rules that combine literals in logic formulas
of a specific form. More precisely, a disjunctive (logic) program P consists of
finitely many (implicitly universally quantified) disjunctive rules of the form

H1 ∨ · · · ∨Hl ← A1, . . . , An,not B1, . . . ,not Bm (8)

where Hk, Ai, and Bj are atoms. Such a rule can be divided into the head
H1∨· · ·∨Hl and the body A1, . . . , An, not B1, · · · ,not Bm, where “,” represents
conjunction. Hence such a rule is to be read as “If A1 and . . . and An are true
and B1 and . . . and Bm are not, then (at least) one of H1 to Hl is”.

We also identify the elements in the head and in the body of a rule with
the sets H = {H1, . . . ,Hl}, B+ = {A1, . . . , An}, and B− = {B1, . . . , Bm}, where
B = B+ ∪ not B−, and we occasionally abbreviate rules with H ← B+,not B−
or even H ← B. Note that, in line with this set notation, the disjunction in the
head and the conjunction in the body are commutative, i.e., the order of the
elements in the head and in the body does not matter.

There are a number of different kinds of rules which yield a different expres-
siveness depending on how many and which literals are allowed in the head and
the body of each rule, and we recall them in the following, as different integra-
tions of ontologies and nonmonotonic rules admit different kinds of such rules.
Normal rules do only admit one atom in the head, whereas positive rules do

4 Please note that often also function symbols are introduced in the literature of LP,
but since they jeopardize decidability of reasoning, and usually are not considered
in integrations of ontologies and nonmonotonic rules, we do omit them here.

On Combining Ontologies and Rules 11

not admit default negation, and normal and positive programs can be defined
accordingly. In particular, if the body of a rule is empty, i.e., n = m = 0, the rule
is called a fact, and if, alternatively, the head is empty, i.e., l = 0, a constraint.

Constraints are an interesting modelling feature of nonmonotonic rules, as
they allow to impose restrictions on the presence of certain information:

SSN OK(x)← hasSSN(x, y) (9)

← Person(x),not SSN OK(x) (10)

This states that if x has a (known) social security number y, then x’s social
security number status is fine (9), and that there can be no person x whose
social security number status is not fine (10). Note that the DL axiom (2) is not
an alternative as it does not impose a restriction, but rather allows us to infer
that there is a social security number, though we do not know which.

Here, unlike for DLs, no restriction on the syntax of predicates is made, which
means that reasoning with such programs would be undecidable when working
with an infinite domain. Commonly, this is prevented by ensuring that variables
in the rules can only be instantiated with “known values”, i.e., that are known
in the program. Such rules are called safe which, formally, is the case if each
variable in a rule of the form (8) occurs in an atom Ai for some i, 1 ≤ i ≤ n,
and we assume in the following that all rules are safe. For example, the rules
(7), (9), and (10) are safe, whereas the rule

← Person(x),not hasSSN(x, y)

is not due to y not occurring in any positive literal in the rule body.
This restriction to known individuals seems arguably severe in comparison to

DLs where we can reason over an infinite domain and unknown individuals. On
the other hand, the following example rule taken from the context of Example 1

CompliantShpmt(x)← ShpmtCommod(x, y), HTSCode(y, z),

ShpmtDeclHTSCode(x, z)

states that x is a compliant shipment, if x contains y whose harmonized tariff
code is z and x is declared to contain z. This can be easily expressed as a rule,
whereas a representation via DLs proves difficult due to the fact that, if viewed
as a graph, the variable connections established in the rule provide one link from
x to z via y and one direct link, which is not tree-shaped. Hence, both formalisms
indeed differ as to what can be represented.

We next proceed by giving an overview on the two standard semantics for
such nonmonotonic rules, answer set semantics and well-founded semantics.

3.1 Answer Set Semantics

Answer Set Programming (ASP) is a declarative programming paradigm tailored
towards the solution of large combinatorical search problems. The central idea is

12 M. Knorr

to encode the given problem in a declarative way using rules and use one of the
efficient answer set solvers available, such as clasp [29] or DLV [3], to determine
the answer sets corresponding to the solutions of the problem. The approach
builds on the answer set semantics [32] which is a two-valued nonmonotonic
declarative semantics for logic programs with close connections to other logic-
based formalisms such as SAT, Default Logic, and Autoepistemic Logic.

While the full ASP language comes with a number of additional syntactic
constructs beyond the syntax of programs we have presented so far (cf. the
ASP-Core-2 Input Language Format [18]), we limit our considerations to normal
programs for the sake of readability and since this suffices to convey the main
ideas.

The models considered in this semantics, called answer sets, are represented
by a set of atoms occurring in a given program, that are true. Those atoms
from the program not occurring in the answer set are false. Since rules may
contain variables, rules are grounded first, i.e., all variables are instantiated with
constants occurring in the program in all possible ways, and the set of all ground
instances of the rules of a program P is denoted by ground(P).

Example 2. Consider program P consisting of rule hasSSN(Bob, 123) ← to-
gether with (9). Then ground(P) consists of:

SSN OK(Bob)← hasSSN(Bob, 123)

SSN OK(Bob)← hasSSN(Bob,Bob)

SSN OK(123)← hasSSN(123, Bob)

SSN OK(123)← hasSSN(123, 123)

hasSSN(Bob, 123)←

Of course, state-of-the-art ASP solvers will only keep the first of the grounded
rules in such a situation, as the body atom in the other rules can never be true
anyway. Either way, it is clear that {SSN OK(Bob), hasSSN(Bob, 123)} is a
model if we treat these rules as implications in first-order logic.

Now, the main idea of answer sets builds on guessing a model and checking
that it satisfies a certain minimality criterion, namely, that there is some rule
that supports the truth of some atom in an answer set (which is not the case,
e.g., for hasSSN(Bob,Bob) in Example 2). In more detail, based on the guessed
model, a reduct of the (ground) program is created which does not contain
default negation, and for which it can be checked whether the originally guessed
model is a minimal model of the resulting reduct.

Given a program P and a set I of atoms, the reduct P I [32] is defined as

P I = {H ← B+ : H ← B+,not B− in ground(P) such that B− ∩ I = ∅}.

Intuitively, rules that contain an atom in I (assumed to be true) in the negative
body are removed. In the remaining rules, all negated atoms are removed.

On Combining Ontologies and Rules 13

The resulting program is positive, and for normal programs, we can determine
all necessary consequences of this program using the following operator TP :

TP (I) = {H | H ← B ∈ P and B ⊆ I}

Basically, all rule heads are collected whose body atoms are true given I.
This operator can be iterated as follows, starting with TP ↑ 0, thus allowing

to compute the deductive closure Cn of such a positive normal program P :

TP ↑ 0 = ∅ TP ↑ (n+ 1) = TP (TP ↑ n) Cn(P) = TP ↑ ω =
⋃
n

TP ↑ n

Then, a set of atoms X is an answer set of program P iff Cn(PX) = X.
For normal programs without negation, this closure in fact amounts to com-

puting all necessary consequences of the given program. For example, for the
ground program in Example 2 which does not contain default negation, clearly
{SSN OK(Bob), hasSSN(Bob, 123)} is this closure, hence its only answer set.

Example 3. Consider a normal program P containing just two rules.

HeartLeft(Bob)← not HeartRight(Bob)

HeartRight(Bob)← not HeartLeft(Bob)

If we consider M1 = {HeartLeft(Bob), HeartRight(Bob)}, then PM1 = {},
whose closure is ∅, hence M1 is not an answer set. If we consider M2 = {},
then PM2 = {HeartLeft(Bob) ←, HeartRight(Bob) ←} and the closure is
{HeartLeft(Bob), HeartRight(Bob)}, so M2 is not an answer set either. Now,
consider M3 = {HeartLeft(Bob)}. Then PM3 = {HeartLeft(Bob)←}, and M3

is an answer set. The same is true for M4 = {HeartRight(Bob)} by symmetry.

Indeed, in general, a program may have several answer sets, which corresponds to
the idea that combinatorial problems may have several solutions. In particular,
a program may also have no answer sets – take Person(Bob) together with rules
(9) and (10). This is intended as we do not know the social security number of
Bob, and in more general terms combinatorial problems may have no solution.

3.2 Well-Founded Semantics

The well-founded semantics [31] was developed around the same time as the
answer set semantics, but focuses more on query answering over knowledge ex-
pressed with nonmonotonic rules. A central idea is to avoid computing entire
models for a given program, but rather compute inferences in a top-down fash-
ion, i.e., start with a query and compute only the part of a model necessary to
obtain the answer. This is aligned with the ideas of Prolog [76], however unlike
Prolog, the well-founded semantics is fully declarative and its major efficient
implementation XSB Prolog [77] avoids undecidability caused by infinite loops
while querying, and uses tabling to avoid unnecessary re-computation of already
queried (intermediate) results.

14 M. Knorr

Unlike the answer set semantics, the well-founded semantics is based on three-
valued interpretations for which the set of truth values is extended by introducing
a third truth value representing undefined. The basic idea behind this is to stay
agnostic in situations where the knowledge encoded in a program permits a
choice, such as between HeartLeft(Bob) and HeartRight(Bob) in Example 3,
and rather leave both undefined. The benefit is that only a single well-founded
model exists which can be efficiently computed in an iterative manner and for
which corresponding querying procedures can be defined.

Formally, given a program P , a three-valued interpretation is a pair of sets
of atoms (T, F) with T ∩ F = ∅, where elements in T are mapped to true,
elements in F are mapped to false, and the remaining to undefined. Such inter-
pretations can also be represented as T ∪ not F . For example, using the latter
notation, the well-founded model of the program in Example 3 can be repre-
sented as {} corresponding to both HeartLeft(Bob) and HeartRight(Bob) be-
ing undefined, whereas the sets {HeartLeft(Bob),not HeartRight(Bob)} and
{not HeartLeft(Bob), HeartRight(Bob)} correspond to the two answer sets in
Example 3, respectively.

We can determine the truth value of a set of atoms involving undefined atoms
by defining that, for an atomA undefined w.r.t. some three-valued interpretation,
not A is again undefined and that for a conjunction of atoms, its truth value is
the minimum of the truth values of the involved elements with respect to the
order false < undefined < true.

Based on this, we can define the well-founded model and show how it can be
computed. Here, we only do the latter and refer for the formal definition of the
well-founded model to [31]. Essentially, the well-founded model can be computed
by starting with an empty set (recall that this corresponds to everything is
undefined), and iteratively add, based on the program, atoms that are necessarily
true and necessarily false.

Regarding necessarily true information, the operator TP defined previously
for computing the closure Cn can be used, only now I is a three-valued inter-
pretation.

For negative information, so-called unfounded sets are used, that refer to a
set of atoms that given a program P and an interpretation I can never become
true (nor undefined). Formally, such a set U is unfounded w.r.t. program P and
interpretation I if each atom A ∈ U satisfies the following condition. For each
rule A← B in ground(P) at least one of the following holds:

(Ui) Some literal in B is false in I.
(Uii) Some (non-negated) atom in B occurs in U .

The idea is that A is unfounded if all rules with head A either contain some
false literal in the body or an atom which is also unfounded. For example, given
I = ∅ and program P composed of the two rules:

hasSSN(Bob, 123)← isSSNOf(123, Bob)

isSSNOf(123, Bob)← hasSSN(Bob, 123)

On Combining Ontologies and Rules 15

{hasSSN(Bob, 123), isSSNOf(123, Bob)} is an unfounded set w.r.t. P and I.
The union of all unfounded sets of P w.r.t. I is the greatest unfounded set,

denoted UP (I) which together with TP can be used to define an operator WP

for programs P and interpretations I:

WP (I) = TP (I) ∪ not UP (I).

This operator can be iterated to obtain the well-founded model Mwf , i.e., all
atoms that are necessarily true and false, respectively.

WP ↑ 0 = ∅ WP ↑ (n+1) = WP (WP ↑ n) Mwf (P) = WP ↑ ω =
⋃
n

WP ↑ n

Example 4. Consider the following program P .

Person(Bob)←
hasSSN(Bob, 123)←

SSN OK(x)← hasSSN(x, y)

check(x)← Person(x),not SSN OK(x)

We obtain:

WP ↑ 0 = ∅
WP ↑ 1 = {Person(Bob), hasSSN(Bob, 123)}
WP ↑ 2 = WP ↑ 1 ∪ {SSN OK(Bob)}
WP ↑ 3 = WP ↑ 2 ∪ {not check(Bob)}

An alternative equivalent definition exists, called the alternating fixed-point [30],
which computes this model based on the reduct of the program used for deter-
mining answer sets, and SLG resolution [20] provides a corresponding top-down
procedure for the well-founded semantics implemented in XSB.

Regarding a comparison between the well-founded semantics and the answer
set semantics, we note that in terms of computational complexity, the former
is preferrable as the unique well-founded model can be computed in polynomial
time (w.r.t. data complexity, i.e., only the size of the number of facts varies),
whereas guessing and checking answer sets is at least in NP. In addition, when
querying, we only require the part of the knowledge base that is relevant for
the query, which aids efficiency in comparison to answer sets. For example,
when querying for the medication of a specific patient, we certainly do not care
about the medication of possibly thousands of other patients. Moreover, the
well-founded model (for normal programs) always exists. On the other hand, if
the considered problem is at least partially combinatorial, answer sets are clearly
preferred. In fact, the answer set semantics is more expressive in general: take
the two rules from Example 3 together with the following two rules.

LivingBeing(Bob)← HeartLeftBob)

LivingBeing(Bob)← HeartRight(Bob)

16 M. Knorr

Then, in the unique well-founded model everything is undefined, whereas both
answer sets contain LivingBeing(Bob). Thus, ultimately the choice between the
depends on the intended application.

4 How to Integrate Ontologies and Rules?

Having reviewed the two formalisms, DL ontologies and nonmonotonic rules
in detail, and their differing characteristics and benefits w.r.t. what kind of
knowledge can be represented and reasoned with, the question arises what to do
if we want to use the favorable characteristics of both simultaneously.

This question has been tackled in the literature and a plethora of different ap-
proaches has been presented. Discussing all these proposals here in detail would
not be possible for the sheer amount of them, however, common characteristics
and criteria have emerged along which these proposals have been defined, and
we want to discuss these here to provide a better idea on the main considerations
to take into account when providing such an integration.

Before we delve into this, let us look at a concrete, larger example that
illustrates the benefits of such an integration with more detail.

Example 5. Recall the setting described in Example 1 on a customs service need-
ing to assess incoming cargo for risks based on a variety of information. Figure 3
shows a DL ontology O and a set of nonmonotonic rules P containing part of
such information that we explain in more detail.

The ontology O contains a classification of commodities based on their har-
monized tariff information (HTS chapters, headings and codes)5, a taxonomy of
commodities (here exemplified using special kinds of tomatos), together with in-
dications on tariff charges depending on the kind of product and their packaging,
as well as a geographic classification, along with information about producers
who are located in various countries.

The program P contains data on the shipments. Here, a shipment has several
attributes: the country of origin, the commodity it contains, its importer and
producer, exemplified by (partial) information about three shipments, s1 , s2
and s3 . For importers, it also indicates if they have a history of transgressing
the regulations.

Then there is a set of rules for determining what to inspect. The first rules
provide information about importers, namely whether they are admissible (if
they are not known to be registered transgressors), for which kind of products
they are approved, and whether they are expeditable (combining the former two).
The rules also allow us to associate a commodity with its country of origin (where
it shipped from), and determining whether a shipment is compliant, i.e., if there
is a match between the filed cargo codes and the actually carried commodities.

The final three rules serve the overall task to access all the information and as-
sess whether some shipment should be inspected in full detail, partially, or not at

5 This is adapted from https://hts.usitc.gov/.

On Combining Ontologies and Rules 17

* * * O * * *

Commodity ≡ (∃HTSCode.>) EdibleVegetable ≡ ∃HTSChapter.{′07′}
CherryTomato ≡ ∃HTSCode.{′07022′} Tomato ≡ ∃HTSHeading.{′0702′}
GrapeTomato ≡ ∃HTSCode.{′07021′} Tomato v EdibleVegetable
CherryTomato v Tomato GrapeTomato v Tomato
CherryTomato u Bulk ≡ ∃TariffCharge.{′$0′} CherryTomato u GrapeTomato v ⊥
GrapeTomato u Bulk ≡ ∃TariffCharge.{′$40′} Bulk u Prepackaged v ⊥
CherryTomato u Prepackaged ≡ ∃TariffCharge.{′$50′}
GrapeTomato u Prepackaged ≡ ∃TariffCharge.{′$100′}
EURegisteredProducer ≡ ∃RegisteredProducer.EUCountry
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>) u (∃CommodCountry.EUCountry)

EUCountry(portugal) EUCountry(slovakia)

* * * P * * *

ShpmtCommod(s1 , c1) ShpmtDeclHTSCode(s1 , h7022)
ShpmtImporter(s1 , i1) CherryTomato(c1) Bulk(c1)
ShpmtCommod(s2 , c2) ShpmtDeclHTSCode(s2 , h7021)
ShpmtImporter(s2 , i2) GrapeTomato(c2) Prepackaged(c2)
ShpmtCountry(s2 , slovakia) RegisteredTransgressor(i1).
ShpmtCommod(s3 , c3) ShpmtDeclHTSCode(s3 , h7022)
ShpmtImporter(s3 , i3) GrapeTomato(c3) Bulk(c3)
ShpmtCountry(s3 , portugal) ShpmtProducer(s3 , p1)
ShpmtCountry(s1 , portugal) RegisteredProducer(p2 , slovakia)

AdmissibleImporter(x)← ShpmtImporter(y,x),not RegisteredTransgressor(x)
ApprovedImporterOf(i2 ,x)← EdibleVegetable(x)
ApprovedImporterOf(i3 ,x)← GrapeTomato(x)
ExpeditableImporter(x,y)← ShpmtCommod(z,x),ShpmtImporter(z,y),

AdmissibleImporter(y),ApprovedImporterOf(y,x)
CommodCountry(x,y)← ShpmtCommod(z,x), ShpmtCountry(z,y)
CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z), ShpmtDeclHTSCode(x, z)
PartialInspection(x)← ShpmtCommod(x,y),not LowRiskEUCommodity(y)
FullInspection(x)← ShpmtCommod(x,y),not CompliantShpmt(x)
FullInspection(x)← ShpmtCommod(x,y),Tomato(y), ShpmtCountry(x, slovakia)

Fig. 3. Ontology O and nonmonotonic rules P for cargo assessment.

18 M. Knorr

all. In particular, at least a partial inspection is required whenever the commod-
ity is not a LowRiskEUCommodity based on inferences in the DL part, which n
turn requires assessing further information in the rules, namely CommodCountry
and ExpeditableImporter. A full inspection is required if a shipment is not com-
pliant or if some suspicious cargo is observed, in this case tomatoes from slovakia
(you may imagine for the sake of the example that we are in the winter period).

Note that the example indeed utilizes the features of rules and ontologies: for
example, exceptions to the partial inspections can be expressed, but at the same
time, taxonomic and non-closed knowledge is used, e.g., some shipment may in
fact originate from the EU, but this information is just not available.

To be able to obtain the desired conclusions from the combination of the
knowledge bases written in these two formalisms, we need to find ways to inte-
grate them. As already mentioned, many proposals exist in the literature, defined
along the lines of guiding principles which we now want to discuss. In the course
of this discussion, often, these principles are inspired in their formulation by [62],
where they were used for arguing in favor of a specific approach. Here, in partic-
ular when there are several options w.r.t. a certain characteristic, it is our stance
not to argue in favor of a certain solution, but rather discuss their corresponding
advantages.

Faithfulness The first desirable property we want to discuss is Faithfulness, i.e.,
the idea that the integration of DLs and nonmonotonic rules should preserve the
semantics of both its base formalisms. In other words, the addition of rules to
a DL should not change the semantics of the DL and vice-versa. In particular,
when either of the two components is empty, the semantics should simply be the
one of the base formalism of the non-empty component. This is beneficial for
two reasons. First, it eases its adoption for knowledge engineers knowledgable
in (at least) one of the base formalisms, that want to augment an ontology with
rules or vice-versa. Second, and maybe even more important, this is crucial to
facilitate re-using existing state of the art reasoners for each of the components,
reducing considerably the necessary effort to provide implementations. Thus,
without going into details of an actual faithful integration, for reasoning with
the knowledge bases presented in Example 5, it would in principle suffice to
choose a DL reasoner appropriate for the expressiveness used in the DL and an
ASP solver (or XSB depending on the desired rule semantics) and determine an
interface between the two to obtain all desired inferences.

Tightness The characteristic of tightness relates to the structure/topology of
the integration in the sense that whether conclusions resulting from one of the
formalisms can be used to derive further conclusions in the other. Clearly, there
are several possible solutions. One option is to layer one formalism on top of the
other, in the sense that conclusions of one approach can be used by the other,
but not vice-versa. Such a solution is certainly easier to handle on the technical
level, since, assuming a faithful integration, this way, we can simply first compute
the conclusions within the formalism on the lower level, and pass these to the

On Combining Ontologies and Rules 19

formalism on the upper level to compute the conclusions there. On the other
hand, a tight integration requires that neither of the two formalisms is layered
on top of the other, rather, both the DL and the rule component should be able
to contribute to the consequences of the other component. This is technically
more advanced, but has the advantage that it can easily cover examples such
as the one presented in Example 5, where, e.g., LowRiskEUCommodity is used in
the rules, but derived in the ontology, which in turn requires inferences from the
rules. Of course, in applications where such tight integration is not necessary, a
layered solution suffices. On the other hand, a tight integration is not subject to
problems when later introducing transfer of inferences from one component to
the other that was previously not present. Finally, there are also intermediate
solutions in which inferences can be passed between both components of the
integration, but under some certain restrictions.

DL Reasoning View This characteristic refers to what kind of inferences are
passed from the DL component to the rule component of the integration. Clearly,
for layered approaches in which rules are on the lower layer, this characteristic is
irrelevant. However, the vast majority of approaches actually do pass conclusions
from the DL component to the rule component. The essential question is, given
a DL ontology, do we consider inferences on the level of individual models or
on the level of consequences, i.e., truth in all models? In other words, are the
inferences we pass from the ontology to the rules model-based or consequence-
based, i.e., is the integration a world-centric or entailment-centric approach (as
alternatively termed in [56])? The benefit of model-based inferences is that they
allow for a higher expressiveness in the sense that possible alternatives present
in the ontology can be passed to the rules resulting in more inferences there as
well. On the downside, such alternatives based on different models may not have
strong support as a conclusion obtained from the ontology. For consequence-
based approaches, the situation is exactly the converse. Any inference is true
in all models, but this limits the extent to which inferred information is passed
from the ontology to the rules. This is ultimately actually similar to the idea
of brave vs. cautious reasoning in logics, i.e., truth in one or all models, and
which one of the two views is adapted depends on the concrete application at
hand. For Example 5, this depends on whether we want to impose inspections
based on something possibly being true or an entailment, i.e., being true in all
models. For example, LowRiskEUCommodity should probably only be considered
under consequences, as discarding a partial inspection based on the fact that the
commodity in question may represent a lower risk, is probably not a good idea.

Flexibility This characteristic deals with the question whether the same pred-
icate can be viewed under both the open and closed world assumption. The
central idea is that a flexible approach allows us to enrich a DL ontology with
non-monotonic consequences from the rules, and, conversely, to enrich the rules
with the capabilities of ontology reasoning described by a DL ontology. This
allows us to distinguish between approaches that fix to which predicates either
OWA or CWA is applied and those that do not. Again, a flexible approach is

20 M. Knorr

commonly more expressive, possibly at the expense of requiring a technically
more advanced integration, since separate languages for the two components fa-
cilitate the re-use of existing semantics for the individual components. Yet, this
may require some additional effort to ensure that corresponding predicates (be-
tween the ontology and the rules) are appropriately synchronized. In the case of
Example 5, an approach capturing it as is needs to be flexible as the predicates
appear simultaneously in both components.

Decidability and Complexity Finally, a formalism that can be used in applica-
tions should be at least decidable, and preferably of low worst-case complexity.
Given the huge amount of data (on the Web), it is clearly preferable to have a
system that is not only decidable but also computationally as efficient as pos-
sible. Still, this needs to take into account the tradeoff between expressiveness
of the formalism and complexity of reasoning, and in certain situations, the re-
quired expressiveness is more important. In any case, both base formalisms come
with established methods to ensure decidability, and this should preferably be
maintained in their integration. The exact computational complexity for desired
reasoning tasks then depends on the expressiveness and semantics applied in the
two base formalisms and which of the beforementioned characteristics have been
adopted.

5 Concrete Integrations

Having reviewed the main guidelines/criteria along which the many existing
approaches for integrating ontologies and rules have been developed, in this sec-
tion, we want to give an overview of some of the more prominent such proposals.
While the question of prominence to some extent certainly is in the eye of the
beholder, and though we cannot discuss all existing approaches here in more
detail, we believe that the provided selection covers different aspects w.r.t. the
previously mentioned criteria and more details on the remaining approaches can
be obtained from pointers to the literature.

5.1 DL+log

One of the first combinations of non-monotonic rules and ontologies is called
r-hybrid knowledge bases [67], which subseqently has been extended to DL+log
[68]. DL+log combines disjunctive Datalog (consisting of rules of the form (8))
with an arbitrary (decidable) DL.

An essential idea is to separate the admitted predicates into DL predicates
and non-DL predicates, i.e., those that can appear in the DL part (and in the
rules), and those that only appear in the rules. A knowledge base K in this
formalism consists of an ontology O and a set of rules P, where each rule r is of
the following form:

p1(x1) ∨ . . . ∨ pn(xn)← r1(y1), . . . , rm(ym), s1(z1), . . . , sk(zk),

not u1(w1), . . . ,not uh(wh)

On Combining Ontologies and Rules 21

such that n ≥ 0, m ≥ 0, k ≥ 0, and h ≥ 0, the xi, yi, zi, and wi are tuples
of variables and constants, each pi a DL or a non-DL predicate, each si a DL
predicate, and each ri and ui a non-DL predicate. Additionally, each variable
occurring in a rule must appear in some yi or zi (rule safety – similar to what we
have seen in Section 3) and every variable appearing in some xi of r must appear
in at least one of the yi (weak safety). The latter notion is weaker/less restrictive
than DL-safety [63] applied for r-hybrid knowledge bases, which requires that
every variable (and not just those in xi) in the rule occurs in at least one yi,
since there may exist variables that only appear in a DL-atom in the body
of a rule. For example, we may assume that, in Example 5, data on registered
producers is also stored in the ontology (in the ABox), i.e., EURegisteredProducer
is a DL-predicate, and adapt the DL axiom on EURegisteredProducer as a rule:

EURegisteredProducer(x)← RegisteredProducer(x,y),EUCountry(y) (11)

Then, this rule is weakly-safe, but not DL-safe, as, according to our assumptions,
x does not occur in the rule body in an atom built over a non-DL predicate (nor
does y). This is interesting as it allows one to pose arbitrary conjunctive queries
over DL predidates to the DL component, for which there are known algorithms
for many DLs [57]. The standard rule safety nevertheless ensures that there is
no variable only appearing in a default negated atom.

The main idea of the semantics for DL+log [68] is based on the definition
of a projection, similar in spirit to the idea of the reduct for answer sets, which
intuitively simplifies the program by evaluating the DL-atoms. Basically, given
an interpretation I, rules with DL-atoms that conflict with I are deleted and the
remaining DL-atoms are omitted. The resulting program is free of DL-atoms, and
I is a model of K if I is a model of O, and I restricted to the non-DL predicates
is an answer set of the projected program. This way, DL atoms are evaluated
under the open world assumption in the spirit of conjunctive queries to the DL
part, whereas non-DL atoms are evaluated under the closed world assumption.

Example 6. Consider a simple example composed of rule (11) together with two
ABox assertions RegisteredProducer(s4 ,GB), CountryIE(GB) and an axiom

CountryIE v EUCountry t NonEUCountry

representing that any country in Europe is either in the European Union or
not, and that s4 is a registered producer in Great Britain, which is a country in
Europe. Then there are two models:

M1 ={RegisteredProducer(s4 ,GB),CountryIE(GB),EUCountry(GB),

EURegisteredProducer(s4)}
M2 ={RegisteredProducer(s4 ,GB),CountryIE(GB),NonEUCountry(GB)}

Notably, M1 and M2 correspond to the essential two models of O, and, for M2,
the evaluation of DL-atoms removes all instances of (11).

22 M. Knorr

This then allows the definition for reasoning algorithms along the idea of
guessing and checking interpretations based on these projections, and it has
been shown that, in combination with O in DL-Lite, the DL underlying OWL 2
QL, the data complexity does not increase with respect to the data complexity
of the rule component alone.

The semantics is faithful, tight, and decidable (due to the safety restrictions),
but it is not flexible, as non-monotonic reasoning is by definition restricted to
non-DL atoms, i.e., no default reasoning over information appearing in the DL
is possible. Finally, we note that this approach is indeed model-based, since it
suffices that a considered interpretation I models O, without considering entail-
ment, i.e., truth in all models of O.

5.2 dl-programs

Another important approach is called description logic programs (dl-programs)
[27]. Here, a knowledge base K consists of a DL ontology O and a program P
containing (non-disjunctive) dl-rules of the form

H ← A1,← An,not B1, . . . ,not Bm

where H is a first-order atom,6 and all Ai and Bj are first-order atoms or special
dl-atoms to query the ontology. Similarly to DL+log, the set of predicates is
divided into disjoint sets of DL predicates, which only appear in dl-atoms and
in O, and non-DL predicates, that only appear in the rules. Such dl-atoms are
meant to serve as interfaces between the ontology and the rules, allowing that
information derivable in the DL can be queried for in the rules, while information
in the rules can be passed to the DL in the course of this process.

As a simple example, consider that the rules contain a fact p(Bob), represent-
ing that Bob is a person, together with ontology axioms (5) and (6), from which
we can derive that every person is a vertebrate. Note that the ontology and the
rules use a different predicate to represent the concept of person. Then, a dl-
atom DL[Person]p; Vertebrate](Bob) represents a query for Vertebrate(Bob)
where Person in the ontology is enriched with the inferences for p from the rules.

More formally, such dl-atoms are of the form

DL[S1 op1 p1, . . . , Sl opl pl;Q](t)

where Si are DL predicates, pi are non-DL predicates, opi ∈ {],∪- ,∩-}, Q is
an n-ary DL predicate, and t a vector of n terms. Such dl-atoms are used to
query the ontology for Q(t) where certain ontology predicates Si are altered by
information derived in the rules. Intuitively,] is used to augment Si with the
derived knowledge from pi; ∪- augments ¬Si with the derived knowledge from pi
and ∩- augments ¬S with what is not derived in pi. As queries, concept inclusions,
negations of concept inclusions, concept and role assertions, and equalities and
inequalities are allowed.

6 Classical negation is also allowed, but we simplify here for the sake of presentation.

On Combining Ontologies and Rules 23

It should be noted that the transfer from the rules to the ontology is limited
though, in the sense that it is not stored. This means that if a certain piece
of information from the rules is to be used for each dl-query, then it has to be
added explicitly in every dl-atom.

Example 7. The rule from Example 5 for PartialInspection can be adapted as:

PartialInspection(x)← ShpmtCommod(x,y),

not DL[ExpeditableImporter] e,CommodCountry] c; LowRiskEUCommodity](y)

where e and c are non-DL predicates which replace ExpeditableImporter and
CommodCountry in all the rules. In fact, to make this fully correct with the idea
of dl-programs, all predicates that appear, in Example 5, in the ontology and in
the rules need to be duplicated. This may look cumbersome at first glance, but
it allows one to use the two components in a modular fashion which facilitates
implementations, and reduces transfer of knowledge to what is necessary aiding
efficiency.

Two different answer set semantics are defined slightly varying on how dl-
atoms are preprocessed in the reduct. Both semantics may however create non-
minimal answer sets which is why it is recommended to either use canonical
answer sets based on loop formulas [80] or not to use the operator ∩- at all.

In addition, a corresponding well-founded semantics is defined for dl-programs
[26] omitting the operator ∩- , which builds on an extension of the unfounded sets
construction to such dl-programs.

The approach itself is faithful for both versions, the answer set semantics
and the well-founded semantics. The interaction with the DL component is
consequence-based as the evaluation of queries in the dl-atoms is realized based
on entailments, i.e., truth in all models of O. Due to the specific interfaces, the
dl-atoms, this approach is tight and flexible to a limited extent: rules cannot
derive new facts about DL predicates, they can only pose conditional queries to
the DL, although the operators in dl-atoms provide means to transfer knowledge
temporarily. Moreover, we can never derive nonmonotonic consequences for DL
predicates directly. Rather, we have to use the interfaces, which may appear
under default negation. It has also been shown that dl-programs are decidable
provided the considered DL is decidable. For the answer set semantics, in gen-
eral the computational complexity increases that of the individual components
(depending on the DL used and the kind of rules permitted), whereas for the
well-founded semantics this can commonly be avoided. In particular for poly-
nomial DLs, such as the tractable OWL profiles, dl-programs also maintain a
polynomial data complexity. While the modular solution limits the approach in
terms of tightness and flexibility, it facilitates its implementation. A prototype
for both semantics has been defined that utilizes RACER [37] for DL reason-
ing and DLV [53, 3] for the rule processing (where the well-founded semantics
is implemented based on the alternating fixpoint). This has been subsequently
generalized in hex-programs [24, 66] where interfaces in the line of dl-atoms can
be created to arbitrary external sources, thus further widening the applicability.

24 M. Knorr

5.3 Hybrid MKNF

Hybrid MKNF knowledge bases [62] build on the logic of minimal knowledge and
negation as failure (MKNF) [54], which corresponds to first-order logic extended
by two modal operators K and not, that allow us to express that something is
known and not known, respectively. Hybrid MKNF KBs essentially consist of
two components: a first-order theory, in particular a DL ontology O (translatable
into first-order logic), and a finite set of rules (similar to rules in ASP) over so-
called modal atoms of the form

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,not B1, . . . ,not Bm

where the Hi, Aj , and Bk are first-order formulas. The essential idea is that such
a rule is to be read as “If all Aj are known to hold (in the sense of truth in all
models), and all Bk are not known to hold, then one of the Hi is known to hold”
(i.e., one of the Hi is true in all models). As modal operators are not admitted in
the ontology O, reasoning can still be applied within O on a per model basis as
intended. Admitting, in the rules, first-order formulas within the scope of modal
operators raises the expressivity, and allows, in such modal atoms, conjunctive
queries to the ontology.

In fact, even more general MKNF+ knowledge bases are considered in which
rules may contain atoms not in scope of any modal operator. These can however
be transformed into ordinary modal atoms provided the considered DL language
is expressive enough to encode these first-order atoms with an equivalence to a
new predicate used then in the rules in each such case.

Atoms are again divided into DL atoms and non-DL atoms, and for decid-
ability, it is required that DL-safety holds, i.e., all variables occur in at least one
non-DL atom, and that reasoning in the DL language together with the general-
ized atoms is decidable (the latter condition simplifies if no first-order formulas
occur in the rules). Note that, due to DL-safety, rules such as (11) cannot be
used, but this can be amended using a conjunctive query in a modal atom:

KEURegisteredProducer(x)← K[∃y.(RegisteredProducer(x,y),∧EUCountry(y))]

The semantics of Hybrid MKNF knowledge bases is given by a translation
into an MKNF formula, i.e., a formula over first-order logic extended with two
modal operators K and not. This translation, essentially, conjoins all rules with
the first-order translation of O within scope of a single modal operator K. The
(integrating) semantics for such formulas is defined based on a model notion
over sets of interpretations. Such models contain all interpretations that model
a given formula, minimizing what necessarily must be known to hold, in the
sense that a larger set of models contains less atoms that are true in all models,
hence the name minimal knowledge (and negation as failure).

Example 8. Consider a simple example adapted from Example 5 containing just
CherryTomato v Tomato and KTomato(o1) ←. The corresponding formula in
MKNF is K(∀xCherryTomato(x) → Tomato(x)) ∧ KTomato(o1). Then, M1 =

On Combining Ontologies and Rules 25

{{Tomato(o1)}, {Tomato(o1),CherryTomato(o1)}} contains sets that model the
formula. So does M2 = {{Tomato(o1),CherryTomato(o1)}}, but M2 is not the
maximal such set of sets. In fact, in M2, CherryTomato(o1) is true in all models,
i.e., according to this model, KCherryTomato(o1) holds, which clearly should not
be an inference of the given knowledge base.

Since such a model representation is cumbersome and in general infinite,
for reasoning, a finite representation based on modal atoms is provided that
indicates which modal atoms occurring in the program are true and false. This
then allows one to use algorithms whose ideas are closely aligned with that of
answer sets – guess the true modal atoms and check whether certain conditions
are verified, namely that the result is a minimal model for the formula. For
Example 8, this amounts to determining that KTomato(o1) is true.

A well-founded semantics based on alternating fixpoints is defined in [48] for
hybrid MKNF knowledge bases, where no disjunction is allowed in the rule heads
and only ordinary atoms are permitted in rules, i.e., no first-order formulas.

Due to the seemless embedding in the underlying unifying formalism, the
approach is naturally flexible and tight. This allows us for example to capture
Example 5, by simply introducing the modal K operators in all the rules (the
default not is already present). It also is faithful with the respective underlying
base formalisms and decidable, provided the required restrictions are satisfied. In
terms of complexity, the semantics based on answer sets does in general increase
the data complexity of its constituents, only under considerable restrictions on
the rules, this can be avoided. For the well-founded semantics on the other
hand, and similar to dl-programs, the complexity reduces in comparison, and for
polynomial DLs, polynomial data complexity can be ensured for the integrated
formalism (for computing the model as well as answering safe queries). More-
over, the approach is consequence-based as DL atoms appear in scope of modal
operators, hence they are verified to be known, i.e., true in all models (of O).

The approach is indeed very general, and MKNF+ knowledge bases allow us
to cover many approaches in the literature [62], including the ones discussed so
far, in the sense that DL+log KBs and dl-programs without the operator ∩- can
be encoded into an equisatisfiable hybrid MKNF knowledge base.

In the latter case, a complementary formal result [28] shows that DL-safe
and ground hybrid MKNF KBs can be embedded into dl-programs essentially
by establishing the necessary transfer of information from rules to ontologies in
every single DL-atom. This confirms that Example 5 which can be straightfor-
wardly handled in hybrid MKNF, is also capturable in the case of dl-programs.
The general idea is to just introduce one new auxiliary predicate for each DL
atom, basically creating a program and a DL version of each such predicate, and
then use dl-atoms in the bodies of rules (instead of DL atoms), to query the
ontology, where, in the dl-atoms, the inferred information for all such DL atoms
from the rules is passed to the corresponding DL component each time.

26 M. Knorr

5.4 Resilient Logic Programs

Resilient Logic Programs (RLPs) [56] have been recently introduced with the aim
to overcome a limitation of the existing approaches of integrations of ontologies
and rules, namely the fact that, for obtaining inferences from the ontology, they
use either model-based reasoning (e.g., DL+log) or consequence-based reasoning
(e.g., dl-programs and Hybrid MKNF), but not both. There are however prob-
lems where this is not sufficient, and the authors argue that integration solutions
should be resilient in various scenarios.

As an example, consider that we are given a set of nodes, and we want to
determine a directed graph G such that removing one arbitrary node from G
will always result in a strongly connected graph (i.e., every vertex is reachable
from every other vertex). In this case, the choice of which node is removed
can be modeled in the ontology under the model-based view (one model per
possible removed node), whereas we can use the rules to verify whether the
corresponding resulting graph is strongly connected. However, the reachability
relation involved in this check varies for different chosen nodes, which requires
a universal quantification over the choices in the ontology (aligned with the
consequence-based view).

A resilient logic program then is a tuple Π = (P,O, Σout, Σowa, Σre) consist-
ing of a program P, an ontology/first-order theory O, and a distinct partition
of the predicates occurring in P and O, into output predicates Σout, open pred-
icates Σowa, and response predicates Σre, such that response predicates are not
allowed in O, and where output predicates and response predicates are closed.

The semantics is defined in a way that can be viewed as a negotiation between
P and O. An answer set I over Σout needs to be determined that a) can be
extended into a model of O by interpreting the predidates in Σowa, and b) no
matter how I is extended into a model of O, there always is a corresponding
interpretation of the response predicates, which together with I is justified by P
(in the sense of minimality/support by a rule as argued before, e.g., for answer
set programs). This semantics uses a reduct inspired by [67, 9], which handles
default negated atoms in the rules as usual, but in addition also treats atoms
based on open predicates in a similar fashion.

Example 9. Consider the following formalization of the graph problem taken
from [56], where O is represented as a first-order theory.
For nodes n1, . . . , nk, let Π = (P,O, Σout = {V,E}, Σowa = {in, out}, Σre =
{Ē, R}), where

O ={∃x.out(x) ∀x.(V (x)→ (in(x) ∨ out(x))),

∀x.(V (x)→ (¬in(x) ∨ ¬out(x))),

∀x∀y.((out(x) ∧ out(y))→ x = y)}
P ={V (n1), . . . V (nk), E(x, y) ∨ Ē(x, y)← V (x), V (y),

R(x, z)← R(x, y), R(y, z),

R(x, y)← E(x, y),not out(x),not out(y),

← V (x), V (y), x 6= y,not out(x),not out(y),not R(x, y)}

On Combining Ontologies and Rules 27

Fig. 4. A graph representation of the unique solution for Example 9 for 3 nodes, and
one possible solution for 4 nodes.

Essentially, O allows us to choose exactly on vertex that is removed (out),
whereas P provides possible directed edges between the given vertices (E(x, y)
corresponding to a chosen edge for vertices x and y, Ē(x, y) representing one
not chosen), determines reachability (using R(x, y)), and a constraint checking
that any remaining vertex can reach any other remaining vertex. The semantics
of RLPs then only admits the desired solutions in which removing any single
node results in a strongly connected graph. Figure 4 shows a representation of
the only possible such graph with three nodes and one possible solution with
four nodes. It is easy to see that removing any of the directed edges will result
in a graph for which the required condition is no longer satisfied.

A more extensive example is presented in [56], where a company wants to
process a fixed amount of customer orders per day. The exact configuration of
the orders is not known in advance, and the objective is to determine those
services to offer so that independently of the actual configurations of the orders,
the tasks can be assigned to employees so that each task is completed by the
end of the day. Here, the offered services are captured by the output predicates,
possible configurations are modelled in the first-order theory, and the answer
sets correspond to the viable schedules in which tasks are completed in time.

Decidability in RLPs is achieved by ensuring DL-safety [63], here w.r.t. out-
put and response predicates, and requiring that for the (DL) theory, satisfiability
under closed predicates must be decidable.

It is shown that disjunctive programs can be embedded into RLPs. Also,
under some additional restrictions, namely limiting default negation for response
predicates and restricting theories to correspond to positive disjunctive rules,
RLPs can be translated into disjunctive ASP which allows for the usage of state-
of-the-art ASP solvers when reasoning. A reduction to ∃∀∃-quantified Boolean
formulas is given, which shows that the computational complexity is higher than
that of answer sets, which is also confirmed when using concrete DLs of different
expressiveness. In the context of these concrete DLs, a relaxed safeness condition
is also provided that admits safety with respect to unknown individuals as long
as the number of these individuals is limited.

28 M. Knorr

The approach is faithful w.r.t. the base formalisms and decidable under the
imposed restrictions. It also is tight as the flow of information is possible in both
directions. Similar to DL+log, the approach is not flexible as open predicates
are interpreted under the open world assumption.

6 NoHR - Querying Ontologies and Rules

In this section, we discuss NoHR7 (Nova Hybrid Reasoner), a tool for query-
ing combinations of DL ontologies and nonmonotonic rules. It is based on the
well-founded semantics for Hybrid MKNF knowledge bases [48], due to its lower
computational complexity and amenability to top-down querying without com-
puting the entire model, which is important in the face of huge amounts of data.
Indeed, rather than computing the well-founded model for this integration along
the ideas presented in Section 3.2, queries are evaluated based on SLG(O), as
defined in [2]. This procedure extends SLG resolution with tabling [20] with an
oracle to O that handles ground queries to the DL-part of K by returning (pos-
sibly empty) sets of atoms that, together with O and information already proven
true, allows us to derive the queried atom. We refer to [2] for the full account of
SLG(O) and present the idea in the following example.

Example 10. Consider again Example 5 and the query PartialInspection(x). Then,
the query procedure would find the rule whose head matches the queried atom
and proceed by querying for the respective body elements ShpmtCommod(x,y)
and not LowRiskEUCommodity(y). We find ShpmtCommod(s1 , c1), then the re-
maining query is not LowRiskEUCommodity(c1), which is verified with a query
LowRiskEUCommodity(c1). Now, LowRiskEUCommodity is a DL-predicate and
this can be handled by the oracle to O. In fact, LowRiskEUCommodity(c1) can be
inferred from O if we find ExpeditableImporter(c1 ,x) and CommodCountry(c1 ,y)
and EUCountry(y). Querying for ExpeditableImporter(c1 ,x) in particular results
in a query AdmissibleImporter(i1) which fails as i1 is a registered transgressor.
Therefore, LowRiskEUCommodity(c1) eventually fails, and one answer for the
initial query is a partial inspection is required for s1 .

While this idea works from a semantic point of view, it leaves open the
question of efficiency, as in general there are exponentially many such sets of
atoms that together with the ontology allow us to derive the queried atom. The
solution applied in NoHR is to transform relevant axioms/logical consequences
of the considered ontology into rules, and then take advantage of a rule reasoner
to ensure that only polynomially many answers are returned. It has been shown
that this process preserves the semantics for the different permitted ontology
fragments [43, 21, 55]. In addition, due to this reasoning approach, DL safety
can be relaxed to rule safety, as DL atoms now refer to the rules resulting from
the translation.

7 http://nohr.di.fct.unl.pt

On Combining Ontologies and Rules 29

On the technical side, NoHR8 is developed as a plug-in for the ontology
editor Protégé 5.X,9 – in fact, the first hybrid reasoner of its kind for Protégé
– but it is also available as a library, allowing for its integration within other
environments and applications. It supports ontologies written in any of the three
tractable OWL 2 Profiles, and for those combining the constructors permitted in
these profiles. Its implementation combines the capabilities of the DL reasoners
ELK [47] (for the OWL 2 EL profile), and HermiT [34] and Konclude [75] (for
combinations of constructors of different profiles – for OWL 2 QL and RL no DL
reasoner is used, rather direct translations into rules are applied) with the rule
engine XSB Prolog10. XSB comes with support for a vast number of standard
built-in Prolog predicates, including numeric predicates and comparisons, and
ensures termination of query answering.

NoHR is also robust w.r.t. inconsistencies between the ontology and the rules,
which is important as knowledge from different sources may indeed be contra-
dictory on some parts. While this would commonly render the system useless as
anything can be derived from an inconsistent knowledge base, a paraconsistent
approach is adopted, in which certain parts may be inconsistent – and querying
for them with NoHR will reveal that – but other inferences that are not related
to such an inconsistency can be inferred as if the inconistency was not present
(see, e.g., [44] for more details). This proves indeed beneficial as inconsistent data
on one shipment should not impact on determining whether to inspect another.

NoHR also provides native support for Relational Databases which is en-
coded through the concept of mappings.11 Essentially, mappings are used to
create predicates that are populated with the result set obtained from queries
to external databases, which also allows one to consult tables from different
databases. A mapping for predicate p is a triple 〈p, db, q〉 where the result set
from db for the query q (defined over db) is mapped to the predicate p. The
connection to database systems is realized using ODBC drivers, thus allowing
the integration of NoHR with all major database management systems.

In the following, we describe the system architecture of the Protégé plugin
NoHR v4.0 as shown in Fig. 5 and discuss several features of its implementation.

The input for the plugin consists of an OWL file, a rule file and a mappings
file. All three components can be edited in Protégé, using the built-in interface
for the ontology and the custom “NoHR Rules” and “NoHR Mappings” tabs,
provided by the plugin, for the rule and mapping components. The former (as
well as the query panel) comes with a dedicated parser to support the creation
of correctly formed rules and queries. The latter allows the creation of mappings
based on the user’s specification of what columns from which tables of which
database should be combined, where the underlying SQL queries are dynami-
cally generated, based on the structure of the schema, which allows the automatic

8 The source code can be obtained at https://github.com/NoHRReasoner/NoHR.
9 http://protege.stanford.edu

10 http://xsb.sourceforge.net
11 Similar concepts have been used before for adding database support to rule systems,

such as DLV DB [78], and in ontology based data access, such as in ontop [19].

30 M. Knorr

Fig. 5. System architecture of NoHR v4.0 with native database support

application of several optimizations to the generated queries. Alternatively, ar-
bitrary SQL queries can be written to take advantage of the capabilities of the
specific DBMS at hand for the sake of, e.g., benefiting from using advanced joins
and the associated performance gains when querying.

After the inputs (which can be empty) and the first query are provided, the
ontology is translated into a set of rules, using one of the provided reasoners,
ELK [47], HermiT [34] or Konclude [75], depending on the DL in which the on-
tology is written. The resulting set is then combined with the rules and mappings
provided by the input. This joined result serves as input to XSB Prolog via Inter-
Prolog,12 which is an open-source Java front-end, allowing the communication
between Java and a Prolog engine, and the query is sent via the same inter-
face to XSB to be executed. During the execution, mappings are providing facts
from the external databases as they are requested in the reasoning process. This
procedure is supported by the installed ODBC connections and handled within
XSB, thus providing full control over the database access during querying and
taking advantage of the built-in optimization to access only the relevant part
of the database. Answers are returned to the query processor, which displays
them to the user in a table (in the Query Tab). Figure 6 provides an example
for the query FullInspection(?X), where we note that variables are denoted
with a leading “?” to facilitate distinguishing them from constants, similar to
SPARQL. The user may pose further queries, and the system will simply send
them directly to XSB, without any repeated preprocessing. If the knowledge
base is edited, the system recompiles only the component that was changed.

Different versions of NoHR have been evaluated focussing on different aspects
[43, 21, 55, 45], and the main observations are summarized in the following.

12 http://interprolog.com/java-bridge/

On Combining Ontologies and Rules 31

Fig. 6. Cargo assessment example in the NoHR Protégé plugin

Different ontologies can be preprocessed for querying in a short amount of
time (around one minute for SNOMED CT with over 300,000 concepts), and
increasing the number of rules only raises the time for translation linearly. As the
preprocessing commonly only needs to be done once before queryin, this is less
important for the overall performance. In terms of performance of the different
used reasoners for preprocessing, it has been shown [55] that ELK is indeed
always fastest, so whenever the ontology fits EL+

⊥, the dedicated translation
module should be used. In between the to general purpose reasoners, HermiT is
faster than Konclude on all instances where it does not time out when classifying
the given ontology. Konclude then is preferred in the cases where HermiT fails
to classify an ontology that does not fit the OWL 2 EL profile (in which ELK
cannot be used either).

In comparison to preprocessing times, querying time is in general neglectable.
It has been shown that NoHR scales reasonably well for query answering without
non-monotonic rules (only slowing down for memory-intensive cases), even for
over a million facts/assertions in the ABox, despite being slightly slower on
average for OWL QL in comparison to to the other cases, as part of the OWL
inferences is encoded in the rule translations directly, and adding rules scales
linearly for pre-processing and querying, even for an ontology with many negative
inclusions (such as DL-LiteR).

In addition, with respect to the database component, it has been shown that,
if the data is stored in a database and accessed directly during querying instead
of being loaded into memory in the form of facts or ontology assertions, prepro-
cessing time and memory consumption substantially reduces, in particular for
tuples of higher arity. In terms of querying, on average querying becomes slightly
slower, as the connection via ODBC adds an overhead to the query process. How-

32 M. Knorr

ever, if advanced mappings are used, which allow outsourcing certain joins over
data from XSB to the DBMS, then improvements of considerable margin can
be achieved, in particular when advanced database joins reduce the amount of
data that needs to be sent to XSB for reasoning.

7 Conclusions

In this course, we have provided an overview on the integration of Descrip-
tion Logic ontologies and nonmonotonic rules. For that purpose, we have first
recalled the two formalisms and reviewed in detail their characteristics and in-
herent differences. We have then discussed main criteria based on which such an
integration can be achieved and argued that often the right choice depends on
the application at hand. To illustrate these ideas, we have presented four con-
crete approaches and compared them with the help of these established criteria.
We note that many existing approaches were left out from our presentation. We
refer the interested reader to the references mentioned so far (e.g., [27, 62] pro-
vide detailed discussions of related work), as well as the material from previous
Reasoning Web lectures with a different focus [25, 50]. We have complemented
our considerations on different approaches for such an integration with a more
detailed description of one of the reasoning tools, NoHR, that comes with sup-
port for databases, robustness to inconsistencies, and fast interactive response
times (after a brief preprocessing period), even for larger knowledge bases.

There exists a lot of related work that rather than combining both formalisms
aims at combining open and closed world reasoning, by extending one of the two
base formalisms with some features from the other. Namely, there is a lot of
work on enriching DLs with nonmonotonic reasoning. Description Logics have
been extended with default logic [7], with modal operators [23, 49] similar to
those used in the rules of Hybrid MKNF KBs, circumscription [13, 51], as well
as defeasible logics [16], and rational closure [33]. On the other hand, rules have
been extended with existentials in the head, resulting in Datalog+− [17]. While
such rule are undecidable in general, a plethora of different restricted such rule
fragments has been defined (see, e.g., [8]) allowing to cover a considerable part of
the OWL 2 profiles, and for which answer sets semantics [58] and well-founded
semantics [35] have been defined.

For future work, considering dynamics in such combinations of DL ontolo-
gies and nonmonotonic rules building on previous work [72–74], in particular in
the presence of streams [11] and possibly incorporating heterogeneous knowl-
edge [22, 15] seems promising given the huge amounts of data and knowledge
that are being created with ever increasing speed and in a variety of formats,
for which knowledge-intensive applications are desirable that take advantage of
all that information. This certainly is an ambitious objective, but interesting
nonetheless.
Acknowledgements The author thanks Ricardo Gonçalves and the anonymous
reviewers for helpful feedback and acknowledges partial support by FCT projects
RIVER (PTDC/CCI-COM/30952/2017) and NOVA LINCS (UIDB/04516/2020).

On Combining Ontologies and Rules 33

References

1. Alberti, M., Knorr, M., Gomes, A.S., Leite, J., Gonçalves, R., Slota, M.: Norma-
tive systems require hybrid knowledge bases. In: van der Hoek, W., Padgham, L.,
Conitzer, V., Winikoff, M. (eds.) Procs. of AAMAS. pp. 1425–1426. IFAAMAS
(2012)

2. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF
knowledge bases. ACM Trans. Comput. Log. 14(2), 1–43 (2013)

3. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The ASP system DLV2. In: LPNMR. LNCS, vol. 10377, pp.
215–221. Springer (2017)

4. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 3rd edn. (2010)

6. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Procs. of IJCAI. pp. 364–369. Professional Book Center (2005)

7. Baader, F., Hollunder, B.: Embedding defaults into terminological representation
systems. Journal of Automated Reasoning 14, 149–180 (1995)

8. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables:
Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

9. Bajraktari, L., Ortiz, M., Simkus, M.: Combining rules and ontologies into clopen
knowledge bases. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Procs. of AAAI. pp.
1728–1735. AAAI Press (2018)

10. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log.
Program. 19/20, 73–148 (1994)

11. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70 (2018)

12. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
pp. 96–101 (May 2001)

13. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs.
Journal of Artificial Intelligence Research (JAIR) 35, 717–773 (2009)

14. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Else-
vier (2004)

15. Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., Pührer, J.: Re-
active multi-context systems: Heterogeneous reasoning in dynamic environments.
Artif. Intell. 256, 68–104 (2018)

16. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Principles
of klm-style defeasible description logics. ACM Trans. Comput. Log. 22(1), 1:1–
1:46 (2021)

17. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: A family of languages
for ontology querying. In: Datalog. LNCS, vol. 6702, pp. 351–368. Springer (2010)

18. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: Asp-core-2 input language format.
Theory Pract. Log. Program. 20(2), 294–309 (2020)

19. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational
databases. Semantic Web 8(3), 471–487 (2017)

34 M. Knorr

20. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. J. ACM 43(1), 20–74 (1996)

21. Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M.,
Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.T.,
Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) Procs. of ISWC.
LNCS, vol. 9366, pp. 569–586 (2015)

22. Dao-Tran, M., Eiter, T.: Streaming multi-context systems. In: IJCAI. pp. 1000–
1007. ijcai.org (2017)

23. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Transactions on Computational Logic 3(2), 177–225
(2002)

24. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model
building framework for answer set programming with external computations.
TPLP 16(4), 418–464 (2016)

25. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the
Semantic Web. In: Baroglio, C., Bonatti, P.A., Ma luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web: 4th International Summer School
2008, Venice, Italy, September 7-11, 2008, Tutorial Lectures. pp. 1–53. Springer
(2008)

26. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for
description logic programs in the Semantic Web. ACM Transactions on Computa-
tional Logic 12, 11:1–11:41 (January 2011)

27. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the Semantic Web. Artificial
Intelligence 172(12–13), 1495–1539 (August 2008)

28. Eiter, T., Simkus, M.: Linking open-world knowledge bases using nonmonotonic
rules. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Procs. of LPNMR. LNCS,
vol. 9345, pp. 294–308. Springer (2015)

29. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

30. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Prin-
ciples of Database Systems. pp. 1–10. ACM Press (1989)

31. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–650 (1991)

32. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

33. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: From propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

34. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)

35. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Equality-friendly well-
founded semantics and applications to description logics. In: AAAI. AAAI Press
(2012)

36. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Hencsey, G., White, B., Chen,
Y.R., Kovács, L., Lawrence, S. (eds.) Procs. of WWW. pp. 48–57. ACM (2003)

37. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge represen-
tation and reasoning system. Semantic Web journal (2011), to appear. Available
at http://www.semantic-web-journal.net/issues

On Combining Ontologies and Rules 35

38. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Working
Group Note 21 March 2013 (2013), available at https://www.w3.org/TR/sparql11-
query/

39. Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83 (2021)

40. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer (Second Edition). W3C (2012)

41. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

42. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Procs. of KR. pp. 57–67. AAAI Press (2006)

43. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules. In:
Alani, H., Kagal, L., Fokoue, A., Groth, P.T., Biemann, C., Parreira, J.X., Aroyo,
L., Noy, N.F., Welty, C., Janowicz, K. (eds.) Procs. of ISWC. LNCS, vol. 8218, pp.
216–231 (2013)

44. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with on-
tologies and rules. In: Yang, Q., Wooldridge, M.J. (eds.) Procs. of IJCAI. pp.
3098–3105. AAAI Press (2015)

45. Kasalica, V., Gerochristos, I., Alferes, J.J., Gomes, A.S., Knorr, M., Leite, J.: Telco
network inventory validation with nohr. In: Balduccini, M., Lierler, Y., Woltran,
S. (eds.) Procs. of LPNMR. LNCS, vol. 11481, pp. 18–31. Springer (2019)

46. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang,
J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of
the Eleventh International Conference, KR 2008, Sydney, Australia, September
16-19, 2008. AAAI Press (2008)

47. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: From polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automated Rea-
soning 53, 1–61 (2013)

48. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

49. Knorr, M., Hitzler, P., Maier, F.: Reconciling OWL and non-monotonic rules for the
semantic web. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P.,
Heintz, F., Lucas, P.J.F. (eds.) Procs. of ECAI. Frontiers in Artificial Intelligence
and Applications, vol. 242, pp. 474–479. IOS Press (2012)

50. Krisnadhi, A.A., Maier, F., Hitzler, P.: OWL and rules. In: Reason-
ing Web 2011, Springer Lecture Notes in Computer Science (2011),
http://knoesis.wright.edu/faculty/pascal/resources/publications/OWL-Rules-
2011.pdf, to appear

51. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep
it simple, stupid! Tech. rep., Wright State University (2011), available from
http://pascal-hitzler.de/resources/publications/GC-DLs.pdf

52. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2),
167–195 (2015)

53. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7, 499–562 (July 2006)

54. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J.,
Reiter, R. (eds.) Procs. of IJCAI. Morgan Kaufmann (1991)

36 M. Knorr

55. Lopes, C., Knorr, M., Leite, J.: Nohr: Integrating XSB prolog with the OWL 2
profiles and beyond. In: Procs. of LPNMR. LNCS, vol. 10377, pp. 236–249. Springer
(2017)

56. Lukumbuzya, S., Ortiz, M., Simkus, M.: Resilient logic programs: Answer set pro-
grams challenged by ontologies. In: AAAI. pp. 2917–2924. AAAI Press (2020)

57. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Proceedings of the
4th International Joint Conference on Automated Reasoning (IJCAR2008). pp.
179–193. No. 5195 in LNAI, Springer (2008)

58. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic
existential rules. In: IJCAI. pp. 1031–1038. IJCAI/AAAI (2013)

59. Minker, J., Seipel, D.: Disjunctive logic programming: A survey and assessment.
In: Essays in Honour of Robert A. Kowalski, Part I, LNAI 2407. Springer (2002)

60. Morgenstern, L., Welty, C., Boley, H., Hallmark, G. (eds.): RIF Primer (Sec-
ond Edition). W3C Working Group Note 5 February 2013 (2013), available at
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

61. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles (Second Edition). W3C (2012)

62. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5),
93–154 (2010)

63. Motik, B., Sattler, U., Studer, R.: Query-answering for OWL-DL with rules. Jour-
nal of Web Semantics 3(1), 41–60 (2005)

64. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: Rdfox: A
highly-scalable RDF store. In: International Semantic Web Conference (2). LNCS,
vol. 9367, pp. 3–20. Springer (2015)

65. Patel, C., et al.: Matching patient records to clinical trials using ontologies. In:
Aberer, K., Choi, K., Noy, N.F., Allemang, D., Lee, K., Nixon, L.J.B., Golbeck,
J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
Procs. of ISWC. LNCS, vol. 4825, pp. 816–829 (2007)

66. Redl, C.: The dlvhex system for knowledge representation: recent advances (system
description). Theory Pract. Log. Program. 16(5-6), 866–883 (2016)

67. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics 3(1), 41–60 (2005)

68. Rosati, R.: DL+Log: A tight integration of description logics and disjunctive data-
log. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Tenth International Conference
on the Principles of Knowledge Representation and Reasoning, KR’06. pp. 68–78.
AAAI Press (2006)

69. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (4th Edition).
Pearson (2020)

70. Schreiber, G., Raimond, Y. (eds.): RDF 1.1 Primer. W3C Working Group Note
24 June 2014 (2014), available at https://www.w3.org/TR/2014/NOTE-rdf11-
primer-20140624/

71. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semantics 5, 51–53 (2007)

72. Slota, M., Leite, J.: Towards closed world reasoning in dynamic open worlds. TPLP
10(4-6), 547–563 (2010)

73. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases.
TPLP 11(4-5), 801–819 (2011)

74. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of
ontologies and rules. Artif. Intell. 229, 33–104 (2015)

On Combining Ontologies and Rules 37

75. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. Web Sem.
27, 78–85 (2014)

76. Sterling, L., Shapiro, E.: The Art of Prolog - Advanced Programming Techniques,
2nd Ed. MIT Press (1994)

77. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
Theory Pract. Log. Program. 12(1-2), 157–187 (2012)

78. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8(2), 129–165 (2008)

79. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) In Proceedings of the International Joint Con-
ference on Automated Reasoning (IJCAR 2006). pp. 292–297. Springer (2006)

80. Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D.: Loop formulas for description logic
programs. Theory and Practice of Logic Programming 10(4–6), 531–545 (2010)

81. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-based data access: A survey. In: IJCAI. pp. 5511–5519.
ijcai.org (2018)

