
Towards Action Languages with Norms and Deadlines

Matthias Knorr Alfredo Gabaldon Ricardo Gonçalves João Leite Martin Slota

CENTRIA & Departamento de Informática
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract
Action Languages are simple logical formalisms to
describe the properties of a domain and the behav-
ior of an agent and to reason about it. They offer
an elegant solution to the frame problem, but are
inapt to reason with norms in which an obligation
deadline may require the agent to adapt its behav-
ior even though no action occurred. In this paper
we extend the Action Language A with features
that allow reasoning about norms and time in dy-
namic domains. Unlike previous extensions of Ac-
tion Languages with norms, our resulting language
is expressive enough to handle different kinds of
obligations with deadlines that explicitly refer to
time, as well as norm violations and contrary-to-
duty obligations.

1 Introduction
Open dynamic systems, e.g., systems interacting on the Web,
social systems and open agent communities, have attracted
increased attention in recent years. In these systems, con-
straints on the behavior of the participants cannot be hard-
wired in their specification. Instead, desirable properties
are promoted by normative systems [Esteva et al., 2001;
Boella and van der Torre, 2004; Boella et al., 2008; Alechina
et al., 2012; Bulling and Dastani, 2011; Sadiq et al., 2007].
Norms, when used to govern autonomous agents, do not sim-
ply act as hard constraints that prevent the agent from adopt-
ing some behavior, but rather provide an indication as to how
the agent should behave which, if not adhered to, can result
in the application of sanctions or other normative effects.

In general, norms can be seen as a specification of what is
expected to follow from a specific state of affairs, e.g., in the
form of obligations. There are obligations to-do, i.e., obli-
gations to execute an action before a deadline—e.g., to reply
within one day after receiving a request, or to register before
logging in; obligations to-achieve, i.e., obligations to bring
about, before the deadline, a state of the world in which some
proposition holds—e.g., to achieve a certain amount of cred-
its within the academic year; and obligations to-maintain, i.e.,
obligations to maintain a state of the world in which some
proposition holds until the deadline—e.g., to keep the con-
tract with your mobile phone company for one year.

One important characteristic of realistic systems of norms
is the prominent role of time and deadlines. Another feature
of complex systems of norms are reparative obligations, or
contrary-to-duty obligations [Carmo and Jones, 2002], i.e.,
obligations imposed as a consequence of the violation of
some other obligation—e.g., to pay a fine within 10 days if
the obligation to return an item by a deadline is violated.

Action Languages [Gelfond and Lifschitz, 1998] are sim-
ple logical formalisms for modeling dynamic systems, with
application in Artificial Intelligence, Robotics and Multi-
Agent Systems. A theory of an Action Language describes
the properties of a domain and the abilities of an agent, com-
pactly specifying a transition diagram containing all possible
trajectories of the system. Action Languages provide a sim-
ple and elegant solution to the frame problem and enable an
agent to encode the applicability of actions, their effects, de-
scribe complex interrelations between fluents and use auto-
mated planning to achieve some goal.

The combination of Action Languages and norms has re-
ceived some attention in the literature. The line of work
in [Craven and Sergot, 2008; Artikis et al., 2009] extends
action language C+ [Giunchiglia et al., 2004] for represent-
ing norms and institutional aspects of normative societies,
focusing on aspects such as power and count-as rules. In
[Gelfond and Lobo, 2008], an action language is extended
with propositions for specifying defeasible authorization and
obligation policies, but only obligations to-do are considered.
However, none of the previous approaches deals with explicit
time, deadlines or contrary-to-duty obligations. As it turns
out, existing Action Languages, and these extensions, cannot
capture the dynamics of deadlines because of the fundamen-
tal role they assign to physical actions, whose execution is
the only way to cause a state change. With the introduction of
norms with deadlines, and contrary-to-duty obligations, state
change needs to also be triggered by the violation of other
obligations, resulting from the expiration of the deadlines,
which cannot be encoded in existing Action Languages.

To address this limitation, in this paper, we extend the Ac-
tion LanguageA1 [Gelfond and Lifschitz, 1998] with features
that allow reasoning about norms and time in dynamic do-

1We restrict ourselves toA and focus on explaining the technical
details related to norms with explicit time deadlines, leaving more
expressive Action Languages for future work.

mains, resulting in the Normative Action Language AN and
a query language that can deal with

• obligations to-do, to-achieve and to-maintain;

• deadlines that explicitly refer to time;

• norm violations and satisfactions;

• contrary-to-duty obligations.

At the same time, our approach solves the frame problem
also for obligations and it is more amenable to implemen-
tation than other related work based on more complex for-
malisms (see related work in Sect. 4).

After introducing, in Sect. 2, the syntax and semantics of
our normative Action Language AN , illustrating its use, and
presenting some basic properties, in Sect. 3 we present a
query language for AN , discuss its complexity and equiva-
lence between theories in AN , before we conclude in Sect.
4.2

2 Normative Action Language AN
We introduce the syntax and semantics of AN , a simple lan-
guage for specifying norms, yet expressive enough to handle
different kinds of obligations with deadlines, their satisfaction
and violation, and contrary-to-duty obligations. We start from
the deterministic Action LanguageA [Gelfond and Lifschitz,
1998] whose semantics builds on transition systems in which
nodes correspond to states of the environment and edges cor-
respond to transitions between states and are labeled by the
action that causes the transition. To capture the meaning of a
set of norms, we extend this transition system by expanding
the states with a deontic component, and by adding a tempo-
ral dimension to transitions.

2.1 Syntax
Action Languages provide two disjoint, non-empty sets of
function-free first-order atoms3 defined over a given signa-
ture Σ = 〈P, C,V〉 of pairwise disjoint sets of predicates (P),
constants (C) and variables (V): a setA of elementary actions
and a set F of physical fluents. An action is a finite, possibly
empty subset of A and can be understood as a set of elemen-
tary actions that are executed simultaneously. If convenient,
we denote a singleton action {α } with the elementary action
α. Physical fluents f ∈ F and their negations ¬f form the set
of physical literals, used to represent states of the “world.”

To allow for deontic expressions, we extend the signature
Σ with sets of time points T and time variables Vt, resulting
in the deontic signature Σd = 〈P, C ∪ T ,V ∪ Vt〉. From now
on, we assume an arbitrary but fixed deontic signature Σd.

Both additions to the signature are related to time, and we
explain them in the following. The set of time points T rep-
resents the time domain, and we assume that T is a countable

2An extended version of the paper containing proofs can
be found at http://centria.di.fct.unl.pt/˜mknorr/
NRAC13.pdf.

3 In [Gelfond and Lifschitz, 1998], only the propositional case is
considered. We use function-free first-order atoms here to ease the
presentation of our formalization of time.

subset of non-negative real numbers, including 0, such as nat-
ural numbers N. The set of time variables Vt relates specifi-
cally to T in the same standard way as V relates to C, and we
reserve a special time variable now ∈ Vt which we always
associate with the time point representing the current time.

Both T and Vt are used to define time expressions, which
allow us to shift time points into the future by a specific
time interval. The set of time expressions T ∗ is defined as
T ∗ = T ∪ {V + c | V ∈ Vt ∧ c ∈ T }.4 Where convenient,
we simply abbreviate V + 0 by V .

We now introduce deontic literals to represent three types
of obligations: 1. obligations to-do, requiring that an action
be executed; 2. obligations to-achieve, requiring that a phys-
ical literal become true; 3. obligations to-maintain, requiring
that a physical literal remain true; all three strictly before a
specified deadline.5

Definition 1 (Deontic literal). Let A ⊆ A be a non-empty
action, l a physical literal, and t ∈ T ∗, called the deadline.
An obligation is of the following three forms:

• obligation to-do Od
t A;

• obligation to-achieve Oa
t l;

• obligation to-maintain Om
t l.

Obligations and their negations form the set of deontic liter-
als. The expression Ot l represents both Oa

t l and Om
t l.

Note that obligations to-achieve and to-maintain can be un-
derstood as dual: the intention for the former is to require that
literal l holds for (at least) one time point strictly in between
the introduction of the obligation and its deadline, and for
the latter that l holds for all time points from the time point of
the introduction until (immediately before) the deadline. This
will be accordingly reflected in the semantics later.

A literal is either a physical literal or a deontic literal. A
literal is ground if it contains no variables. Literals f and ¬f
are called complementary. The literal complementary to l is
denoted by l.

In Action Languages, only actions can cause state changes,
but the introduction of obligations with deadlines should al-
low a state change to be triggered also by the violation (V)
or the satisfaction (S) of obligations, resulting from the ex-
piration of their deadlines. Deontic events accommodate for
that.

Definition 2 (Event). Let d be an obligation. Deontic events
are expressions of the form Vd and Sd. An event is an action
or a deontic event.

We recall propositions in A and at the same time extend
them to include norms.

Definition 3 (Norm and normative specification). Let e be an
event, l a deontic or physical literal and, for all iwith 1 ≤ i ≤

4 Here we abuse the set of time points and time variables to also
represent time intervals. The expression V +c always represents the
addition of a time interval to a time point, or of two time intervals.

5 The restriction to non-inclusive deadlines is an arbitrary de-
cision and it would be reasonable to consider inclusive deadlines
instead, or even to introduce both types of deadlines. For simplicity,
we consider only non-inclusive deadlines.

http://centria.di.fct.unl.pt/~mknorr/NRAC13.pdf
http://centria.di.fct.unl.pt/~mknorr/NRAC13.pdf

n, li literals. A proposition n takes the following form:
e causes l if l1, . . . , ln . (1)

We say that e is the event of n, l the effect of n and l1, . . . , ln
its condition. If the condition is empty, we write (e causes l).
If l is a deontic literal, then n is a norm. If l is a physical lit-
eral, then e is an action, and all li in the condition are physical
literals.

A proposition is safe if every variable (different from now)
appearing in its effect also appears in its event or in an obli-
gation within its condition. A normative specification N is a
finite set of safe propositions of the form (1).
Intuitively, a norm of the form (1) adds or removes the obli-
gation specified by l if the event occurs and the condition is
satisfied. Also note that a proposition with physical literal l
matches a proposition inA [Gelfond and Lifschitz, 1998] and
the rationale for the applied restrictions is that normative in-
formation should not affect the physical world. This is indeed
the case and in line with the idea that obligations are meant
to represent only guidelines of desired behavior for an agent
(including penalties for non-compliance), unlike the line of
work in which obligations can be used to prohibit the execu-
tion of an action (see, e.g., [Cholvy, 1999]). Finally, safeness
of variables occurring in l prevents from the specification of
propositions with non-ground effects.6

Example 4. Consider a set of norms in a university library
scenario:

borrow(X) causes Od
now+4 ret(X) if ugrad (2)

borrow(X) causes Od
now+12 ret(X) if grad (3)

renew(X) causes Od
T+4 ret(X) if Od

T ret(X) (4)

renew(X) causes ¬Od
T ret(X) if Od

T ret(X) (5)

VOd
T ret(X) causes Od

now+1 pay (6)

VOd
T ret(X) causes Od

now+1 ret(X) if ugrad (7)

VOd
T ret(X) causes Od

now+3 ret(X) if grad (8)
Norms (2) and (3) specify that borrowing a book creates the
obligation to return that book within the period specified de-
pending on the student’s status (4 and 12 weeks for under-
graduate and graduate students respectively). A book may be
renewed for 4 more weeks, which means updating the obliga-
tion with the new deadline (4–5). Finally, a contrary-to-duty
norm specifies that, if a user fails to return the book on time,
a fine has to be paid within one week (6) and the book has to
be returned (7–8).

On different domains, an example of a norm with an
achievement obligation is that one has the obligation to
achieve 30 credits within the academic year, and an exam-
ple of a norm with a maintenance obligation is that one has
the obligation to maintain a contract with a mobile carrier for
(at least) 24 months.

enterAcademicYear causes Oa
now+12 sumCredits(30)

startMobileContract causes Om
now+24 mobileContract

6 A less restrictive condition could be applied to propositions
whose effect is a physical literal, but this would only affect the action
language which is not our major concern.

2.2 Semantics
The semantics of Action Language A is defined as a transi-
tion system T modeling the physical environment. A node
σ of T represents a possible physical state and a transition
〈σ,A, σ′〉 represents that state σ′ can be reached from σ by
executing action A. We extend such T with deontic features
and time to define the semantics of normative specifications
as follows. We augment states σ with deontic states δ and
we define when literals are satisfied in such a combined state
σ/δ. Next, we present a relation that captures how a deontic
event is caused by either reaching a deadline or due to an ex-
ecuted action. We proceed by specifying which positive and
negative normative effects are triggered in a state σ/δ when
executing an action A at time t w.r.t. N , using a Boolean
function ρA,t() in the former case to avoid introducing mean-
ingless obligations. This enables us to define a resulting new
deontic state and, subsequently, transitions and paths in the
resulting transition system TN .

Let N be a normative specification. The states of the tran-
sition system TN consist of two parts: a set of physical liter-
als representing the physical “world,” and a set of obligations
representing the deontic state of the agent. Additionally, we
require that obligations be part of the state only if they are not
immediately satisfied or violated.

Definition 5 (State of TN). Let σ be a complete and con-
sistent set of ground physical literals, i.e., for each ground
physical fluent f , exactly one of f and ¬f belongs to σ, and
δ a finite set of ground obligations. Then, σ/δ is a state of the
transition system TN if the following conditions are satisfied
for every physical literal l and deadline t: (Oa

t l /∈ δ or l 6∈ σ)
and (Om

t l /∈ δ or l ∈ σ). We call σ the physical state and δ
the deontic state.

Note that, unlike σ, δ is not complete, since it would be im-
practical to require that d or ¬d occur in δ for each d due to
the usually infinite set of time points T . This is also why we
consider a separate set δ and do not merge the two parts into
one.

To deal with the satisfaction of non-ground literals in a
state σ/δ, we introduce a variable assignment z as a function
mapping variables to constants (V → C) and time variables to
time points (Vt → T). For every time point t, we denote the
set of variable assignments z such that z(now) = t by Zt.
Hence, the index t in Zt is not merely notation, but defines
the value that is assigned to now.

For any literal or event λ, we denote by λ|z the lit-
eral or event obtained from λ by substituting every vari-
able according to z, and, subsequently, replacing ev-
ery time expression t + c with the time point t′ such
that t′ = t + c. E.g., Od

9 ret(book) is the result of(
Od

now+4 ret(X)
)∣∣
{X→book ,now→5 } .

Satisfaction for ground literals in a state σ/δ is defined as
follows for a physical literal l and a ground obligation d:

σ/δ |= l iff l ∈ σ ,

σ/δ |= d iff d ∈ δ ,

σ/δ |= ¬d iff d 6∈ δ .

Furthermore, given a variable assignment z, and a set of liter-
als L = {l1, . . . , ln}, we define σ/δ |= L|z iff for all i with
i ∈ { 1, . . . , n }, σ/δ |= li|z.

Each transition of TN is a tuple 〈σ/δ, (A, t), σ′/δ′〉, where
A is a ground action and t ∈ T a time point, meaning that
A occurred at time t, causing the transition from state σ/δ
to σ′/δ′. Since the physical effects are independent of the
deontic ones, we first define a relation RN that, for a given
N , associates each physical state σ and ground action A with
a new physical state σ′:

〈σ,A, σ′〉 ∈ RN iff σ′ = (σ ∪ EA(σ)) \
{
l | l ∈ EA(σ)

}
,

where EA(σ) stands for the set of all physical literals l|z
such that (e causes l if C) ∈ N and there is z ∈ Zt with
σ/δ |= C|z and e|z ⊆ A. If A = ∅, then σ′ = σ, which
allows us to handle deontic updates resulting from deadline
expirations at time points in which no action occurs. Note
that the requirement that σ′ be a physical state ensures that
〈σ,A, σ′〉 6∈ RN if A has contradictory effects in state σ.

We proceed by specifying how to obtain a new deontic
state. First, we define the conditions for the occurrence of
deontic events, which are satisfactions/violations of obliga-
tions occurring in the current deontic state δ w.r.t. the new
physical state σ′.
Definition 6 (Occurrence of deontic event). Let σ/δ be a
state of TN , A, B ground actions, 〈σ,A, σ′〉 ∈ RN and t,
t′ time points. The occurrence relation for ground deontic
events under action A at time t, `A,t, is defined for tuples
〈δ, σ′〉 as follows:

〈δ, σ′〉 `A,t VOd
t′ B iff Od

t′ B ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t VOa
t′ l iff Oa

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t SOm
t′ l iff Om

t′ l ∈ δ ∧ t ≥ t′

〈δ, σ′〉 `A,t SOd
t′ B iff Od

t′ B ∈ δ ∧ t < t′ ∧B ⊆ A
〈δ, σ′〉 `A,t SOa

t′ l iff Oa
t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

〈δ, σ′〉 `A,t VOm
t′ l iff Om

t′ l ∈ δ ∧ t < t′ ∧ l ∈ σ′

Additionally, εA,t(δ, σ′) = { e | 〈δ, σ′〉 `A,t e }.
The above conditions encode the dynamics of violations and
satisfactions, and depend on the type of obligation involved.
The first three represent events generated by a deadline ex-
piration. The last three represent events that occur before the
expiration of the respective deadline. Namely, either actionB
is executed (as part of A) at time t, or a state change affects
the literal l to be achieved (or cease to be maintained). We ex-
plain the latter case in more detail for an obligation to-achieve
l. Such an obligation can only be part of a state σ/δ if l ∈ σ.
If executing action A at time t introduces l, i.e., adds it to the
new state σ′ (and removes l), then an event occurs, which (as
we will see below) is used to trigger the removal of the cor-
responding obligation, but also possibly the introduction of
new obligations.

Before defining the normative effects of executing action
A at time t in state σ/δ, we need to introduce an auxiliary
function ρA,t(d, σ′) that determines whether, given σ′ with
〈σ,A, σ′〉 ∈ RN , an obligation d, which would be intro-
duced to the new deontic state, is relevant: ρA,t(d, σ′) = ⊥

if either (1) d is an obligation with deadline t′ ≤ t, (2)
d = Od

t′ B ∧ B ⊆ A, (3) d = Oa
t′ l ∧ l ∈ σ′, or (4)

d = Om
t′ l ∧ l ∈ σ′; otherwise ρA,t(d, σ′) = >. Condition

(1) matches the first part of Def. 6, while (2-4) matches the
second. We thus avoid the introduction of obligations that
would be satisfied/violated immediately, following the ratio-
nale to only consider obligations whose satisfaction can be
influenced by the agent’s behavior.

We now define the normative effects of executing an ac-
tion A at time t in a given state σ/δ. We say that an effect
of a norm is positive (negative) if it is an obligation (its nega-
tion). For each instance of a norm in N we need to evaluate
its condition in σ/δ, check whether the respective event is a
subset of action A or a deontic event, and, in case of the pos-
itive effects, check if the effect of the norm is an obligation
that is relevant (or can be safely ignored). The latter and the
check for deontic events occur w.r.t. the new physical state σ′
(obtained by executing A on σ) as already indicated.
Definition 7 (Normative effect). Let σ/δ be a state of TN ,
〈σ,A, σ′〉 ∈ RN , t a time point and d an obligation. The set
of positive normative effects E+

A,t(σ/δ, σ
′) and the set of neg-

ative normative effects E−A,t(σ/δ, σ
′) are defined as follows:

E+
A,t(σ/δ, σ

′) = { (d|z) | (e causes d if C) ∈ N ∧ ∃z ∈ Zt :

σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 `A,t e|z)
∧ ρA,t(d|z, σ′) };

E−A,t(σ/δ, σ
′) = { (d|z) | (e causes ¬d if C) ∈ N ∧ ∃z ∈ Zt :

σ/δ |= C|z ∧ (e|z ⊆ A ∨ 〈δ, σ′〉 `A,t e|z) }.

The new deontic state δ′ can now be computed from σ/δ by
first detecting which deontic events occur (and removing the
corresponding obligations), then adding the positive effects
of these events and finally removing their negative effects.
Definition 8 (New deontic state). Let σ/δ be a state of TN ,
〈σ,A, σ′〉 ∈ RN , t a time point and d an obligation. We
define G(Vd) = G(Sd) = d, for any set of deontic events E,
G(E) = {G(e) | e ∈ E } and the new deontic state

δ′ =
[
(δ \ G(εA,t(δ, σ′))) ∪ E+

A,t(σ/δ, σ
′)
]
\ E−A,t(σ/δ, σ

′).

Three consequences follow immediately: first, if an obliga-
tion is introduced and removed simultaneously by different
norms, then the removal prevails, following a generalization
of the in dubio pro reo principle; second, it may happen that
the occurrence of a deontic event removes some obligation,
which is immediately re-introduced in E+

A,t() if a correspond-
ing norm exists, such as for example if you pay a fine and,
at the same time, commit an offense that incurs in the same
penalty; and third, the frame problem for obligations is triv-
ially solved in this equation—whatever appears in δ and is
not removed on purpose, persists in δ′.

We show that σ′ and δ′ indeed form a state of TN .
Proposition 9. Let σ/δ be a state of TN , 〈σ,A, σ′〉 ∈ RN ,
and δ′ as defined in Def. 8. Then σ′/δ′ is a state of TN .

Furthermore, considering the definition of deontic events,
whenever a deadline of an existing obligation is reached, a

deontic event always takes place. A consequence of this ob-
servation is that a transition from σ/δ must not occur at a
time point that exceeds the deadline of some obligation in δ.
We define this time point as the earliest deadline among the
current obligations, or infinity if there are no obligations in δ.
Formally, let d(δ) = { t ∈ T | Ot l ∈ δ or Od

t B ∈ δ }. Then,
ltp(δ) = min(d(δ)) if d(δ) 6= ∅ and ltp(δ) =∞ if d(δ) = ∅.
Note that, since δ is assumed finite, this notion of least time
point is well-defined, i.e., if d(δ) 6= ∅, then ltp(δ) ∈ d(δ),
which, along with Proposition 9, allows us to define transi-
tions of TN :
Definition 10 (Transition). A transition of TN is a tuple
〈σ/δ, (A, t), σ′/δ′〉 where σ, δ, σ′, δ′ and A are as in Def. 8,
t is a time point s.t. t ≤ ltp(δ) and if A = ∅, then t = ltp(δ).
Example 11. The following are transitions of TN for Exam-
ple 4 in Sect. 2.1.

〈{ugrad}/∅, (borrow(b), 1), {ugrad}/{Od
5 ret(b)}〉

〈{ugrad}/{Od
5 ret(b)}, (ret(b), 4), {ugrad}/∅〉

〈{ugrad}/{Od
5 ret(b)}, (∅, 5), {ugrad}/{Od

6 pay ,Od
6 ret(b)}〉.

The tuple 〈{ugrad}/{Od
5 ret(b)}, (ret(b), 8), {ugrad}/∅〉 is

not a transition because ltp({Od
5 ret(b)}) = 5 � 8.

We can show that the transition system TN is deterministic.
Proposition 12. TN is deterministic, i.e., if
〈σ/δ, (A, t), σ′/δ′〉 and 〈σ/δ, (A, t), σ′′/δ′′〉 are transi-
tions of TN , then σ′/δ′ = σ′′/δ′′.

Now, a path is an alternating sequence of states in TN and
pairs (A, t) corresponding to the transitions of TN .
Definition 13 (Path). A path is a sequence of the form

σ0/δ0, (A1, t1), σ1/δ1, . . . , (An, tn), σn/δn , (9)

where σj/δj is a state of TN for every 0 ≤ j ≤ n,
〈σj/δj , (Aj+1, tj+1), σj+1/δj+1〉 is a transition of TN for
every 0 ≤ j < n, and tj < tj+1 for every 1 ≤ j < n.

The last condition states the assumption that the time points
in a path are ordered.

The satisfaction of an obligation to-do or to-achieve and the
violation of an obligation to-maintain always indicate some
relevant change w.r.t. the previous state.
Proposition 14. Let P be a path of the form (9).

If 〈δj−1, σj〉 `Aj ,tj SOd
t B, then B 6⊆ Aj−1 and B ⊆ Aj ;

if 〈δj−1, σj〉 `Aj ,tj SOa
t l, then l /∈ σj−1 and l ∈ σj ;

if 〈δj−1, σj〉 `Aj ,tj VOm
t l, then l ∈ σj−1 and l /∈ σj .

A symmetric result for the other three deontic events does
not hold, simply because these occur due to a deadline that is
reached with the progress of time.

3 Query Language and Equivalence
We now define a query language for AN that can be used to
check whether a certain literal/event occurs in a specific time
interval given a normative specification and a description of
the initial state. We consider decidability and complexity of
answering queries. Then, we also discuss equivalence be-
tween different normative specifications.

3.1 Syntax of the Query Language
A query language in the case of action languages usually
consists of statements describing initial conditions and state-
ments to query the domain description w.r.t. these initial con-
ditions. We adapt the notion of axioms for our purpose.
Definition 15 (Axiom). Let N be a normative specification
and l a ground physical literal or a ground obligation. An
axiom is of the form initially l. Given a set of axioms Γ, a
physical state σ in TN satisfies Γ if, for every physical literal
l, (initially l) ∈ Γ implies l ∈ σ.

Let δ be the set of obligations d such that (initially d) ∈ Γ.
A set of axioms Γ is an initial specification forN if, for every
physical state σ that satisfies Γ, σ/δ forms a state of TN . Such
states σ/δ are called initial w.r.t. Γ.
We thus specify that an initial specification forN aligns with
Def. 5, i.e., if Γ contains an axiom for an obligation to achieve
(maintain) l, then it must also contain an axiom for ¬l (l).
Note that a set of axioms may not fully specify the physical
state σ, i.e., there may be several states σ that satisfy Γ, hence
several initial states.

An action sequence is a finite sequence
((A1, t1), . . . , (Ak, tk)) such that, for all i with 1 ≤ i ≤ k,
Ai is a non-empty action, and t1, . . . , tk ∈ T with
0 < t1 < · · · < tk. Given an action sequence, queries are
defined as follows:
Definition 16 (Query). Let l be a deontic literal, a deontic
event—both without any occurrence of now—or a physical
literal, tα, tβ ∈ T with 0 ≤ tα ≤ tβ , and S an action se-
quence. A query is of the form l : [tα, tβ] : S.
Note that even though our query language is quite simple, it
is rather versatile and allows for expressive queries due to the
usage of variables in queries. Not only may we query for
non-ground fluents occurring in a certain time interval, such
as whether a user had some book in her possession, but also
whether there occurred any obligation or violation in a given
time interval without having to specify the deadline.

3.2 Semantics of the Query Language
The semantics of the query language is defined w.r.t. paths of
the transition system TN . First, we establish that a path P of
the form (9) satisfies an initial specification Γ for N if σ0/δ0
is an initial state relative to Γ. The idea is to restrict the paths
considered to answer a query to those which match the initial
specification.

Next, we link the action sequence in a query to a path by
matching each pair (Ai, ti) in the sequence to exactly one in
the path. All other actions in the path have to be empty, i.e.,
they occur due to deontic events.
Definition 17 (Satisfiability of an Action Sequence). Let S
be an action sequence (A′1, t

′
1), . . . , (A′k, t

′
k) and P a path of

the form (9). P satisfies S if there is an injective mapping
µ : {1, . . . , k} 7→ {1, . . . , n} (from S to P) such that

1. for each i with 1 ≤ i ≤ k, A′i = Aµ(i) and t′i = tµ(i),

2. for each j with 1 ≤ j ≤ n, if µ(i) 6= j for all i with
1 ≤ i ≤ k, then Aj = ∅.

Given the definition of action sequences and paths, if such
an injective mapping µ exists, then it is clearly unique, and
so is the path corresponding to an action sequence for a fixed
initial state.

To evaluate whether a certain literal or event holds while
executing a sequence of actions, we need to collect all states
that fall into the time interval [tα, tβ] given in the query. That
is, we collect the state at tα and all the states inside the in-
terval, or alternatively the final state in the path if the last
transition occurs before tα. In the former case, if there is
no action occurring precisely at tα, then we have to consider
the state prior to tα, because that is then the current state at
tα. Formally, given a path P of the form (9) and time points
tα ≤ tβ , we define the set s(P, [tα, tβ]) = {σi/δi | ti < tα <
ti+1} ∪ {σi/δi | tα ≤ ti ≤ tβ} ∪ {σn/δn | tn < tα}. Addi-
tionally, we want to ensure that only those paths are consid-
ered that cover the entire interval so that we do not miss any
states. Therefore, we define that path P reaches time point t
if either tn ≥ t or ltp(δn) =∞.

Finally, we can define how queries are evaluated.
Definition 18 (Query satisfaction). Let Q be a query of the
form l : [tα, tβ] : S, N a normative specification and Γ an
initial specification for N . Q is a consequence of Γ w.r.t. N ,
denoted by Γ |=N Q, if, for every path P that satisfies Γ and
S and that reaches tβ , there exists a variable assignment z
such that one of these conditions holds:
(a) for some σ/δ ∈ s(P, [tα, tβ]), σ/δ |= l|z if l is a literal;
(b) for some j with tα ≤ tj ≤ tβ , 〈δj−1, σj〉 `Aj ,tj e|z if l

is a deontic event.
Note that our definition of query satisfaction implies that if
the action sequence is not executable, then the query holds
automatically for all paths in the transition system satisfying
the conditions, simply because there are none. That is related
to the question of consistent action descriptions [Zhang et al.,
2002] and also implicit domain constraints [Herzig and Varz-
inczak, 2007; Thielscher, 2011], and we refer to the literature
for ways to avoid such problems.
Example 19. Recall Example 4 and Γ = {initially ugrad}:

Q1 = VOd
X ret(b) : [1, 8] : 〈(borrow(b) : 1), (ret(b) : 4)〉;

Q2 = Od
5 ret(Y) : [0, 4] : 〈(borrow(b) : 1)〉;

Q3 = ugrad : [0, 9] : 〈(borrow(b) : 1), (ret(b) : 4)〉.
We obtain that Γ 6|=N Q1, but Γ |=N Q2 and Γ |=N Q3.
We analyze decidability and computational complexity of

answering queries where we measure the input in the size of
the set of axioms Γ.
Theorem 20. Let Q be a query, N a normative specification
and Γ an initial specification for N . If the physical states in
TN are finite, then answering Γ |=N Q is decidable in coNP.
If Γ additionally fully specifies σ, then answering Γ |=N Q is
in P.

3.3 Equivalence
Equivalence is an important problem in the area of normative
systems. It can be used, for example, for simplifying norma-
tive systems, which usually tend to have redundant norms. In

our approach, we define equivalence of normative specifica-
tions w.r.t. the answers they provide to queries.

Definition 21 (Equivalence). We say that normative specifi-
cationsN1,N2 are equivalent if for every set of axioms Γ and
every query Q, Γ |=N1 Q if and only if Γ |=N2 Q.

We can show that two normative specifications being
equivalent is the same as them having the same transition sys-
tem.

Theorem 22. The following conditions are equivalent for any
normative specifications N1, N2:

1) N1, N2 are equivalent.

2) TN1 = TN2 .

3) The sets of paths of TN1 and of TN2 coincide.

A stronger notion of equivalence requires equivalence in
the presence of additional norms, important when modularly
analyzing subsets of norms of a larger system. Two strongly
equivalent subsets of a normative specification can be safely
replaced by one another.

Definition 23 (Strong equivalence). We say that normative
specificationsN1,N2 are strongly equivalent if for every nor-
mative specification N , N1 ∪N is equivalent to N2 ∪N .

Strong equivalence implies equivalence but not vice-versa.

Theorem 24. Let N1, N2 be normative specifications. If N1

is strongly equivalent toN2, thenN1 is also equivalent toN2,
but the converse implication does not hold.

4 Conclusions
We have extended Action Language A with features that al-
low reasoning about norms, time and deadlines in dynamic
domains. We have shown how our language can be used to
express norms involving obligations with deadlines that ex-
plicitly refer to time and actions, including obligations to-do,
to-achieve and to-maintain but also contrary-to-duty situa-
tions, which previous action languages and their extensions to
norms did not cover. We have defined a semantics for this lan-
guage and a query language along with its semantics. More-
over, we studied the complexity and equivalence of normative
specifications.

Notably, our framework may serve as a basis for intro-
ducing norms to other AI action formalisms where norms
with explicit time deadlines and contrary-to-duty obliga-
tions have received little consideration so far. Interesting
examples include the Event Calculus [Kowalski and Ser-
got, 1986], the Situation Calculus [Reiter, 1991], the Flu-
ent Calculus [Thielscher, 1999] and extensions of Dynamic
Logic [Harel, 1979] that have a solution to the frame prob-
lem [Zhang and Foo, 2001; Zhang and Foo, 2002; Castilho et
al., 2002; Demolombe et al., 2003].

Our query language can be used to define interesting plan-
ning problems, such as finding plans which prevent viola-
tions, or whose violations are within certain limits. Addi-
tionally, our language has important applicability in the de-
velopment of electronic institutions. Electronic institutions
are virtual entities that maintain, promote and enforce a set of

norms. They observe agent’s actions to determine norm vi-
olations (resp. satisfactions), e.g., to enforce sanctions (resp.
give rewards). Given its formal semantics, and its strong links
to dynamic systems,AN can be used as the language to spec-
ify and disseminate the norms and the query language used to
determine violations and satisfactions.

Related work on normative systems resulted in frame-
works that combine obligations and time. The proposals
in [Dignum and Kuiper, 1997; Dignum and Kuiper, 1998;
Broersen and Brunel, 2007; Balbiani et al., 2009], which
combine dynamic, deontic and temporal logic, have a rich
language, but they have difficulties in dealing with the frame
problem, relevant in the propagation of obligations that have
not been fulfilled yet [Broersen and Brunel, 2007], and with
dealing with contrary-to-duty obligations. Also, no axiomati-
zation exists for the proposals in [Dignum and Kuiper, 1997;
Dignum and Kuiper, 1998], and hence automatic reason-
ing is not possible, while the approaches in [Broersen and
Brunel, 2007; Balbiani et al., 2009] do not deal with actions.
In [Ågotnes et al., 2010], robustness of normative systems
is studied building on temporal logic, but neither deadlines
nor contrary-to-duty obligations are considered. The work
in [Governatori and Rotolo, 2011] aims at studying the dy-
namics of normative violations. However, without an explicit
representation of actions, they cannot properly deal with obli-
gations to-do, nor integrate the normative part of the system
with the dynamics resulting from the execution of actions
provided by Action Languages. Finally, in [Dastani et al.,
2012] the focus is set on an operational semantics to be able to
modify a normative system during runtime. Yet, there are no
time deadlines. Instead, deadlines are state conditions, which
may be an interesting extension of our work, but does not
cover the expressiveness provided by our formalism.

Our work opens several interesting paths for future re-
search. First of all, we would like to design an implemen-
tation. Of course, an encoding in ASP is always possible, but
perhaps more efficient solutions exist. We would also like
to extend the language with other deontic constructs such as
prohibition and permission. We already have some notion of
prohibition, since an obligation to-maintain ¬l can be seen
as a prohibition to bring about l, and some notion of permis-
sion, since the removal of an obligation to-maintain ¬l can
be seen as a weak permission to bring about l. On the other
hand, the counterpart of obligations to-do, forbidden actions,
has not been considered here. Accommodating forbidden
actions would require a new normative fluent Ft a meaning
that action a is forbidden until time t. Moreover, we may
consider extending our framework to more expressive Action
Languages, more complex deadlines, and actions with differ-
ent durations.

Acknowledgments We would like to thank the anonymous
reviewers whose comments helped to improve the paper.

Matthias Knorr, João Leite and Martin Slota were par-
tially supported by Fundação para a Ciência e a Tec-
nologia under project “ERRO – Efficient Reasoning with
Rules and Ontologies” (PTDC/EIA-CCO/121823/2010).
Matthias Knorr was also partially supported by FCT Grant

SFRH/BPD/86970/2012 and Ricardo Gonçalves by FCT
Grant SFRH/BPD/47245/2008.

References
[Ågotnes et al., 2010] Thomas Ågotnes, Wiebe van der

Hoek, and Michael Wooldridge. Robust normative sys-
tems and a logic of norm compliance. Logic Journal of the
IGPL, 18(1):4–30, 2010.

[Alechina et al., 2012] Natasha Alechina, Mehdi Dastani,
and Brian Logan. Programming norm-aware agents. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, volume 2 of
AAMAS ’12, pages 1057–1064. IFAAMAS, 2012.

[Artikis et al., 2009] Alexander Artikis, Marek Sergot, and
Jeremy Pitt. Specifying norm-governed computational so-
cieties. ACM Trans. Comput. Log., 10(1):1–42, 2009.

[Balbiani et al., 2009] Philippe Balbiani, Jan Broersen, and
Julien Brunel. Decision procedures for a deontic logic
modeling temporal inheritance of obligations. Electr.
Notes Theor. Comput. Sci., 231:69–89, 2009.

[Boella and van der Torre, 2004] Guido Boella and Leendert
W. N. van der Torre. Regulative and constitutive norms in
normative multiagent systems. In Didier Dubois, Christo-
pher A. Welty, and Mary-Anne Williams, editors, Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Ninth International Conference (KR2004),
Whistler, Canada, June 2-5, 2004, pages 255–266. AAAI
Press, 2004.

[Boella et al., 2008] Guido Boella, Leendert van der Torre,
and Harko Verhagen. Introduction to the special issue on
normative multiagent systems. Autonomous Agents and
Multi-Agent Systems, 17(1):1–10, 2008.

[Broersen and Brunel, 2007] Jan Broersen and Julien
Brunel. Preservation of obligations in a temporal and
deontic framework. In Edmund Durfee, Makoto Yokoo,
Michael Huhns, and Onn Shehory, editors, Autonomous
Agents and Multi-Agent Systems, page 177, 2007.

[Bulling and Dastani, 2011] Nils Bulling and Mehdi Das-
tani. Verifying normative behaviour via normative mecha-
nism design. In Proceedings of the Twenty-Second interna-
tional joint conference on Artificial Intelligence, volume 1
of IJCAI’11, pages 103–108. AAAI Press, 2011.

[Carmo and Jones, 2002] José Carmo and Andrew Jones.
Deontic logic and contrary-to-duties. In Dov Gabbay
and Franz Guenthner, editors, Handbook of Philosophical
Logic, volume 8, pages 265–343. Kluwer Academic Pub-
lishers, Dordrecht, Holland, 2002.

[Castilho et al., 2002] Marcos A. Castilho, Andreas Herzig,
and Ivan José Varzinczak. It depends on the context! a
decidable logic of actions and plans based on a ternary
dependence relation. In Salem Benferhat and Enrico
Giunchiglia, editors, NMR, pages 343–348, 2002.

[Cholvy, 1999] Laurence Cholvy. Checking regulation con-
sistency by using SOL-resolution. In ICAIL, pages 73–79,
1999.

[Craven and Sergot, 2008] Robert Craven and Marek Sergot.
Agent strands in the action language nC+. J. Applied
Logic, 6(2):172–191, 2008.

[Dastani et al., 2012] Mehdi Dastani, John-Jules Ch. Meyer,
and Nick A. M. Tinnemeier. Programming norm change.
Journal of Applied Non-Classical Logics, 22(1-2):151–
180, 2012.

[Demolombe et al., 2003] Robert Demolombe, Andreas
Herzig, and Ivan José Varzinczak. Regression in
modal logic. Journal of Applied Non-Classical Logics,
13(2):165–185, 2003.

[Dignum and Kuiper, 1997] Frank Dignum and Ruurd
Kuiper. Combining dynamic deontic logic and temporal
logic for the specification of deadlines. In HICSS (5),
pages 336–346, 1997.

[Dignum and Kuiper, 1998] Frank Dignum and Ruurd
Kuiper. Obligations and dense time for specifying
deadlines. In HICSS (5), pages 186–195, 1998.

[Esteva et al., 2001] Marc Esteva, Juan A. Rodrı́guez-
Aguilar, Carles Sierra, Pere Garcia, and Josep Lluı́s Arcos.
On the formal specifications of electronic institutions. In
Frank Dignum and Carles Sierra, editors, Agent Mediated
Electronic Commerce, The European AgentLink Perspec-
tive, volume 1991 of Lecture Notes in Computer Science,
pages 126–147. Springer, 2001.

[Gelfond and Lifschitz, 1998] Michael Gelfond and
Vladimir Lifschitz. Action languages. Electron.
Trans. Artif. Intell., 2:193–210, 1998.

[Gelfond and Lobo, 2008] Michael Gelfond and Jorge Lobo.
Authorization and obligation policies in dynamic systems.
In Maria de la Banda and Enrico Pontelli, editors, ICLP,
volume 5366 of Lecture Notes in Computer Science, pages
22–36. Springer, 2008.

[Giunchiglia et al., 2004] Enrico Giunchiglia, Joohyung
Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories. Artificial
Intelligence, 153(1):49–104, 2004.

[Governatori and Rotolo, 2011] Guido Governatori and An-
tonino Rotolo. Justice delayed is justice denied: Logics for
a temporal account of reparations and legal compliance. In
João Leite, Paolo Torroni, Thomas Ågotnes, Guido Boella,
and Leon van der Torre, editors, CLIMA, volume 6814
of Lecture Notes in Computer Science, pages 364–382.
Springer, 2011.

[Harel, 1979] David Harel. First-Order Dynamic Logic.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1979.

[Herzig and Varzinczak, 2007] Andreas Herzig and
Ivan José Varzinczak. Metatheory of actions: Be-
yond consistency. Artif. Intell., 171(16-17):951–984,
2007.

[Kowalski and Sergot, 1986] Robert Kowalski and Marek
Sergot. A logic-based calculus of events. New generation
computing, 4(1):67–95, 1986.

[Reiter, 1991] Raymond Reiter. The frame problem in the
situation calculus: A simple solution (sometimes) and
a completeness result for goal regression. In Vladimir
Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation, pages 359–380. Academic Press,
1991.

[Sadiq et al., 2007] Shazia Wasim Sadiq, Guido Governa-
tori, and Kioumars Namiri. Modeling control objectives
for business process compliance. In Gustavo Alonso, Peter
Dadam, and Michael Rosemann, editors, Business Process
Management, 5th International Conference, BPM 2007,
Brisbane, Australia, September 24-28, 2007, Proceedings,
volume 4714 of Lecture Notes in Computer Science, pages
149–164. Springer, 2007.

[Thielscher, 1999] Michael Thielscher. From situation cal-
culus to fluent calculus: State update axioms as a solution
to the inferential frame problem. Artificial intelligence,
111(1):277–299, 1999.

[Thielscher, 2011] Michael Thielscher. A unifying action
calculus. Artif. Intell., 175(1):120–141, 2011.

[Zhang and Foo, 2001] Dongmo Zhang and Norman Y. Foo.
EPDL: A logic for causal reasoning. In Bernhard Nebel,
editor, IJCAI, pages 131–138. Morgan Kaufmann, 2001.

[Zhang and Foo, 2002] Dongmo Zhang and Norman Y.
Foo. Interpolation properties of action logic: Lazy-
formalization to the frame problem. In Sergio Flesca, Ser-
gio Greco, Nicola Leone, and Giovambattista Ianni, edi-
tors, JELIA, volume 2424 of Lecture Notes in Computer
Science, pages 357–368. Springer, 2002.

[Zhang et al., 2002] Dongmo Zhang, Samir Chopra, and
Norman Y. Foo. Consistency of action descriptions. In
Mitsuru Ishizuka and Abdul Sattar, editors, PRICAI, vol-
ume 2417 of Lecture Notes in Computer Science, pages
70–79. Springer, 2002.

	Introduction
	Normative Action Language AN
	Syntax
	Semantics

	Query Language and Equivalence
	Syntax of the Query Language
	Semantics of the Query Language
	Equivalence

	Conclusions

