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Abstract. A rapidly increasing amount of data, information and knowl-
edge is becoming available on the Web, often written in different formats
and languages, adhering to standardizations driven by the World Wide
Web Consortium initiative. Taking advantage of all this heterogeneous
knowledge requires its integration for more sophisticated reasoning ser-
vices and applications. To fully leverage the potential of such systems,
their inferences should be accompanied by justifications that allow a
user to understand a proposed decision/recommendation, in particular
for critical systems (healthcare, law, finances, etc.). However, determin-
ing such justifications has commonly only been considered for a single
formalism, such as relational databases, description logic ontologies, or
declarative rule languages. In this paper, we present the first approach
for providing provenance for heterogeneous knowledge bases building on
the general framework of multi-context systems, as an abstract, but very
expressive formalism to represent knowledge bases written in different
formalisms and the flow of information between them. We also show un-
der which conditions and how provenance information in this formalism
can be computed.
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1 Introduction

A rapidly increasing amount of data, information and knowledge is becoming
available on the Web, driven by the Semantic Web initiative led by the World
Wide Web Consortium (W3C).1 A number of language standards have been
established in this initiative and to take advantage of all this available knowledge
often requires their integration. This is particularly true for (but not limited to)
integrations of rule languages, e.g., under answer set semantics [4] and ontology
languages based on description logics [1], that are both highly expressive, but
with orthogonal/complementary characteristics and modelling features (see, e.g.,
[12, 24, 21, 23] and references therein).
1 https://www.w3.org/
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However, in the course of the integration of such heterogeneous knowledge, it
becomes increasingly difficult to trace the causes for a certain inference, or find
the justification for some proposed decision, in particular, if the pieces of knowl-
edge originate from different authors. It would therefore be important to provide
methods that accompany inferences/decisions with explanations/justifications in
a way a user can understand to allow for the validation of reasoning results, in
particular for critical systems (healthcare, law, finances, etc.).

This has been recognized in different areas of Artificial Intelligence, and for
several Knowledge Representation and Reasoning formalisms, the problem of
finding justifications has been considered. In particular, a lot of work has focussed
on tracing the origins of derivations, commonly under the name of provenance [5],
e.g., in relational databases and Datalog [18, 19], Logic Programming [8], Answer
Set Programming [13], Description Logics ontology languages [20, 6, 2], as well
as in SPARQL [7] and data streams [16]. Yet, provenance for heterogeneous
knowledge bases has mostly been ignored, with the exception of [10], though
limited to two very restricted settings.

In this paper, we investigate provenance for heterogeneous knowledge bases,
utilising multi-context systems (MCSs) [3] as our formalism of choice. MCSs
allow for the integration of a large variety of logic-based formalisms, and model
the flow of information between them. They cover very general approaches for
integrating ontologies and rules [22], thus allowing to study provenance in a
more general manner, which then paves the way towards provenance in related
approaches in the literature. We focus on providing justifications of inferences
(the only question that has been handled in the literature are explanations of
inconsistencies when repairing inconsistent multi-context systems [11], which is
inherently different). Our contributions can be summarized as follows:

– We develop the first general approach for provenance in heterogeneous knowl-
edge bases, and in multi-context systems in particular, annotating inferences
with their justifying provenance information.

– We provide means to compute this provenance information annotating mod-
els, so-called equilibria, in MCSs.

– We establish under which conditions this provenance information can indeed
be computed, showing its applicability to a wide class of formalisms.

The remainder of the paper is structured as follows. We recall notions on
provenance semirings in Sect. 2. Then, in Sect. 3, we introduce provenance multi-
context systems as a non-trivial extension of MCSs. In Sect. 4, we show how and
when model notions for such provenance MCSs can be computed and provide
considerations on complexity, before we conclude in Sect. 5.

2 Provenance Semirings

In the context of databases, commutative semirings have been introduced as a
means of representing provenance information [18, 19], such as providing infor-
mation regarding what combination of tuples in a database certain query results
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were obtained from. Subsequently, commutative semirings have been adopted
for representing provenance information in a wide variety of different logic for-
malisms and it has been shown that they cover other related approaches in
the literature, such as finding minimal explanations/justifications [15]. They are
thus well-suited to capture provenance information in formalisms composed of
knowledge bases written in different (knowledge representation) languages, and
we recall the main notions here.

A commutative semiring is an algebraic structure K = (K ,⊕K,⊗K, 0K, 1K)
where ⊕K and ⊗K are commutative and associative binary operators over a set
K , called the annotation domain of K. The operators ⊕K and ⊗K have neutral
elements 0K and 1K, respectively, where ⊗K distributes over ⊕K, and 0K is an
annihilating element of ⊗K. This allows the definition of functions (so-called K-
relations) that map tuples (in the case of databases) to annotations over K such
that only finitely many tuples are annotated with a value different from 0K.

As an example in the case of databases, we may consider a commutative
semiring where each tuple in any given table is annotated with an annotation
name. Then, the annotations of query results correspond to the combinations
of these annotations names, i.e., those corresponding to tuples, using ⊕K to
represent alternatives and ⊗K to represent the join of tuples.

This idea is captured in general in the provenance polynomials semiring
N[X] = (N[X],+,×, 0, 1) where polynomials over annotation variables X are
used with natural number coefficients and exponents over these variables. Other
relevant semirings in the literature can be obtained from it by introducing addi-
tional properties on the operations such as idempotence on + and/or ×, or ab-
sorption, giving rise to a hierarchy of semirings [19]. Several such semirings have
been used for notions of provenance in different logic-based formalisms (e.g., [6,
2], and also [15] for further references). Among these semirings, N[X] is the most
general one and universal, in the sense that for any other commutative semiring
K, a semiring homomorphism can be defined, allowing the computations for K
to be done in N[X].

Monus semirings or m-semirings [14] extend such commutative semirings by
adding natural orders �K, which are partial orders that order elements of the
annotation domain based on the ⊕K operation, namely, k1 �K k2 if there exists
k3 such that k1 ⊕K k3 = k2. The monus operation k1 	K k2 then refers to the
unique smallest element k3 in such a partial order such that k2⊕Kk3 �K k1. This
allows capturing negation and has been generalized to recursive Datalog queries
and logic programs under different semantics [8] using a semiring that utilizes
boolean formulas over two sets of variables – positive facts and their negations.
Similar ideas have been applied to handle semiring provenance for First-Order
Logic [25, 17], utilizing first-order formulas in negation normal form.

3 Provenance Multi-Context Systems

Multi-context systems (MCSs) [3] are defined as a collection of components,
so-called contexts, each of which allows one to represent knowledge in some
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logic-based formalism. Each such logic is associated with a set of well-formed
knowledge bases in the logic (its admitted syntax), possible belief sets, indicat-
ing how models are defined in this logic (its admitted semantics), and a function
assigning to each possible knowledge base a set of acceptable such belief sets.
MCSs use so-called bridge rules that allow one to model the flow of informa-
tion between these contexts, in the sense that they admit the incorporation of
knowledge in one context based on the beliefs considered true in other contexts.
The semantics of MCSs is then assigned using equilibria that take the acceptable
belief sets and the interaction between contexts into account.

In this section, we introduce provenance multi-context systems that extend
MCSs with the means to explain inferences obtained from the modular inte-
gration of its contexts. Here, rather than recalling first MCSs and then intro-
duce their extension, to not unnecessarily burden the presentation with partially
repetitive technical definitions, we introduce provenance multi-context systems
right away clarifying in the course of this introduction how and where our notion
extends the previous one.

The first important question is how provenance should be represented in such
a modular framework. Given that different notions of provenance have been in-
troduced for different logical formalisms, with varying granularity of the provided
provenance information, our objective is to maintain the modular character of
MCSs, and admit that possibly different notions of provenance be used in each of
the contexts, and provide provenance annotations for inferences in the contexts
taking into account provenance information from other contexts via bridge rules.

We start by defining the set of variables allowed to be used as annotations. To
account for possibly varying algebras in different contexts with differing binary
operators, we introduce a number of different annotation languages Vi, each
intended to correspond to one of the contexts, that can be interleaved by means
of one particular language V∗, which is meant to correspond to the integration
of information in bridge rules between contexts.

Definition 1. Let N = N∗ ∪
⋃

Ni be a countably infinite set of names and
Σ = Σ∗∪

⋃
Σi be a countably infinite set of binary operators such that, for all i,

all Ni are mutually distinct, N∗ ∩Ni = ∅, and N ∩Σ = ∅. The set of annotation
variables V = V∗ ∪

⋃
Vi is defined inductively for all i with 1 ≤ i ≤ n :

(1) Ni ⊆ Vi;
(2) (v1 ◦ v2) ∈ Vi for v1, v2 ∈ Vi and ◦ ∈ Σi;
(3) (r ◦ v1 ◦ · · · ◦ vm) ∈ V∗ for r ∈ N∗, for all k, 1 ≤ k ≤ m, vk ∈ Vi for some

i, ◦ ∈ Σ∗, and m ≥ 0;
(4) V∗ ⊆ Vi.

Condition (1) specifies that names intended to annotate formulas are valid anno-
tation variables within the respective sublanguage. Then, condition (2) indicates
how to obtain complex annotations within each of the defined sublanguages. Con-
dition (3) defines that annotation variables in the language V∗ are composed of
one name from N∗ and 0 or more annotations from the other languages, which
is intended to represent the composition of annotations vk within a bridge rule
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(as defined in the following). Finally, condition (4) admits that annotations from
V∗ be used in the other annotation languages.

Note that names, which are meant to be used to identify formulas in indi-
vidual contexts, are distinct, while operators may overlap in between different
Σi, and between Σ∗ and different Σi, to account for the possibility that different
contexts may use the same provenance formalism.

Based on this, we can introduce provenance logics as a means to capture a
large variety of formalisms that allow tracing the reasons for inferences, thus
generalizing the logics of MCSs as described in the beginning of this section.

Definition 2. A provenance logic L is a tuple (K,KB,BS,ACC) where
(1) K is a commutative semiring over polynomials over some Vi with ⊕K,⊗K ∈

Σi, and a natural order �K;
(2) KB is the set of well-formed knowledge bases of L such that each kb ∈ KB

is a set composed of formulas distinctly annotated with elements from Vi;
(3) BS is the set of possible annotated belief sets, i.e., functions that map beliefs

from the set of possible beliefs BL of L to Vi, such that false beliefs are
mapped to 0K;

(4) ACC : KB→ 2BS is a function describing the semantics of L by assigning
to each knowledge base a set of acceptable annotated belief sets.

In comparison to logics for MCSs [3], provenance logics include a commutative
semiring K and formulas in knowledge bases are in addition annotated according
to one of the languages Vi (see Def. 1). Also, the idea of possible belief sets from
MCSs is extended in that sets of annotated beliefs are used. I.e., rather than
using sets of beliefs that are meant to be true, sets of beliefs with their corre-
sponding annotations are considered. The function ACC then assigns semantics
to knowledge bases by associating them with acceptable annotated belief sets.

Note that some approaches in the literature assign polynomials to beliefs that
are not true, e.g., to account for possible changes so that something becomes true,
but here, for the sake of generality and in the spirit of MCSs, we omit this, and
focus on determining the provenance of true elements.

Example 1. We present some example provenance logics.
– Ldb – Databases with provenance under bag semantics [18]:
• Kdb: N[X];
• KBdb: the set of annotated databases together with queries expressed in

an appropriate query language, such as Datalog;
• BSdb: the set of sets of atoms with annotations;
• ACCdb(kb): the set of tuples in kb and query results over db with their

annotation according to Kdb;
– Ldl – Description Logic ELHr [2]:
• Kdl: Trio[X], i.e., N[X] with idempotent ×;
• KBdl: set of well-formed annotated ELHr ontologies;
• BSdl: the set of sets of annotated atomic inferences;
• ACCdl(kb): the set of atomic inferences from kb with their annotation

according to Kdl;
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– Llp – Normal logic programs under answer set semantics (adapted from [8]):
• Klp: PosBool[X], i.e., N[X] with idempotent + and × and absorption

on +, over positive atoms;
• KBlp: the set of annotated normal logic programs;
• BSlp: the set of sets of atoms with annotations;
• ACClp(kb): the answer sets of kb with annotations according to Klp;

Similar to MCSs, bridge rules are used to specify how knowledge is transferred
between the different components, but here we also have to take provenance
information into account.

Definition 3. Given a collection of provenance logics L = 〈L1, . . . , Ln〉, an Li-
bridge rule over L, 1 ≤ i ≤ n, is of the form:

π@s← (r1 : p1), . . . , (rj : pj), (1)
not (rj+1 : pj+1), . . . ,not (rm : pm)

where π ∈ N∗ and, for 1 ≤ k ≤ m, 1 ≤ rk ≤ n and pk ∈ BLrk
, and, for

each kb ∈ KBi, kb ∪ {v@s} ∈ KBi for every v ∈ V∗. We refer with H(π) and
B(π) to the head and the body of the bridge rule, respectively. A bridge rule is
called monotonic if it does not contain elements of the form not (r : p), and
non-monotonic otherwise.

Note that each of the rk refer to one of the logics and the beliefs pk belong to
the corresponding set of possible beliefs BLrk

of logic Lrk (cf. (3) of Def. 1).
Also note that π is the annotation name of the bridge rule itself, whereas v
is an annotation variable associated to the bridge rule head s, intended to be
incorporated into the knowledge base kbi, such that v takes the annotations
of the bridge rule elements into account (as made precise when we define the
semantics).

With this in place, we can introduce provenance multi-context systems.

Definition 4. A provenance multi-context system (pMCS) is a collection of
contextsM = 〈C1, . . . , Cn〉 where Ci = (Li, kbi, br i), Li = (Ki,KBi,BSi,ACCi)
is a provenance logic, kbi ∈ KBi a knowledge base, and br i is a set of Li-bridge
rules over 〈L1, . . . , Ln〉.

We assume that the annotations used for the elements occurring in the individual
kbi are unique elements from Ni, and that each context uses a different set
of annotations Vi. Also, while different forms of specifying the annotations of
formulas can be found in the literature, here we use uniformly the notation
introduced for bridge rules, i.e., the annotation is given in front of a formula
with @ as separator.

Example 2. Consider M = 〈C1, C2, C3〉 such that:
– C1 is a database context with Ldb, kb = {d1@p(1, 1), d2@p(1, 2)} with a

single relation p/2 with two tuples, br1 = ∅, and query q defined by q(x, y)←
p(e, x), p(e, y);
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– C2 a DL context with Ldl, kb2 = {o1@A v B}, and
br2 = {b1@A(w)← not (3 : l)};

– C3 an ASP context with Llp, kb3 = {r1@l← not m, n}, and
br3 = {c1@n← (1 : q(1, 1)), c2@m← (2 : B(w))}.

As C1 has no bridge rules, we obtain ACCdb(kb1) = {S1} with S1(p(1, 1)) = d1,
S1(p(1, 2)) = d2, S1(q(1, 1)) = d21, S1(q(1, 2)) = S1(q(2, 1)) = d1 × d2, and
S1(q(2, 2)) = d22. For both kb2 and kb3, ACCi(kbi) = {Si} with Si mapping
every atomic inference/atom to 0 (as the bridge rules are not considered for the
semantics of individual contexts).

We now turn to the semantics of pMCSs. We first introduce belief states that
contain one possible annotated belief set for each context and serve as suitable
model candidates.

Definition 5. Let M = 〈C1, . . . , Cn〉 be a pMCS. A belief state of M is a
collection S = 〈S1, . . . , Sn〉 such that each Si is an element of BSi.

We next identify specific belief states, called equilibria, that take bridge rules
into account for determining acceptable belief states, similar to MCSs. We adapt
this with annotations building on the algebraic approach for non-monotonic rules
[8] to pass annotation information via bridge rules. The main idea is to use
annotations from V∗ assuming the existence of distinct negative names (using
not ) in the respective Ni, one per negated pk with j+1 ≤ k ≤ m for bridge rules
of the form (1). This is necessary as we assume that false beliefs are annotated
with 0K, thus no annotations exist for such negations.

We first fix the commutative semiring for bridge rules.

Definition 6. The commutative semiring for bridge rules BR is defined as
PosBool[V∗], for ∧,∨ ∈ Σ∗, with idempotent meet (∧) and join (∨), absorp-
tion on ∨, and logical consequence as natural order, i.e., k1 �BR k2 iff k1 |= k2.

We can now define when a bridge rule is applicable in a belief state, namely
when the beliefs in the rule body hold true for positive elements and false for
negative elements.

Definition 7. Let M = 〈C1, . . . , Cn〉 be a pMCS and π an Li-bridge rule over
L of form (1). Then π is applicable in a belief state S, denoted S |= B(π), iff
(1) for 1 ≤ k ≤ j, Srk(pk) = n for some annotation n 6= 0;
(2) for j + 1 ≤ k ≤ m, Srk(pk) = 0.

As false elements are annotated with 0, we can use the annotations corresponding
to beliefs being false in the annotations of the inferred/added bridge rule heads.
This allows us to define equilibria.

Definition 8. LetM = 〈C1, . . . , Cn〉 be a pMCS. A belief state S = 〈S1, . . . , Sn〉
of M is an equilibrium if, for all i with 1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ { v@H(π) | π ∈ br i and S |= B(π) })
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where the annotation of H(π), v, is defined over all πl ∈ br i with H(πl) = H(π)
such that S |= B(πl) as:

v =
∨
πl ∧ v1 ∧ . . . ∧ vj ∧ not pj+1 ∧ . . .not pm

such that, for 1 ≤ k ≤ j, Srk(pk) = vk.

Hence, a belief state S is an equilibrium if, for each context, the corresponding
annotated belief set is acceptable for the knowledge base of the context enhanced
with the heads of those bridge rules of the context that are admissible in S. The
corresponding annotations for bridge rule heads are constructed as representa-
tions of the alternative provenance information (via disjunction) resulting from
different bridge rules with the same head. Before we explain the reason for that,
we consider an example without bridge rules with the same head.

Example 3. Consider M from Ex. 2. Since C1 does not contain bridge rules, S1

is fully determined in Ex. 2. Then, by the first rule in br3, we have that S3(n) =
c1∧d21. If the other rule in br3 is not applicable, then S3(l) = r1×3(c1∧d21) holds.
In this case, the only bridge rule in br2 is not applicable, thus B(w) cannot be
inferred from C2 which ensures that the second rule in br3 is not applicable.
In fact, together with S2 mapping every atomic inference to 0, we obtain an
equilibrium.

We next provide an example showing that absorption on disjunctions is nec-
essary to ensure the existence of equilibria.

Example 4. Consider M = 〈C1〉 with L1 = Llp, kb1 = {n@q}, br1 = {r1@p ←
(1 : p), r2@p ← (1 : q)}. Then, S = 〈S1〉 with S1(q) = n and S1(p) = r2 ×1 n is
an equilibrium ofM . Note that both bridge rules are applicable in S, so without
absorption, v would be (r2×1n)∨(r1×1 r2×1n) and no equilibrium would exist.

One could argue that this problem can be avoided by not joining disjunctively
the provenance information for bridge rules with the same head and by passing
several bridge rule heads with differing provenance information. But this requires
that absorption be present in the target context’s provenance notion, and since
this cannot be guaranteed, nor do we want to impose it as an additional restric-
tion, we deem the solution where absorption is resolved on the level of bridge
rules the most suitable one.

We also illustrate that idempotency of ∧ is required.

Example 5. Take M = 〈C1〉 with L1 = Llp, kb1 = {}, br1 = {r@p ← (1 : p)}.
Then, S = 〈S1〉 with S1(p) = 0 and S′ = 〈S1〉 with S1(p) = r×1 p are equilibria
of M . Note that r is applicable in S′ and without idempotency of ∧, v would be
r ×1 r ×1 p, i.e., S′ would not be an equilibrium.

One may wonder whether S′ indeed should be an equilibrium, since the truth
of p relies on self-support using the bridge rule, i.e., we would be interested in
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minimal equilibria. Formally, an equilibrium S is minimal if there is no equi-
librium S′ = 〈S′1, . . . , S′n〉 such that S′i �Ki

Si for all i with 1 ≤ i ≤ n and
S′j ≺Kj Sj for some j with 1 ≤ j ≤ n. However, it has been shown [3] that
equilibria in MCSs are not necessarily minimal due to cyclic dependencies as in
Ex. 5, and this carries over to pMCSs.

Still, we can show that equilibria of pMCSs are faithful with equilibria of
MCSs as well as the provenance annotations in individual formalisms in the
following sense.

Proposition 1. Let M = 〈C1, . . . , Cn〉 be a pMCS and M ′ the MCS obtained
from M by omitting all semirings K and all annotations from M , and, in each
logic, replace the annotated belief sets by the set of beliefs not mapped to 0.
1. For context Ci in M with br i = ∅ and equilibrium S of M , Si ∈ ACCi(kbi).
2. If S is an equilibrium of M , then S′ is an equilibrium of M ′ with S′i = {b |

Si(b) 6= 0}.
The converse of 2. does not hold in general because we require a method to
determine the provenance annotations corresponding to equilibria of MCSs. In
the next section, we investigate how and under which conditions such equilibria
together with their provenance information can be effectively determined.

4 Grounded Equilibria

Building on material developed for MCSs [3], we introduce a restriction of
pMCSs, called reducible pMCSs, for which minimal equilibria can be computed.
To this end, we first consider definite pMCSs, a further restriction similar in
spirit to definite logic programs, where reasoning is monotonic and where a
unique minimal equilibrium exists.

We start with monotonic logics, where ACC is deterministic and monotonic.
Formally, a logic L = (K,KB,BS,ACC) is monotonic if (1) ACC(kb) is a
singleton set for each kb ∈ KB, and (2) S �K S′ whenever kb ⊆ kb′, ACC(kb) =
{S }, and ACC(kb′) = {S′ }.

This excludes non-monotonic logics, but many of them are reducible, namely,
if for some KB∗ ⊆ KB and some reduction function red : KB×BS→ KB∗:
(1) the restriction of L to KB∗ is monotonic, and
(2) for each kb ∈ KB, and all S, S′ ∈ BS:

(a) red(kb, S) = kb whenever kb ∈ KB∗,
(b) red(kb, S) ⊆ red(kb, S′) whenever S′ � S, and
(c) S ∈ ACC(kb) iff ACC(red(kb, S)) = {S }.

This is adapted from MCSs, and inspired by the Gelfond-Lifschitz reduction
for logic programs, indicating that (a) reduced kbs do not need to be reduced
any further, (b) red is antitonic, and (c) acceptable annotated belief sets can be
checked based on red . Note that the latter condition implies that the annotations
are determined based on the reduced knowledge base.

This is generalized to contexts that are reducible, namely, if their logic is re-
ducible, and if the reduction function is not affected by the addition of annotated
bridge rule heads. Formally, a context Ci = (Li, kbi, br i) is reducible if
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– its logic Li is reducible and,
– for all belief sets Si and all H ⊆ { v@H(π) | π ∈ br i, v ∈ Vi }:

red(kbi ∪H,Si) = red(kbi, Si) ∪H.
A pMCS is reducible if all of its contexts are.

It has been argued that a wide variety of logics is reducible [3]. Thus, reducible
pMCSs admit the integration of a wide variety of logical formalisms provided
the provenance notion fits or can be adjusted to the semiring requirements in
Def. 2 and annotations can be determined based on reduced kbs, which arguably
is the case for many KR formalisms.

We can now determine definite pMCSs as follows. A reducible pMCS M =
〈C1, . . . , Cn〉 is definite if
1. all bridge rules in all contexts are monotonic,
2. for all i and all S ∈ BSi, kbi = red i(kbi, S).
Thus, in definite pMCSs, bridge rules are monotonic and knowledge bases are
already in reduced form. Therefore, its logics are monotonic, ACCi(kbi) is a
singleton set, and the ACCi themselves are monotonic. Hence, reasoning is
montonic, and a unique minimal equilibrium exists.

Definition 9. Let M be a definite pMCS. A belief state S of M is the grounded
equilibrium of M , denoted by GE(M), if S is the unique minimal equilibrium of
M .

This unique equilibrium of a pMCS M = 〈C1, . . . , Cn〉 can be computed as
follows. For 1 ≤ i ≤ n, kb0

i = kbi and for each sucessor ordinal α+ 1,

kbα+1
i = kbαi ∪ {v@H(π)|π ∈ br i ∧ Eα |= B(π)}

where Eα = (Eα1 , . . . , E
α
n ), ACCi(kbαi ) = {Eαi }; and v defined as in Def. 8, and

for limit ordinal α, kbαi =
⋃
β≤α kbβi . Furthermore, let kb∞i =

⋃
α>0 kbαi .

Essentially, we start with the set of given knowledge bases and E0 corresponds
to the belief state resulting from M without the bridge rules. The iteration
then stepwise checks based on the current belief state which bridge rules are
applicable, enhancing the knowledge bases which in turn increases the annotated
belief sets in the iteration of Eα, based on which further bridge rules become
applicable, until a fixpoint is reached. This indeed yields the unique grounded
equilibrium.

Proposition 2. Let M be a definite pMCS. Then, belief state S = (S1, . . . , Sn)
is the grounded equilibrium of M iff ACCi(kb∞i ) = {Si}, for 1 ≤ i ≤ n.

Note that this construction not only allows us to iteratively determine what
is true (with annotation 6= 0)/can be inferred as in MCSs, it also allows us to
simultaneously calculate what are the actual corresponding annotations.

Example 6. ConsiderM from Ex. 2 with br2 = ∅ and kb reduced to {r1@l← n},
i.e., such M is definite. We can verify that the computed grounded equilibrium
is S = 〈S1, S2, S3〉 with S1 and S2 defined as in Ex. 2 and S3 s.t. S3(l) =
r1×3 (c1∧d21) and S3(n) = c1∧d21. Here, S1 is determined based on kb0

1, whereas
S3(n) results from the applicable bridge rule, and S3(l) from that and rule r1.
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In the more general case of reducible pMCSs, we introduce a reduct taking
into account the provenance information.

Definition 10. LetM = 〈C1, . . . , Cn〉 be a reducible pMCS s.t. Ci = (Li, kbi, br i),
and S = 〈S1, . . . , Sn〉 a belief state of M . The S-reduct of M is defined as
MS = 〈CS1 , . . . , CSn 〉, where, for 1 ≤ i ≤ n, CSi = (Li, red i(kbi, Si), brSi ), and

brSi = {v@s← (r1 : p1), . . . , (rj : pj) | π ∈ br i of the form (1) such that
Sri(pi) = 0 for all j + 1 ≤ i ≤ m, and v = π ∧ not pj+1 ∧ . . .not pm}.

Thus, in the reduct, knowledge bases are reduced w.r.t. the considered belief
state, and bridge rules are either omitted if there is a not (rk : pk) in the bridge
rule such that pk is true in Sri , i.e., with annotation different from 0, or main-
tained in the reduct with the negated elements, just adapting the annotation v
to take these negated elements into account in the annotation.

The resulting S-reduct of M is definite and we can check whether S is a
grounded equilibrium in the usual manner.

Definition 11. LetM be a reducible pMCS. A belief state S ofM is a grounded
equilibrium of M if S = GE(MS).

We can show that such grounded equilibria are minimal equilibria.

Proposition 3. Every grounded equilibrium of a reducible pMCS M is a mini-
mal equilibrium of M .

Thus, for grounded equilibria, the converse of 2. (Prop. 1) can be obtained, and
pMCSs indeed provide provenance annotations for grounded equilibria in MCSs.

Example 7. Consider M from Ex. 2. Note that M is reducible using the usual
Gelfond-Lifschitz reduct for C3 and since C1 and C2 are monotonic. We obtain
one grounded equilibrium S as specified in Ex. 6 because b1 in br2 and c2 in br3

are not applicable in S. There is a second grounded equilibrium S′ = 〈S′1, S′2, S′3〉
with S′1 = S1 for S1 from Ex. 6, S′2 with S′2(A(w)) = b1 ∧not l and S′2(B(w)) =
o1×2 (b1∧not l), and S′3 with S′3(m) = c2∧o1×2 (b1∧not l) and S′3(n) = c1∧d21.

We observe that the resulting annotations concisely represent the formulas
required to obtain an inference, and that this information modularily preserves
the characteristics of the semirings used in individual contexts, e.g., the anno-
tation of n in S′3 contains that d1 is used twice (in the database context), even
though in C3 such repetition would be omitted due to idempotent ×.

We close the section with considerations on the computational complexity
where we assume familiarity with basic notions including the polynomial hierar-
chy. First, we recall that output-projected equilibria have been considered in the
context of MCSs [11] as a means to facilitate consistency checking, by restricting
the focus to the beliefs that occur in the bridge rules, showing in particular that
for each output-projected equilibrium there exists a corresponding equilibrium.
Then, consistency of an MCS, whose size, for fixed logics, is measured in the
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size of the knowledge bases and the size of the bridge rules, can be determined
by guessing an output-projected belief state S and checking for each context
whether it accepts the guessed S w.r.t. the active bridge rule heads. The com-
plexity of the latter step, called context complexity, influences the complexity of
consistency checking and has been determined for a number of logics [11]. Then,
the context complexity of an MCS M , CC(M), can be determined based on up-
per and lower context complexities, which allows one to study the complexity of
problems such as the existence of equilibria w.r.t. context complexity of MCSs.

Now, for pMCSs, we have to take the anotations into account, and it turns out
that this increases the computational complexity in general. As argued in the case
of DL ELHr, where standard reasoning problems are polynomial, annotations
may be exponential in size [2], and similar problems can be observed for other
logics. Still, for definite pMCSs, we can take advantage of the deterministic way
to compute the unique grounded equilibrium and show that we can avoid this
exponential size of annotations when solving the problem of whether there is a
grounded equilibrium such that the annotation of belief p is n, i.e., Si(p) = n.
The essential idea is to take advantage of the bound on the size of annotations
imposed by n, and limit the computation to the relevant part of the equilibrium,
and adapt at the same time the notion of CC(M) from MCSs to take size of the
monomials in the individual context into account.

Proposition 4. Let M be a definite pMCS with context complexity CC(M) and
S its unique grounded equilibrium. The problem of determining whether Si(p) =
n for p ∈ BLi

and n ∈ Vi, is in C if CC(M) = C for C ⊇ P.

It turns out that this result does not hold in the general case, because verifying
whether some belief state is an equilibrium requires the computation of the entire
belief state, thus subject to the exponential size of annotations in general.

5 Conclusions

We have introduced provenance multi-context systems as the first approach for
provenance in heterogeneous knowledge bases, allowing us to obtain annotations
for the inferences in the models of the integrating formalism. We have shown
how these models with annotations, equilibria, can be computed and, given the
generality of the approach, under which conditions this is possible, showing that
the approach is viable for the integration of a wide variety of formalisms.

For future work, we will investigate the usage of power series for dealing with
provenance approaches that use infinite semirings [18], as well as consider the
application of semiring provenance for fixed-point logic [9].
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