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Abstract

In open environments, agents need to reason with knowledge from various
sources, represented in different languages. Multi-Context Systems (MCSs) al-
low for the integration of knowledge from different heterogeneous sources in an
effective and modular way. Whereas most knowledge bases (contexts) typically
considered within an MCS are written in some description logic or some non-
monotonic rule-based language, sometimes more expressive languages that com-
bine the features of both these paradigms are necessary, such as Hybrid MKNF.
However, since agents may not have access to specialised reasoners for contexts
using all these languages, it proves useful to have tools that equivalently simplify
or transform a given MCS into another MCS that only uses the reasoners that are
available.

In this paper, we thoroughly investigate the relation between MCSs and Hybrid
MKNF. We provide a number of transformations that show that Hybrid MKNF
knowledge bases can be embedded into MCSs without the need for specific MKNF
reasoners. To complete the picture, we also show that when an MKNF reasoner
is available, it can be used to handle several description logic and rule contexts
joined into a single MKNF context. Furthermore, we show that we can encapsulate
the non-monotonic transfer of information between different contexts in one rule
language context, allowing e.g. the use of external non-monotonic reasoners.

1 Introduction
In Open Multi-Agent Systems, the paradigm for knowledge representation and reason-
ing is rapidly changing from one where each agent has its own monolithic knowledge
base written in some language, for which the agent has a specific reasoner, into one
where agents have to deal with several external heterogeneous knowledge sources, pos-
sibly written in different languages. These sources of knowledge include the increas-
ing number of available ontologies and rule sets, to a large extent developed within
initiatives such as Semantic Web and Linked Open Data, the norms and policies to pro-
mote desirable general properties published by the institutions that increasingly govern
agent interaction and cooperation,1 and the information communicated by other agents.
Making sense of the knowledge obtained from all these different sources is crucial to

1 See, e.g., http://www.normativemas.org/ and http://www.deonticlogic.org/.
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increase the chance of individually making the right choice and potentiate the chance of
agreement in negotiations. But, to make sense of all these different sources of knowl-
edge, agents need different specialised reasoners to properly understand their meaning,
and also ways to deal with the possible interactions between knowledge with different
provenance.

To deal with such diverse sources of knowledge, agent developers have turned their
attention to Multi-Context Systems (MCS) [4, 5, 8, 9, 21, 23]. Within MCSs, knowledge
is modularly composed of contexts, each of which possibly encapsulating a source of
knowledge of a different type, while bridge rules provide effective means for integra-
tion [13, 14]. With the equilibria semantics of Brewka and Eiter [6], MCSs provide
an effective and modular way to integrate knowledge from different heterogeneous
sources, for example, different ontologies written in some Description Logic (DL)
based ontology language, such as OWL, a rule set written in Answer-Set Program-
ming (ASP) representing some business policies, or some facts written in propositional
logic representing the agent’s model of some other agent, to name only a few. MCSs
are simple enough to allow this heterogeneous knowledge to be bridged and integrated,
while keeping their distinct provenance.

For example, consider an airport and some agent in charge of its security. First of
all, there are many ontologies available that describe airports (e.g. that airports have ter-
minals, that terminals have gates, etc.) which could be (re-)used by our security agent,
avoiding the need to develop and maintain them. Then, there are the National Airport
Security Norms, published by some national authority, that describe what is allowed,
forbidden, expected, etc., with respect to airport security (e.g. that a person without a
valid passport is not allowed inside the international terminal, with the exception of
authorised airport personnel, etc.). In order to enforce security in general, and these
norms in particular, each individual airport has a set of policies that prescribe how to
deal with the situations that may occur (e.g. that passengers on some black list should
be interviewed prior to being cleared in the security check). In order to identify oc-
curring situations, our security agent relies on the information incoming from existing
sensors, which can be more or less complex (e.g. with facial identification, population
density, etc.). Finally, as in any true multi-agent system, we can assume the existence
of other agents, each of which our agent will have a model of.2
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Figure 1: MCS representing the agent’s view of the system

2In a more realistic distributed setting, beyond the point we try to make in this paper, there would be
more than one Security Agent, each with its own MCS, using the same Ontology, Norms and Policies, and
perhaps using different contexts for the sensors and models of other agents.
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In such an MCS, ontologies can be modelled with DL contexts, the policies and
norms with rule-based contexts, for example using logic programs, other agents with
separate contexts using propositional facts or rules in a more complex case, and sensors
with propositional facts or DL ABox assertions. To propagate logical consequences
across contexts, contexts are connected with bridge rules, illustrated by arrows in Fig. 1.

Recently, it has been shown in [1, 2] that realistic norms and policies that mimic
the real world require a more complex knowledge representation formalism, such as
Hybrid MKNF [19] – based on the Logic of Minimal Knowledge and Negation as
Failure (MKNF) [18] – that tightly combines Logic Programming (LP) and Description
Logic. In such scenarios, the Closed World Assumption provided by LP rules is used,
for example, to deal with defeasible knowledge, such as exceptions, while the Open
World Assumption provided by DL axioms is employed e.g. to deal with ontological
knowledge and features such as reasoning with unknown individuals. In the context
of our airport example, a policy specifying e.g. that whenever two known suspects
(belonging to some black list) are together with a group of at least 5 (possibly unknown)
people, then a security alert should be issued, unless the two suspects are diplomats,
would require a hybrid language that allows the joint use of defaults, of LP rules, to
deal with the exception for the case when the suspects are diplomats, and existentials,
of DL, to deal with unknown individuals (recall that LP cannot reason about unknown
individuals, see e.g. Sect. 4.3 in [22]).

If norms and policies are to be published in Hybrid MKNF, two main questions
arise, namely:

• Can we use these Hybrid MKNF knowledge bases as contexts in an MCS?

• Will agents require a specialised reasoner to deal with them?

Whereas it would be quite important to be able to use knowledge bases written
in these very expressive languages within MCSs, it is quite expectable that many
agents would not have access to a specialised reasoner to deal with them. Further-
more, whereas there are many efficient reasoners for various kinds of DLs [20] and
logic programming languages such as ASP [11], the state of the art w.r.t. reasoners for
Hybrid MKNF is still limited to [15] and [16].

To answer these two main questions, in this technical paper we investigate the re-
lationship between MCSs and Hybrid MKNF. Taking the two-valued semantics of Hy-
brid MKNF [19], which is based on the Answer Set Semantics [12], we formally show
that

• Hybrid MKNF knowledge bases can be used in the form of an MKNF context,
which can then be bridged to other contexts, so we can use the expressivity of
Hybrid MKNF within MCSs.

• Hybrid MKNF knowledge bases can be embedded into MCSs without the need
for a specific MKNF reasoner, in one of the following linearly implementable
ways:

– by translating them each into a first-order context, with non-monotonic
bridge rules, so that the agent would need a first-order reasoner;

– by translating them each into a DL context and a relational database (or
fact base) context, with non-monotonic bridge rules, so the agent would
only need a DL solver and a database lookup process while the rules would
be handled by the MCS;

– by translating them each into a DL context and an ASP context, with mono-

3



tonic bridge rules, so the agent would need a DL solver and an ASP solver
for the non-monotonic ASP context, which could be outsourced to an ex-
ternal service because the bridge rules are monotonic.

We also establish the following results between MCSs and Hybrid MKNF:

• several DL, Database, ASP, and MKNF contexts in an MCS can be joined into
one MKNF context/KB, which can be useful in case the agent only has a hybrid
MKNF reasoner and, more importantly, is important from a conceptual/theoretical
point of view, because it presents the converse of the previous results;

• all non-monotonic bridge rules in an arbitrary MCS can be transferred into one
ASP context, leaving only monotonic bridge rules, so a source of computational
complexity is removed and the non-monotonic computation can be outsourced
to some external service.

The remainder of this paper is structured as follows. After recalling required mate-
rial in Sect. 2, in Sect. 3 we formally define the contexts we are going to use, followed
by an example scenario in Sect. 4. Then, we present the transformations from MKNF
contexts into other contexts in Sect. 5, and the converse transformation in Sect. 6. We
conclude in Sect. 7 and point to future directions. All the proofs are contained in a
separate appendix.

2 Preliminaries

2.1 Description Logics
We first briefly summarise the syntax and semantics of function-free first-order logic
with equality which forms the basis for representing both ontological and rule-based
knowledge. We assume the standard syntax of first-order atoms, formulas, and sen-
tences, defined inductively over disjoint sets of constant and predicate symbols C and
P. A first-order formula is ground if it contains no variables. The set of all first-order
sentences is denoted by Φ. A first-order theory is a set of first-order sentences. In
the semantics we consider first-order interpretations under the unique name assump-
tion (UNA). The satisfaction of a first-order sentence φ in such an interpretation I is
denoted by I |= φ; we also say that I is a model of φ if I |= φ.

Description Logics (DLs) [3] are fragments of first-order logic for which the stan-
dard reasoning tasks, such as satisfiability, are usually decidable. We assume that some
first-order fragment is used to describe an ontology, i.e. to specify a shared conceptual-
isation of a domain of interest. Unless stated otherwise, we do not constrain ourselves
to a specific DL for representing ontologies. The only assumption made in the theoret-
ical developments is that the ontology language is a syntactic variant of a fragment of
first-order logic. We assume that for any ontology axiom φ and ontology O, κ(φ) and
κ(O) denote a first-order sentence that semantically corresponds to φ and O, respec-
tively. Such translations are known for most DLs [3]. Given a first-order sentence φ,
we say that an ontology O entails φ, denoted by O |= φ, if every first-order model of
κ(O) is also a first-order model of φ.

2.2 Logic Programs
Like Description Logics, Logic Programming has its roots in classical first-order logic.
However, logic programs diverge from first-order semantics by adopting the Closed
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World Assumption and allowing for non-monotonic inferences. In what follows, we
introduce the syntax of extended normal logic programs and define the answer set
semantics [12] for such programs.

Syntactically, logic programs are built from atoms consisting of first-order atoms
without equality. An objective literal is an atom p or its (strong) negation ¬p. We
denote the set of all objective literals by L and the set of ground objective literals by
LG. A default literal is an objective literal preceded by ∼ denoting default negation.
A literal is either an objective literal or a default literal. Given a set of literals B, we
introduce the following notation: B+ = { l ∈ L | l ∈ B }, B− = { l ∈ L | ∼l ∈ B },
∼B = { ∼L | L ∈ B }.

A rule is a pair π = (H(π), B(π)) where H(π) is an objective literal, referred
to as head of π, and B(π) is a set of literals, referred to as body of π. Usually, for
convenience, we write π as (H(π) ← B(π)+,∼B(π)−.) A rule is called ground if
it does not contain variables and definite if it does not contain any default literal. The
grounding of a rule π is the set of rules gr(π) obtained by replacing in π all variables
with constant symbols from C in all possible ways. A program is a set of rules. A
program is ground if all its rules are ground; definite if all its rules are definite. The
grounding of a program P is defined as gr(P) =

⋃
π∈P gr(π).

The answer sets of a program are determined by considering its first-order models
in which all constant symbols are interpreted by themselves. An interpretation thus
corresponds to a subset of LG. Following [12], an answer set is either an interpretation
that does not contain both p and ¬p for any ground atom p or, if the considered program
is inconsistent, LG. An answer set is a model of the program that can be fully derived
using rules of the program assuming that literals not present in the model are false.

Definition 1. Let P be a ground program. An interpretation J is an answer set of P if
J is the smallest subset of LG that is equal to LG in case it contains both p and ¬p for
some ground atom p, and satisfies all rules of the Gelfond-Lifschitz reduct of P relative
to J , obtained from P by deleting all

1. rules with ∼l in the body such that J |= l, and

2. default literals from the bodies of remaining rules.

The answer sets of a non-ground program P are the answer sets of gr(P).

2.3 (Hybrid) MKNF Knowledge Bases
(Hybrid) MKNF Knowledge Bases [19] can be used to join DL knowledge bases and
logic programs in a seamless way. They are based on the logic of Minimal Knowl-
edge and Negation as Failure (MKNF) [18], an extension of first-order logic with two
modal operators: K and not. MKNF sentences and theories are defined by extending
function-free first-order syntax by the mentioned modal operators in a natural way.

The semantics of MKNF theories is determined by Herbrand interpretations over
a set of constants C∗ that includes C and in addition contains an infinite supply of
constants that do not belong to C. Also, equality is interpreted as identity on C∗.3 The
set of all such Herbrand interpretations is denoted by I. An MKNF structure is a triple
(I,M,N ) where I ∈ I and M,N ⊆ I. Intuitively, the first component is used to
interpret the first-order parts of an MKNF sentence while the other two components

3In [19], equality is treated slightly differently by interpreting it as a congruence relation. Here we adopt
the UNA instead. This is in line with assumptions common in Description Logics (see [3]) and ASP, and
avoids some additional technicalities in the subsequent sections.

5



interpret the K and not modalities, respectively. By φ[a/x] we denote the formula
obtained from φ by replacing every unbound occurrence of variable xwith the constant
symbol a. Satisfaction of an MKNF sentence and an MKNF theory T in (I,M,N ) is
defined as follows:

(I,M,N ) |= p iff I |= p

(I,M,N ) |= ¬φ iff (I,M,N ) 6|= φ

(I,M,N ) |= φ1 ∧ φ2 iff (I,M,N ) |= φ1 and (I,M,N ) |= φ2

(I,M,N ) |= ∃x : φ iff (I,M,N ) |= φ[a/x] for some a ∈ C∗

(I,M,N ) |= Kφ iff (J,M,N ) |= φ for all J ∈M
(I,M,N ) |= notφ iff (J,M,N ) 6|= φ for some J ∈ N
(I,M,N ) |= T iff (I,M,N ) |= φ for all φ ∈ T

The symbols >, ⊥, ∨, ∀ and ⊃ are interpreted accordingly. Also, for anyM ⊆ I, we
writeM |= T if (I,M,M) |= T for all I ∈ M. An MKNF interpretationM is a
non-empty subset of I. The semantics of MKNF theories is defined as follows:

Definition 2. Let T be an MKNF theory. We say that an MKNF interpretationM is

• an S5 model of T ifM |= T ;

• an MKNF model of T ifM is an S5 model of T , and, for every MKNF interpre-
tationM′ )M, there is some I ′ ∈M′ such that (I ′,M′,M) 6|= T .

MKNF knowledge bases [19] consist of two components – an ontology O and a
program P – and their semantics is given by translation to an MKNF theory. In the
following we introduce the syntax and semantics of MKNF knowledge bases in which
we constrain the program component to a non-disjunctive logic program.

An MKNF knowledge base is a set K = O ∪ P where O is an ontology and P
is a logic program. An MKNF knowledge base is ground if P is ground; definite if
P is definite. The grounding of an MKNF knowledge base K is defined as gr(K) =
O ∪ gr(P).

The translation function κ is defined for all objective literals l, default literals ∼l,
sets of literals B, rules π with vector of free variables ~x, programs P , and MKNF
knowledge bases K = O ∪ P as follows: κ(l) = K l, κ(∼l) = not l, κ(B) =∧
{κ(L) | L ∈ B }, κ(π) = (κ(B(π)) ⊃ κ(H(π))), κ(P) = {κ(π) | π ∈ P } and

κ(K) = {κ(O) } ∪ κ(P). The semantics of MKNF knowledge bases is defined as
follows:

Definition 3. Let K be an MKNF knowledge base. We say that an MKNF interpreta-
tionM is an S5 model of K ifM is an S5 model of κ(K). Similarly,M is an MKNF
model of K ifM is an MKNF model of κ(K).

2.4 Multi-Context Systems
Following [6], a multi-context system (MCS) consists of a collection of components,
each of which contains knowledge represented in some logic, defined as a triple L =
(KB,BS,ACC) where KB is the set of well-formed knowledge bases of L, BS is
the set of possible belief sets, and ACC : KB → 2BS is a function describing the
semantics of L by assigning to each knowledge base a set of acceptable belief sets. We
assume that each element of KB and BS is a set and that BS forms a complete lattice
w.r.t. set inclusion.
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In addition to the knowledge base in each component, bridge rules are used to
interconnect the components, specifying what knowledge to assert in one component
given certain beliefs held in the other components. Formally, for a collection of logics
L = 〈L1, . . . , Ln〉, an Li-bridge rule σ over L, 1 ≤ i ≤ n, is of the form (H(σ) ←
B(σ).), where B(σ) is a set of bridge literals of the forms (r : p) and not (r : p)
where 1 ≤ r ≤ n and p is an element of some belief set of Lr, and, for each kb ∈ KBi,
kb ∪ {H(σ) } ∈ KBi. A bridge rule is called monotonic if it does not contain bridge
literals of the form not (r : p), and non-monotonic otherwise.

Putting these concepts together, a multi-context system is a sequence of contexts
M = 〈C1, . . . , Cn〉 where Ci = (Li, kbi, br i), Li = (KBi,BSi,ACCi) is a logic,
kbi ∈ KBi a knowledge base, and br i is a set of Li-bridge rules over 〈L1, . . . , Ln〉.

In the following, we present the grounded equilibria semantics for MCSs [6] which
is inspired by the answer set semantics for logic programs.

For an MCSM = 〈C1, . . . , Cn〉, a belief state ofM is a sequence S = 〈S1, . . . , Sn〉
such that each Si is an element of BSi. For a bridge literal (r : p) we write S |= (r : p)
if p ∈ Sr and S |= not (r : p) if p /∈ Sr; for a set of bridge literalsB, S |= B if S |= L
for every L ∈ B.

A belief state S = 〈S1, . . . , Sn〉 of M is an equilibrium if, for all i with 1 ≤ i ≤ n,
the following condition holds:

Si ∈ ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) }) .

We say that an equilibrium S is minimal if there is no equilibrium S′ = 〈S′1, . . . , S′n〉
such that S′i ⊆ Si for all i with 1 ≤ i ≤ n and S′j ( Sj for some j with 1 ≤ j ≤ n.

Now we formalise the conditions under which the minimal equilibrium is unique,
in which case we assign it as the grounded equilibrium of the MCS. This can be guar-
anteed if the contexts can be reduced, using a reduction function, to monotonic ones.
Formally, a logic L = (KB,BS,ACC) is monotonic if

1. ACC(kb) is a singleton set for each kb ∈ KB, and

2. S ⊆ S′ whenever kb ⊆ kb′, ACC(kb) = {S }, and ACC(kb′) = {S′ }.
Furthermore, L = (KB,BS,ACC) is reducible if for some KB∗ ⊆ KB and some
reduction function red : KB×BS→ KB∗,

1. the restriction of L to KB∗ is monotonic,

2. for each kb ∈ KB, and all S, S′ ∈ BS:

• red(kb, S) = kb whenever kb ∈ KB∗,

• red(kb, S) ⊆ red(kb, S′) whenever S′ ⊆ S,

• S ∈ ACC(kb) iff ACC(red(kb, S)) = {S }.
A context C = (L, kb, br) is reducible if its logic L is reducible and, for all H ⊆

{H(σ) | σ ∈ br } and all belief sets S, red(kb ∪H,S) = red(kb, S) ∪H .
An MCS is reducible if all of its contexts are. Note that a context is reducible

whenever its logic L is monotonic. In this case KB∗ coincides with KB and red is
identity with respect to the first argument. A reducible MCS M = 〈C1, . . . , Cn〉 is
definite if

1. all bridge rules in all contexts are monotonic,

2. for all i and all S ∈ BSi, kbi = red i(kbi, S).

In a definite MCS, bridge rules are monotonic, and knowledge bases are already in
reduced form. Inference is thus monotonic and a unique minimal equilibrium exists.
We take this equilibrium to be the grounded equilibrium:
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Definition 4. Let M be a definite MCS. A belief state S of M is the grounded equi-
librium of M , denoted by GE(M), if S is the unique minimal equilibrium of M .

Grounded equilibria for general MCSs are defined based on a reduct which gener-
alises the Gelfond-Lifschitz reduct to the multi-context case:

Definition 5. Let M = 〈C1, . . . , Cn〉 be a reducible MCS and S = 〈S1, . . . , Sn〉
a belief state of M . The S-reduct of M is MS = 〈CS1 , . . . , CSn 〉 where, for each
Ci = (Li, kbi, br i), we define CSi = (Li, red i(kbi, Si), brSi ). Here, brSi results from
br i by deleting all

1. rules with not (r : p) in the body such that S |= (r : p), and

2. not literals from the bodies of remaining rules.

For each MCS M and each belief set S, the S-reduct of M is definite. We can thus
check whether S is a grounded equilibrium in the usual manner:

Definition 6. Let M be a reducible MCS. A belief state S of M is a grounded equilib-
rium of M if S is the grounded equilibrium of MS , that is S = GE(MS).

3 Concrete Contexts
At first, we define an MKNF context and show that it is reducible thus showing that
Hybrid MKNF knowledge bases can indeed be used within MCS. We also formally
define a number of related contexts we are going to use throughout the paper.

We start with a first-order context.
The first-order logic is the logic LFO = (KBFO,BSFO,ACCFO) where

• KBFO is the set of first-order theories,

• BSFO is the set of deductively closed sets of first-order sentences,

• ACCFO(T ) is the set { {φ ∈ Φ | T |= φ } }.

Definition 7. A context C = (L, kb, br) is a first-order context if L = LFO, and kb is
a first-order theory.

A DL context is similar to a first-order context but it can interpret only Description
Logic ontologies (Sect. 2.1).

The DL logic is the logic LDL = (KBDL,BSDL,ACCDL) where

• KBDL is the set of all ontologies;

• BSDL is the set of all deductively closed first-order theories;

• ACCDL(O) is the set {{φ ∈ Φ | κ(O) |= φ }}.

Definition 8. A context C = (L, kb, br) is a DL context if L = LDL, and kb is an
ontology.

We proceed with defining an ASP context for logic programs (Sect. 2.2).
The ASP logic is the logic LASP = (KBASP,BSASP,ACCASP) where

• KBASP is the set of all programs;

• BSASP is the set of all consistent subsets of LG together with LG itself;

• ACCASP(kb) is the set of all answer sets of kb.

8



Definition 9. A context C = (L, kb, br) is an ASP context if L = LASP, and kb is a
program P .

A simple database context is used to store and retrieve facts.4

The database logic is the logic LDB = (KBDB,BSDB,ACCDB) where

• KBDB is the set of subsets of LG;

• BSDB is the set of all consistent subsets of LG together with LG itself;

• ACCDB(kb) is the set { kb } if { kb } is consistent, and LG otherwise

Definition 10. A context C = (L, kb, br) is a database context if L = LDB, and kb is
a subset of LG.

Finally, we formally introduce MKNF logic and MKNF contexts.
The MKNF logic is the logic LMKNF = (KBMKNF,BSMKNF,ACCMKNF) where

• KBMKNF is the set of MKNF knowledge bases,

• BSMKNF is the set of deductively closed first-order theories,

• ACCMKNF(K) contains {φ ∈ Φ | M |= φ } for every MKNF model M of K
and also the inconsistent belief set Φ in case K′, obtained from K by removing
all rules with default negation, has no MKNF model.

The latter condition is required by the formal framework of multi-context systems.

Definition 11. A context C = (L, kb, br) is an MKNF context if L = LMKNF, kb is
an MKNF knowledge base, and, for every σ ∈ br , H(σ) is an objective literal or an
ontology axiom. An MKNF context C = (LMKNF,K, br) is ground if K is ground;
finite if both K and br are finite.

We can show that all these contexts are indeed reducible.

Proposition 12. Every first-order, DL, ASP, database, and MKNF context is reducible.

Proof. See Appendix A, page 24.

4 Example Scenario
In this section, we describe an example MCS based on the airport scenario outlined in
the introduction. The main purpose is to illustrate our approach, hence we simplify the
bigger picture presented in the introduction in a number of ways: the airport MCSM =
〈C1, C2, C3, . . . , Cn〉 here comprises an ontology context C1 with a TBox describing
the relevant vocabulary of the domain and an ABox encapsulating current data, one
MKNF context C2 representing a normative monitoring system, and a number of ASP
contexts (C3 to Cn) for the cooperating security agents deployed within the airport.

In the ontology context we may use some readily available ontology (or possibly
a combination thereof), such as the TFM ontology,5 providing us with basic air traffic
vocabulary, including the classes Airline, Flight, Passenger, Pilot, etc., but also prop-
erties Onboard, Controls, Employs, etc., expressing relations between classes. Besides
such taxonomic knowledge, which is of a more static nature, the ontology context also

4Please note that such a database context is more expressive than a relational database and can be under-
stood as a fact base in which we also admit negated facts, to be in line with the admitted rule language.

5See http://ti.arc.nasa.gov/profile/shawn/tfmontology/ Note that we occasion-
ally shorten/simplify some names to ease the presentation.
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contains an ABox that stores current data regarding flight plans, airlines, and staff, etc.
The ontology context is given as C1 = (LDL,O, ∅), a short excerpt from O follows:

Pilot v ∀Controls.Aircraft Flight(UA101)

∃Onboard.> v Passenger Onboard(Erika,UA101)

> v ∀Onboard.Flight

The taxonomic part (on the left) states that all the things pilots control are aircraft,
and that the relation Onboard connects passengers and flights. The data (on the right)
includes information about the flight UA101, and that an individual Erika is on board
of UA101. Using these axioms, it is possible to derive, e.g., that Erika is a passenger.

The MKNF context represents a normative monitoring system. It contains relevant
norms in order to evaluate the current situation and to identify security risks in a given
situation. These norms rely on expressing defaults and exceptions, so non-monotonic
rules are required. The system is also equipped with sensors placed in relevant locations
that are able to detect the approximate number of persons and objects present at the
given location. Note that these persons and objects are not identified, so DL axioms
are more suitable to represent this information. The following norms are represented:
if luggage is detected at some location but no persons, then this luggage has to be
inspected/removed; if there is a flight with a passenger on board with no passport, then
the flight is not allowed to take off; if there is a passenger identified by a passport that
is found on the blacklist, then this person/suspect has to be checked. Some specific
information that is needed to implement the norms is also stored here (e.g., flights
with international destinations in the IntDest/1 predicate and passport numbers that
are blacklisted in the BlackList/1 predicate). This context is formally given as C2 =
(LMKNF,K, br2), with part of K and br2 shown below:

LuggageAt ≡ ∃Detected.Luggage PersonAt ≡ ∃Detected.Person

InspectLuggageAt(l)← Location(l), LuggageAt(l),∼PersonAt(l).

TakeoffNotAllowed(f)← Flight(f), IntDest(f),Onboard(x, f),∼HasPassport(x).

HasPassport(x)← Passenger(x),Passport(p),Carries(x, p).

CheckSuspect(x)← Person(x),Passport(p),Carries(x, p),BlackList(p).

Location(L1) >2 Detected.Person(L1) 63 Detected.Person(L1)

Location(L2) 65 Detected.Luggage(L1) >3 Detected.Luggage(L2)

Flight(f)← (1 : Flight(f)).

Passenger(x)← (1 : Passenger(x)).

Passport(p)← (1 : Passport(p)).

Onboard(x, f)← (1 : Onboard(x, f)).

Carries(x, o)← (1 : Carries(x, o)).

The sensor information (seen as ABox axioms) indicates that there are between 2 and 3
persons and at most 5 pieces of luggage at location L1, and at least 3 pieces of luggage
at location L2. The bridge rules (at the very bottom) assure that all relevant data stored
in the ontology context is imported into the normative context as well.6

Finally, there is a number of security agents operating autonomously but in a coop-
erative manner. Each agent is represented by an agent context where its behaviour is

6 For the sake of concise presentation, we use variables in this section as a syntactic macro: similar to
logic program rules, each bridge rule with variables represents a number of bridge rules instantiated with
constants appearing in the context of origin in all possible ways.
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modelled as a logic program. Recall that the whole MCS is used by one of the agents to
model the complex situation at the airport. This agent (my-agent) corresponds to one of
the agent contexts, the remaining agents which the my-agent reasons about are repre-
sented by the remaining agent contexts. For simplicity we use analogous programs for
each agent; in reality this could be more complex (e.g. different agents would have dif-
ferent behaviours). We also abstract from the concrete actions but rather indicate only
to investigate, and focus on showing that the agents are able to cooperate and agree on
which agent will investigate what in a simplified manner. For i with 2 < i ≤ n, the
agents are represented with Ci = (LASP,P, br i) with P and br i:

Investigate(l)← SuspiciousLuggage(l),∼UnderInvestigation(l).

Investigate(f)← BoardingProblem(f),∼UnderInvestigation(f).

Investigate(x)← OnBlackList(x),∼UnderInvestigation(x).

SuspiciousLuggage(l)← (2 : InspectLuggageAt(l)).

BoardingProblem(f)← (2 : TakeoffNotAllowed(f)).

OnBlackList(x)← (2 : CheckSuspect(x)).

UnderInvestigation(z)← (j : Investigate(z)). for all j with 2 < j ≤ n and j 6= i .

The agent’s program P together with the bridge rules indicates to investigate sus-
picious luggage at a location in the airport, problems related to boarding of a certain
flight, or people that are identified on the airport and appear on the black list. The last
bridge rule in br i with i > 2 simply serves to import from all agents which situation
they are currently investigating. This bridge rule (albeit in a simplistic fashion) is re-
sponsible for agent cooperation: if one agent chooses to investigate some problem, the
other agents will learn this problem is already covered. Note that we abstract from
further details on how agents actually negotiate who is taking care of which situation
or which situation to handle first if several options exist.

We can derive that one agent will investigate location L2 because of the unattended
luggage detected there. Also, if UA101 is an international flight (achieved by adding the
fact IntDest(UA101) into the MKNF context) and there is no evidence in the ontology
context’s ABox that Erika carries a passport, then this flight is not allowed to take off,
and an agent will be assigned to investigate the flight.

5 Reducing an MKNF Context
We show that MKNF knowledge bases can be used within Multi-Context Systems with-
out using MKNF logic. First, we show that every MKNF context can be transformed
into a first-order context. The transformed MCS has the same grounded equilibria as
the original one, showing that instead of a specialised MKNF reasoner, a first-order
reasoner can be used to obtain equivalent results. Then, we show that every MKNF
context can be transformed into two contexts, namely a DL context and a context to
store rule facts. The resulting multi-context system only requires a DL reasoner and
a database (or simply a fact base) instead of an MKNF reasoner while potential non-
monotonic reasoning is handled in the bridge rules. This result can be strengthened
even further, resulting in a multi-context system that requires only a DL reasoner and
an ASP reasoner, thus encapsulating non-monotonic bridge rules into the ASP context.
This result can indeed be generalised to arbitrary MCS, ensuring that we can restrict
ourselves to MCSs with purely monotonic bridge rules whenever this is beneficial.
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5.1 Reduction to a First-Order Context
The transformation to a first-order context is based on transforming the rules from the
MKNF knowledge base to bridge rules, leaving us with only the ontology component
which can already be handled by a first-order context. For example, if the MKNF
knowledge K = O ∪ P in the MKNF context Cj contains the rule

InspectLuggageAt(L1)← Location(L1), LuggageAt(L1),∼PersonAt(L1). ,

then the corresponding first-order bridge rule is of the form:

InspectLuggageAt(L1)← (j : Location(L1)), (j : LuggageAt(L1)),not (j : PersonAt(L1)).

For that purpose, we provide an abstract function that, given a program P , provides
a set of corresponding bridge rules.

Definition 13. For every integer j, l ∈ LG, B ⊆ LG, rule π and program P we define

αj(l) = (j : l), αj(B) = { αj(L) | L ∈ B } , αj(P) = { αj(π) | π ∈ P } ,
αj(∼l) = not (j : l), αj(π) = (H(π)← αj(B(π)).).

Additionally, we have to consider MKNF bridge rules that have an ontology axiom
φ in their head. This axiom needs to be translated to its first-order counterpart κ(φ).
We simply extend κ to bridge rules.

Definition 14. For a bridge rule σ we define κ(σ) = (κ(H(σ)) ← B(σ).) if H(σ)
is an ontology axiom and κ(σ) = σ otherwise. For a set of bridge rules br , κ(br) =
{ κ(σ) | σ ∈ br }.

The definition of the first-order context that corresponds to an MKNF context is
now straightforward – it suffices to apply the above two transformations αj and κ to
all rules and MKNF bridge rules of the MKNF context accordingly:

Definition 15. Let Cj = (LMKNF,O ∪ P, br j) be a ground MKNF context. The first-
order context corresponding to Cj is CFO

j = (LFO, {κ(O) } , κ(br j) ∪ αj(P)).

Due to the properties of the MKNF semantics, if we consider a ground MKNF con-
text, we find that it can be substituted by the corresponding first-order context without
affecting the grounded equilibria of the multi-context system. Formally:

Theorem 16. Let M = 〈C1, . . . , Cn〉 be a reducible MCS such that for some j with
1 ≤ j ≤ n, Cj is a ground MKNF context, and

M ′ = 〈C1, . . . , Cj−1, C
FO
j , Cj+1, . . . , Cn〉 .

The grounded equilibria of M and M ′ coincide.

Proof. See Appendix A, page 27.

If Cj is also finite,7 then this transformation is linear: 1.) the translation κ(O) is
linear; 2.) each bridge rule head is translated at most once; and 3.) exactly one bridge
rule is created per ground rule in P .

This transformation can be repeated for all MKNF contexts in the multi-context
system, yielding an equivalent system that does not require to use MKNF logic.

Corollary 17. For every multi-context system M with some ground MKNF contexts,
there exists a multi-context system M ′ such that the grounded equilibria of M and M ′

coincide and M ′ uses first-order contexts instead of the original MKNF contexts.
7Finiteness is achieved in [19] by considering DL-safe KBs K. Intuitively, rule applicability/grounding

is restricted to constants appearing in K. Such a notion can easily be defined for bridge rules as well.
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5.2 Reduction to DL + Database
The reduction of an MKNF context Cj with kbj = O ∪ P into a pair of contexts, a
DL context and a database context, proceeds as follows: First, we transform the rules
P from the MKNF knowledge base to bridge rules using αj defined in Sect. 5.1. This
leaves us with only the ontology component O and an augmented set of bridge rules.
But since the literals in their heads may contain predicate symbols of arity higher than
2, which cannot be handled by ontology reasoners, we create an additional database
context and redirect all bridge rules whose head literal is not used in the ontology
part to this new context. The same redirection needs to be performed in the bodies
of all bridge rules in the whole MCS. One side-effect is that we cannot refer to some
more complex elements of the MKNF belief set directly, but, commonly, these can be
expressed in a different manner. Thus, in the remainder of Sect. 5, we introduce the
following restriction on MKNF contexts in MCS: for all bridge literals (r : p) and
not (r : p) referring to an MKNF context Cr, p is an objective literal or an ontology
axiom.8

We formalise the embedding by first defining the division of literals appearing in
the MKNF context, i.e. in the corresponding MKNF KB. Given an MKNF knowledge
base K = O ∪ P , we define that l ∈ LG is a DL-literal if the predicate symbol of l
appears in O. Otherwise, l is a non-DL-literal.9

Now we can define an abstract function that in a given MCS transforms all bridge
literals that refer to some MKNF context Cj and are non-DL-literals to point to a
different context k.

Definition 18. For all integers i, j, k and every l ∈ LG we define

βk
j ((i : l)) =

(
(k : l) if i = j and l is a non-DL-literal;
(i : l) otherwise,

βk
j (not (i : l)) = not βk

j ((i : l)).

Also, for a set of bridge literals B, a bridge rule σ, and a set of bridge rules br ,

βk
j (B) = {βk

j (L) | L ∈ B } , βk
j (σ) = (H(σ)← βk

j (B(σ)).), βk
j (br) = {βk

j (σ) | σ ∈ br } .

Note that the second case for βkj ((i : l)) not only handles DL-literals and ontology
axioms, but also all other bridge literals not referring to the MKNF context.

We define the DL-DB MCS corresponding to an MKNF context.

Definition 19. LetCj = (LMKNF,O∪P, br j) be a ground MKNF context. The DL-DB
MCS corresponding to Cj , 〈CDL

j , C
DB
k 〉, is defined as follows:

• CDL
j = (LDL,O, br DL

j ), where

br DL
j = {σ | σ ∈ βk

j (br j ∪ αj(P)) ∧H(σ) is an ontology axiom } ;

• CDB
k = (LDB, ∅, br DB

k ), where

br DB
k = {σ | σ ∈ βk

j (br j ∪ αj(P)) ∧H(σ) is a non-DL-literal } .

Bridge rules in βkj (br j ∪ αj(P)) are divided between the two contexts as outlined.
Note that the index k for the database context allows us to add CDB

k to an MCS with n
contexts at a position of choice, which is simply n+ 1.

8Note that p is by definition an element of BSMKNF , i.e. a first-order sentence. We assume that an
ontology axiom is simply a shortcut for such an element.

9In the case distinctions in Sect. 5, we assume that every DL-literal is also an ontology axiom.
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We introduce one further notion of closure: given a first-order theory T , T ∗ denotes
the deductive closure of T . The following result shows that we can substitute a finite
ground MKNF context with a DL-DB MCS without affecting the grounded equilibria:

Theorem 20. Let M = 〈C1, . . . , Cn〉 be a reducible MCS such that, for some j with
1 ≤ j ≤ n, Cj is a ground MKNF context, and

M ′ = 〈C ′1, . . . , C ′j−1, C
DL
j , C

′
j+1, . . . , C

′
n, C

DB
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is
a grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DL
j , S

′
j+1, . . . , S

′
n, S

DB
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and
Sj = (SDL

j ∪ SDB
n+1)∗.

Proof. See Appendix A, page 29.

If all contexts in M are finite, then this transformation can be done in linear time,
since each rule in P is turned into one bridge rule, and then βn+1

j is applied exactly
once to each bridge rule in the MCS M .

Example 21. Recall the example scenario in Sect. 4 and assume here that K of C2 as
presented is complete which defines the division into DL-literals and non-DL-literals.
In this case, C2 is substituted by CDL

2 such that br DL = ∅. Moreover, CDB
n+1 is added

with br DB which contains:

InspectLuggageAt(L1)← (2 : Location(L1)), (2 : LuggageAt(L1)),

not (2 : PersonAt(L1)).

TakeoffNotAllowed(UA101)← (n+ 1 : Flight(UA101)), (2 : IntDest(UA101)),

(n+ 1 : Onboard(Erika,UA101)),

not (n+ 1 : HasPassport(Erika)).

Additionally, all the bridge rules of the ASP contexts referring to C2 have to change.
For example,

SuspiciousLuggage(L1)← (2 : InspectLuggageAt(L1)).

becomes

SuspiciousLuggage(L1)← (n+ 1 : InspectLuggageAt(L1)).

The transformation can be repeated for all MKNF contexts in the multi-context
system, yielding an equivalent system that does not require the usage of MKNF logic.

Corollary 22. For every multi-context system M with some ground MKNF contexts,
there exists a multi-context system M ′ such that the grounded equilibria of M and M ′

are equivalent (in the sense of Theorem 20) and M ′ uses pairs of DL contexts and
database contexts instead of the original MKNF contexts.

5.3 Reduction to DL + ASP
The reduction of an MKNF context Cj with kbj = O ∪ P into a pair of contexts, a
DL context and an ASP context both without non-monotonic bridge rules, proceeds
as follows. The ontology forms the kb of the DL context, while the non-monotonic
bridge rules and P form the kb of the ASP context. The monotonic bridge rules are
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divided between the two contexts based on whether the head is an ontology axiom or a
non-DL-literal as in the previous subsection. Additional monotonic bridge rules have
to be added so that 1) information on DL-literals derived in the ASP context passes
to the DL context, and 2) information from other contexts including the DL context is
introduced to the ASP context whenever necessary.

We first provide a function that allows us to “internalise” bridge rules into the ASP
context. For that purpose, new ground atoms are introduced to make sure that no
complex formulas are added to the ASP context, and pieces of information from other
contexts do not interfere with those already in the ASP context, i.e. the non-DL-literals.

Definition 23. For any integer i and any member p of a belief set of Li, γi(p) denotes
a new ground atom uniquely associated to i and p. Also, for every integer j, and set of
bridge literals B,

γi((j : p)) = p if i = j , γi(not (j : p)) = ∼γi((j : p)) ,

γi((j : p)) = γj(p) if i 6= j , γi(B) = { γi(L) | L ∈ B } .

To formalise the transformation as outlined, we need some further notation. Given
a set of bridge rules br , brn is the set of all bridge rules in br that contain at least one
bridge literal not (r : p) for some r and p, and brm = br \ brn. Also, (i : p) ∈
B(σ)+ ∪B(σ)− is a short form for ((i : p) ∈ B(σ) ∨ not (i : p) ∈ B(σ)).

We define the DL-ASP MCS corresponding to an MKNF context as follows. We
apply βkj to the monotonic bridge rules to set the pointers correctly w.r.t. the two new
contexts, obtaining the set of bridge rules br ′j , which is then divided as bridge rules
between the two contexts. Furthermore, we translate P into bridge rules using αj and
join these to the non-monotonic bridge rules in the MKNF context, and then we also
apply βkj to the result. This results in the set of bridge rules br ′′j which provides the
kb of the ASP context after a suitable translation into logic programing rules using
the function γ defined above. Additionally, auxiliary bridge rules are added to the
DL context to introduce information from non-monotonic rules with ontology axioms
as heads. Likewise, auxiliary bridge rules are added to the ASP context to introduce
information from the DL context as well as other contexts in the MCS.

Definition 24. LetCj = (LMKNF,O∪P, br j) be a ground MKNF context, k an integer,
br ′j = βkj (brmj ) and br ′′j = βkj (brnj ∪ αj(P)). The DL-ASP MCS corresponding to
Cj , 〈CDLm

j , CASP
k 〉, is defined as follows:

• CDLm
j = (LDL,O, br DLm

j ), where

br DLm
j = {σ | σ ∈ br ′j ∧H(σ) is an ontology axiom }

∪ {H(σ)← (k : γj(H(σ))). | σ ∈ br ′′j ∧H(σ) is an ontology axiom } ;

• CASP
k = (LASP, kbk, br

ASP
k ), where

kbk = { γj(H(σ))← γk(B(σ)). | σ ∈ br ′′j ∧H(σ) is an ontology axiom }
∪ {H(σ)← γk(B(σ)). | σ ∈ br ′′j ∧H(σ) is a non-DL-literal } ,

br ASP
k = {σ | σ ∈ br ′j ∧H(σ) is a non-DL-literal }

∪ { γi(p)← (i : p). | σ ∈ br ′′j ∧ k 6= i ∧ (i : p) ∈ B(σ)+ ∪B(σ)− } .

The application of γ and the case distinction for kbk make sure that everything in
kbk but the non-DL-literals from the MKNF context are newly introduced atoms.

We can substitute a ground MKNF context with a DL-ASP MCS without affecting
the grounded equilibria.
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Theorem 25. Let M = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j with 1 ≤ j ≤ n, Cj is a ground MKNF context, and

M ′ = 〈C ′1, . . . , C ′j−1, C
DLm
j , C ′j+1, . . . , C

′
n, C

ASP
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DLm
j , S′j+1, . . . , S

′
n, S

ASP
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i 6= j ≤ n, Si = S′i, and
Sj = (SDLm

j ∪ (SASP
n+1 \SAUX))∗ where SAUX ⊆ SASP

n+1 is the set of all new ground atoms
introduced by γ.

Proof. See Appendix A, page 31.

Example 26. Consider the two non-monotonic bridge rules in the database context in
Example 21. Both become rules of P in the ASP context.

InspectLuggageAt(L1)← Location(L1), LuggageAt(L1),∼PersonAt(L1).

TakeoffNotAllowed(UA101)← Flight(UA101), IntDest(UA101),

Onboard(Erika,UA101),∼HasPassport(Erika).

Additionally, we need to add bridge rules to import information from the DL context
for the three atoms in the first rule, such as:

Location(L1)← (2 : Location(L1)).

This transformation can be repeated for all MKNF contexts in the multi-context
system, yielding an equivalent system that does neither require the usage of MKNF
logic nor non-monotonic bridge rules in their substitute contexts. Formally:

Corollary 27. For every multi-context system M with some ground MKNF contexts,
there exists a multi-context system M ′ such that the grounded equilibria of M and M ′

are equivalent (in the sense of Theorem 25) and M ′ uses pairs of DL contexts and ASP
contexts with monotonic bridge rules instead of the original MKNF contexts.

Furthermore, the transformation can be generalised even further: whenever an ASP
context is present in (or added to) the MCS in consideration, then all non-monotonic
bridge rules can be transformed away into that context. Indeed, non-monotonic bridge
rules are simply all transferred into the ASP context. Each such transferred bridge rule
is substituted by a monotonic one linking the information back from the ASP context
to the context of origin. The ASP context is augmented with additional bridge rules
that add information requested from other contexts in the former bridge literals.

Theorem 28. Let M = 〈C1, . . . , Cn〉 be a reducible MCS with Ci = (Li, kbi, br i) for
all i with 1 ≤ i ≤ n and Cj a ground ASP context for some j with 1 ≤ j ≤ n, and
M ′ = 〈C ′1, . . . , C ′n〉 with

• C′i = (Li, kbi, br
′
i) for all i with and i 6= j, where

br ′i = brm
i ∪ {H(σ)← (j : γi(H(σ))). | σ ∈ brn

i } ;

• C′j = (Lj , kb
′
j , br

′
j), where kb′j = kbj ∪

S
i{γi(H(σ))← γj(B(σ)). | σ ∈ brn

i }, and

br ′j = brm
j ∪

S
i { γk(p)← (k : p). | σ ∈ brn

i ∧ j 6= k ∧ (k : p) ∈ B(σ)+ ∪B(σ)− } .
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The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′n〉 is a grounded equilibrium for M ′

where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and Sj = S′j \ SAUX where
SAUX ⊆ S′j is the set of all new ground atoms introduced by γ.

Proof. See Appendix A, page 31.

Note that, since we can simply introduce a new ASP context, the result is indeed
general.

Finally, assuming that we measure the size of the MCS in terms of the size of
its (finite) contexts as well as of bridge rules (number of bridge literals), then this
transformation is linear as it produces, in the ASP context, at most one new bridge rule
per bridge literal (both for Theorem 25 and 28).

6 Reducing to MKNF Contexts
To complete the overall picture, we also provide a transformation in the opposite direc-
tion, i.e. we take a set of DL, DB, ASP and MKNF contexts and transform them into
a single MKNF context. In light of the results in the previous section, and to simplify
the presentation, w.l.o.g. we assume that sets of predicate symbols used in different
contexts are disjoint.10

We can now consider joining two MKNF contexts into one. Before we define the
reduction, we need an additional function that re-sets the contexts to which bridge
literals point to account for the removal of one context from the MCS.

Definition 29. For all integers i, j, k with j < k and every l ∈ LG we define

δk
j ((i : l)) =

8><>:
(i : l) if i < k;
(j : l) if i = k;
((i− 1) : l) otherwise.

δk
j (not (i : l)) = not δk

j ((i : l)).

Also, for a set of bridge literals B, a bridge rule σ, and a set of bridge rules br ,

δk
j (B) = { δk

j (L) | L ∈ B } , δk
j (σ) = (H(σ)← δk

j (B(σ)).), δk
j (br) = { δk

j (σ) | σ ∈ br } .

We define a joint MKNF context as follows.

Definition 30. Let C1
j = (LMKNF,O1 ∪ P1, br 1

j) and C2
k = (LMKNF,O2 ∪ P2, br 2

k) be
MKNF contexts. The MKNF context corresponding to C1

j and C2
k , CMKNF

j is defined as
CMKNF
j = (LMKNF, (O1 ∪ O2) ∪ (P1 ∪ P2), δkj (br 1

j ∪ br 2
k)).

We can transform an MCS with two MKNF contexts into one with only one context.

Theorem 31. Let M = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j and k with 1 ≤ j < k ≤ n, Cj and Ck are ground MKNF contexts, and

M ′ = 〈C ′1, . . . , C ′j−1, C
MKNF
j , C ′j+1, . . . , C

′
n−1〉

where, given Ci = (Li, kbi, br i), for all i with 1 ≤ i < n and i 6= j, C ′i =
(Li, kbi, δkj (br i)) if i < k, and C ′i = (Li+1, kbi+1, δ

k
j (br i+1)) otherwise.

10Note that from the point of view of MCSs, predicate symbols with the same name are interpreted inde-
pendently of one another when used in different contexts and must be interconnected using bridge rules if
their interpretation needs to be unified across contexts. The disjointness of predicate names used in different
contexts can thus be achieved by a simple renaming transformation that does not affect the semantics of the
MCS.
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The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is
a grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

MKNF
j , S′j+1, . . . , S

′
n−1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i < n and i 6= j, S′i = Si if
i < k and S′i = Si+1 otherwise, and SMKNF

j = (Sj ∪ Sk)∗.

Proof. See Appendix A, page 32.

This transformation is again linear for finite ground MKNF contexts, since two
contexts are simply joined only re-directing some context references.

We can generalise to an arbitrary number of MKNF, DL, ASP, and DB contexts.

Corollary 32. For every multi-context system M with some ground MKNF, ASP, and
DL contexts, there exists a multi-context system M ′ such that the grounded equilibria
of M and M ′ are equivalent (in the sense of applying Theorem 31 stepwise) and M ′

uses only one MKNF context instead of the original MKNF, ASP, and DL contexts.

Note that, if all contexts in a given MCS are DL, DB, ASP, and MKNF contexts,
then we can obtain a hybrid MKNF knowledge base.

7 Conclusions
We have shown that MKNF knowledge bases can be used in MCSs as one context,
thereby enabling us to use these highly expressive knowledge representation and rea-
soning formalisms in such MCSs. MKNF contexts can then be interlinked with other
contexts in the MCS yielding an even richer formalism.

Since there may be agents that are not capable of reasoning with such a complex
context, we investigated the potential usage of MKNF knowledge bases without re-
quiring the presence of an actual MKNF context or an adequate reasoning service. We
have shown that we can use a first-order context instead where the rule part of the
MKNF context is transformed into bridge rules. Alternatively, we can use a DL con-
text and a simple database context, both with non-monotonic bridge rules, to represent
an MKNF context. Moreover, we can rely on a DL context and an ASP context, both
with monotonic bridge rules only, to emulate an MKNF context, but encapsulating the
non-monotonic reasoning steps into one context which may be handled in an external
answer set solver. This result can even be generalised to the entire MCS, resulting in
an MCS where all non-monotonic bridge rules are transferred into the ASP context.
Finally, we also provided a transformation for the inverse direction, i.e. if we have the
capability of an MKNF reasoner, then we can merge all DL, database, ASP, and MKNF
contexts into one MKNF context only.

Future work may extend the results to more general MKNF KBs and likewise more
complex MKNF contexts, i.e. where literals in MKNF rules and bridge literals referring
to an MKNF context may be extended to more complex formulas beyond ontology ax-
ioms and objective literals in bridge rule heads. In [6], also a well-founded semantics is
defined for MCSs and considering this semantics and investigating its correlation with
the well-founded semantics for Hybrid MKNF [17] would also be interesting, possibly
enabling us to use a semantics in MCSs that is, due to its nature, of a lower computa-
tional complexity. Finally, we may consider an extension to managed Multi-Context
Systems [7] in which bridge rules can not only add information to other contexts but
are more general, e.g. deletion or revision operators can be defined.
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A Proofs

A.1 Basic Properties of MKNF
Similarly as shown in [19], MKNF knowledge bases are faithful to both the semantics
of ontologies and to the answer set semantics of logic programs. In the case of ontolo-
gies, this follows from [10, Theorem 5.9.4] and the fact that we work under the UNA,
so equality is interpreted the same way for ontologies and MKNF theories.

Proposition 33. Let O be an ontology, K the MKNF knowledge base O ∪ ∅ and φ
a first-order sentence. Then O |= φ if and only if for every MKNF model M of K,
M |= φ.

Furthermore, a logic program is just a special case of an MKNF knowledge base,
and the unique name assumption imposed on MKNF interpretations is sufficient to
conclude the following:

Proposition 34. Let P be a logic program andK be the MKNF knowledge base ∅∪P .
If J ⊆ LG is a consistent answer set of P , then { I ∈ I | I |= J } is an MKNF model
of K. IfM is an MKNF model K, then { l ∈ LG | M |= l } is an answer set of P .

In other words, the consistent answer sets of a logic program P are in one-to-one
correspondence with MKNF models of the MKNF knowledge base (∅,P).

In the remainder, we will focus only on ground MKNF knowledge bases. This
simplification is justified by the following lemma which easily follows from the UNA
satisfied by MKNF interpretations.

Lemma 35. Any MKNF knowledge base has the same MKNF models as its grounding.

A.2 Properties of MKNF Models
Definition 36. An MKNF formula φ is subjective if every first-order atom in φ is in
the scope of a modal operator. That is, φ is of one of the following forms: Kψ, notψ,
¬φ1, φ1∧φ2 where ψ is an MKNF formula and φ1, φ2 are subjective MKNF formulas.

Lemma 37. Let φ be a subjective MKNF formula, I ∈ I andM an MKNF interpre-
tation. Then, (I,M,M) |= φ if and only ifM |= φ.

Proof. We consider the different forms that φ can take separately:

a) If φ = Kψ, then (I,M,M) |= φ if and only if (J,M,M) |= ψ for all J ∈M,
which is equivalent to (J,M,M) |= Kψ for all J ∈ M, which in turn is the
same asM |= φ.

b) If φ = notψ, then (I,M,M) |= φ if and only if (J,M,M) 6|= ψ for some
J ∈M, which, sinceM is non-empty, is equivalent to (J,M,M) |= notψ for
all J ∈M, which in turn is the same asM |= φ.
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c) If φ = ¬φ1, then we can inductively assume that the claim holds for φ1 and we
obtain (I,M,M) |= φ if and only if (I,M,M) 6|= φ1, by the hypothesis this
is equivalent toM 6|= φ1 and sinceM is non-empty, using the hypothesis again
we can rewrite this as (J,M,M) 6|= φ1 for all J ∈ M, which in turn is the
same as (J,M,M) |= φ for all J ∈M, or in other wordsM |= φ.

d) If φ = φ1 ∧ φ2, then we can inductively assume that the claim holds for φ1

and φ2 and we obtain (I,M,M) |= φ if and only if both (I,M,M) |= φ1

and (I,M,M) |= φ2, by the hypothesis this is equivalent to M |= φ1 and
M |= φ2, rewritable as (J,M,M) |= φ1 and (J,M,M) |= φ2 for all J ∈ M,
which in turn is equivalent to (J,M,M) |= φ for all J ∈ M, in other words
M |= φ.

According to the following Lemma, for any rule π, in order to proveM |= κ(π),
it suffices to prove thatM |= κ(B(π)) impliesM |= κ(H(π)).

Lemma 38. Let φ be a subjective MKNF formula of the form φ1 ⊃ φ2 and M an
MKNF interpretation. ThenM |= φ if and only ifM |= φ1 impliesM |= φ2.

Proof. Follows directly from Lemma 37 applied to φ1 and φ2.

Proposition 39. Every definite MKNF knowledge base either has no S5 model, or it
has a unique MKNF model which coincides with its greatest S5 model.

Proof. Suppose that the MKNF knowledge base K = O ∪ P has some S5 model and
letM be the union of all S5 models of K. First we show thatM is an S5 model of K,
i.e. it is the greatest S5 model ofM.

Take some MKNF formula φ from K. If φ = Kκ(O), then we need to show that
for all I ∈ M, (I,M,M) |= κ(O). Since κ(O) is a first-order sentence, this holds if
and only if for all I ∈ M, I |= κ(O). Take some I ∈ M. Then I belongs to some S5
model N of K and, consequently, I |= κ(O).

The other possibility is that φ is a formula of the form κ(B(π)) ⊃ κ(H(π)) for
some π ∈ P . We need to show thatM |= φ. Suppose thatM |= κ(B(π)), we will
prove thatM |= κ(H(π)) = KH(π). Take an arbitrary J ∈ M and some S5 model
N of K such that J ∈ N . Since B(π) does not contain default literals, it follows from
M |= κ(B(π)) and N ⊆ M that N |= κ(B(π)) and thus it must be the case that
J |= H(π). Consequently, we can conclude thatM |= KH(π).

It remains to show that M is the unique MKNF model of K. Since κ(K) does
not contain not, it follows by the definitions of MKNF satisfaction and of an MKNF
model that the MKNF models of K are exactly its subset-maximal S5 models. Since
M is the greatest S5 model ofM, it follows that it is also its unique MKNF model.

Lemma 40. Let K = O ∪ P be a definite MKNF knowledge base. If K has no MKNF
model, then O ∪ { (H(π).) | π ∈ P } has no MKNF model either.

Proof. IfO∪{ (H(π).) | π ∈ P } has an MKNF model, then it has an S5 model which
must also be an S5 model of K. Thus it follows from Proposition 39 that K has an
MKNF model, too.

Lemma 41. Let K = O ∪ P be a definite MKNF knowledge base, M an MKNF
interpretation andK′ = O∪{ (H(π).) | π ∈ P ∧M |= κ(B(π)) }.M is an S5 model
of K if and only ifM is an S5 model of K′. Also, ifM is the MKNF model of K, then
M is the MKNF model of K′.
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Proof. Both claims follow from Lemma 38 and from basic properties of MKNF inter-
pretations.

Definition 42. Let K = O ∪ P be an MKNF knowledge base and M an MKNF
interpretation. The reduct of K relative to M is the MKNF knowledge base KM =
O ∪ PM where PM = {H(π)← B(π)+. | π ∈ P ∧M |= κ(∼B(π)−) }.

Lemma 43. Let K be an MKNF knowledge base and M an MKNF interpretation.
ThenM is an S5 model of K if and only ifM is an S5 model of KM.

Proof. Suppose thatM is an S5 model ofK. Obviously,M |= κ(O). Take some π′ =
(H(π)← B(π)+.) from PM for some π ∈ P withM |= κ(∼B(π)−). Then κ(KM)
contains the formula κ(π′) of the form κ(B(π)+) ⊃ κ(H(π)). IfM |= κ(B(π)+),
then it is easy to verify thatM |= κ(B(π)) and thus sinceM |= κ(π), it follows that
M |= κ(H(π)). Hence,M |= κ(π′).

For the converse implication, assume thatM is an S5 model of KM. Obviously,
M |= κ(O), so consider some rule π ∈ P . IfM |= κ(B(π)), then PM contains the
rule π′ = (H(π) ← B(π)+.) and sinceM |= κ(π′), it follows thatM |= κ(H(π)).
Thus,M |= κ(π).

Proposition 44. An MKNF interpretationM is an MKNF model of an MKNF knowl-
edge base K if and only ifM is an MKNF model of KM.

Proof. Suppose thatM is an MKNF model of K. Then it is also an S5 model of K, so
it follows that it is an S5 model of KM from Lemma 43.

Since M is an S5 model of KM, it must hold that M is a subset of the greatest
S5 modelM′ of KM. By contradiction, we will show thatM = M′, i.e.M is the
MKNF model of KM (c.f. Proposition 39). AssumeM (M′. SinceM is an MKNF
model of K, there must be some formula φ ∈ κ(K) and some I ′ ∈ M′ such that
(I ′,M′,M) 6|= φ. ButM′ |= κ(O), so φ must be of the form κ(B(π)) ⊃ κ(H(π))
for some rule π ∈ P and the following must hold:

(I ′,M′,M) |= κ(∼B(π)−)∧ (I ′,M′,M) |= κ(B(π)+)∧ (I ′,M′,M) 6|= κ(H(π))

which is equivalent to

M |= κ(∼B(π)−) ∧M′ |= κ(B(π)+) ∧M′ 6|= κ(H(π)) .

However, this is in conflict with M′ being an S5 model of KM since the formula
κ(B(π)+) ⊃ κ(H(π)) belongs to κ(KM).

For the converse implication, assume thatM is the MKNF model of KM. Then it
follows from Lemma 43 thatM is an S5 model of K.

Take someM′ )M. SinceM is the greatest S5 model of KM, there is some rule
π′ = (H(π)← B(π)+.) ∈ PM such thatM′ 6|= κ(π′), i.e.

M |= κ(∼B(π)−) ∧M′ |= κ(B(π)+) ∧M′ 6|= κ(H(π))

For any I ′ ∈M′, this is equivalent to

(I ′,M′,M) |= κ(∼B(π)−)∧ (I ′,M′,M) |= κ(B(π)+)∧ (I ′,M′,M) 6|= κ(H(π))

which is equivalent to (I ′,M′,M) 6|= κ(π). Thus,M is an MKNF model of K.
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A.3 Contexts
Proposition 12. Every first-order, DL, ASP, database, and MKNF context is reducible.

Proof. We show the argument for MKNF contexts, all other cases are similar.
First we need to prove that the MKNF logic LMKNF is reducible. Let KB∗MKNF be

the set of definite MKNF knowledge bases. It follows from Proposition 39 that the
reduction of ACCMKNF to KB∗MKNF is a monotonic logic.

Let the reduction function redMKNF : KBMKNF×BSMKNF → KB∗MKNF be defined as
follows:

redMKNF(O ∪ P, S) = O ∪ PS

where PS = {H(π)← B(π)+. | π ∈ P ∧B(π)− ∩ S = ∅ }. We need to verify the
following conditions:

1. redMKNF(K, S) = K whenever K ∈ KB∗MKNF,

2. redMKNF(K, S) ⊆ redMKNF(K, S′) whenever S′ ⊆ S,

3. S ∈ ACCMKNF(K) if and only if ACCMKNF(redMKNF(K, S)) = {S }.
The first condition follows from the fact that PS = P when K is definite.

To see that the second condition is satisfied, suppose that S′ ⊆ S. If PS contains
the rule π′ = (H(π) ← B(π)+.) for some π ∈ P , then B(π)− ∩ S = ∅, and from
S′ ⊆ S we obtain B(π)− ∩ S′ = ∅. Thus, π′ belongs to PS′

as well.
To verify the final condition, first suppose that Φ ∈ ACCMKNF(K). Then K′,

obtained from K by removing all rules with default negation, has no MKNF model.
Also, K′ coincides with redMKNF(K,Φ), so ACCMKNF(redMKNF(K,Φ)) = {Φ }.

In the principal case, ACCMKNF(K) contains the belief set S = {φ ∈ Φ | M |= φ }
for some MKNF modelM of K. In that case,M is the MKNF model of KM accord-
ing to Proposition 44. It is not difficult to verify thatKM coincides with redMKNF(K, S)
and that ACCMKNF(redMKNF(K, S)) = {S }.

For the other direction, suppose that ACCMKNF(redMKNF(K, S)) = {S } for some
belief set S. If S = Φ, then redMKNF(K, S) coincides with K′ obtained from K by
removing all rules with default negation. This means that ACCMKNF(K) = {S } by
definition. In the principal case, S = {φ ∈ Φ | M |= φ } where M is the MKNF
model of redMKNF(K, S) which coincides with KM. Thus, by Proposition 44,M is an
MKNF model of K and S belongs to ACCMKNF(K) by definition.

It remains to prove that for every MKNF context C = (LMKNF,K, br), it holds for
all H ⊆ {H(σ) | σ ∈ br } and all belief sets S ∈ BSMKNF that redMKNF(K ∪H,S) =
redMKNF(K, S) ∪ H . This follows from the fact that all heads of bridge rules from
br are objective literals or ontology axioms which are unmodified by the reduction
function.

A.4 Reducing an MKNF Context
In this section we use the multi-context consequence operator that was briefly intro-
duced in [6]. Note that since we assume that the set of belief sets BSi is a complete
lattice w.r.t. set inclusion, BS1 × · · · ×BSn is also a complete lattice w.r.t. the point-
wise ordering�. The multi-context consequence operator TM is a monotonic mapping
on this complete lattice, defined as follows:
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Definition 45. Let M be a definite MCS. The multi-context consequence operator TM
is for any belief state S = 〈S1, . . . , Sn〉 ofM defined as TM (S) = 〈S′1, . . . , S′n〉where

{S′i } = ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) }) .

It is not difficult to verify that TM is monotonic. Furthermore, the grounded equi-
librium of M is the least fixed point of TM . It also follows from the properties of
monotonic mappings on complete lattices that whenever TM (S) � S, the grounded
equilibrium S∗ of M is such that S∗ � S.

Proposition 46. Let M be a definite MCS with the grounded equilibrium S∗ and S a
belief state of M . If TM (S) � S, then S∗ � S.

Proposition 47. Let M = 〈C1, . . . , Cn〉 be a definite MCS such that for some j with
1 ≤ j ≤ n, Cj = (LMKNF,O ∪ P, br j) is a ground MKNF context, and

M ′ = 〈C1, . . . , Cj−1, C
′
j , Cj+1, . . . , Cn〉 ,

whereC ′j = (LMKNF,O, br j∪αj(P)). The grounded equilibria ofM andM ′ coincide.

Proof. First let S = 〈S1, . . . , Sn〉 be the grounded equilibrium of M . We will show
that S is an equilibrium ofM ′. From the assumption that S is the grounded equilibrium
of M we can conclude that, for all i with 1 ≤ i ≤ n and i 6= j,

{Si } = ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) }) . (1)

It remains to verify that

{Sj } = ACCMKNF(O ∪ {H(σ) | σ ∈ br j ∪ αj(P) ∧ S |= B(σ) }) . (2)

We know that

{Sj } = ACCMKNF(O ∪ P ∪ {H(σ) | σ ∈ br j ∧ S |= B(σ) }) . (3)

Let

O′ = O ∪ {φ | σ ∈ br j ∧ S |= B(σ) ∧H(σ) = φ is an ontology axiom } ,

P ′ = P ∪ { l | σ ∈ br j ∧ S |= B(σ) ∧H(σ) = l is an objective literal } .

It is not difficult to verify that (3) can be written as

{Sj } = ACCMKNF(O′ ∪ P ′) (4)

while (2) as

{Sj } = ACCMKNF(O′ ∪ {H(π) | π ∈ P ′ ∧ S |= αj(B(π)) }) . (5)

Our goal is to prove that (4) implies (5). First consider the case when Sj = Φ. Then
O′ ∪ P ′ has no MKNF model and by Lemma 40,

O′ ∪ {H(π) | π ∈ P ′ } = O′ ∪ {H(π) | π ∈ P ′ ∧B(π) ⊆ Sj }
= O′ ∪ {H(π) | π ∈ P ′ ∧ S |= αj(B(π)) }
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also has no MKNF model. Thus, (5) is satisfied. In the principal case there is an MKNF
modelM of O′ ∪ P ′ such that Sj = {φ ∈ Φ | M |= φ }. By Lemma 41, M is the
MKNF model of

O′ ∪ {H(π) | π ∈ P ′ ∧M |= κ(B(π)) } = O′ ∪ {H(π) | π ∈ P ′ ∧B(π) ⊆ Sj }
= O′ ∪ {H(π) | π ∈ P ′ ∧ S |= αj(B(π)) } .

Hence, (5) is satisfied.
Now suppose that S is the grounded equilibrium of M ′. We will show that S is an

equilibrium of M . As before, we know that (1) is satisfied, so it remains to verify that
(3) is also satisfied given that (2) holds. Similarly as before we can reformulate (3) and
(2) as (5) and (4), respectively. So assuming that (5) holds, we need to prove (4).

First suppose that Sj = Φ. It follows that O′ ∪ {H(π) | π ∈ P ′ } has no MKNF
model. We continue by contradiction. If O′ ∪ P ′ has the MKNF modelM, then for
S′j = {φ ∈ Φ | M |= φ } we have

{S′j } = ACCMKNF(O′ ∪ {H(π) | π ∈ P ′ ∧ S |= αj(B(π)) }) .

Put S′ = 〈S1, . . . , Sj−1, S
′
j , Sj+1, . . . , Sn〉. Clearly, S′ ≺ S because S′j is consistent,

so it is a proper subset of Sj = Φ. Thus, by the monotonicity of TM we obtain
TM (S′) � TM (S). Furthermore, TM (S) = S′, so we can conclude that TM (S′) � S′
and by Proposition 46 we conclude that for the grounded equilibrium S∗ of M it holds
that S∗ � S′. It also follows from the above that S∗ ≺ S. Moreover, by the first part
of this proof we conclude that S∗ is an equilibrium of M ′, which is in conflict with the
minimality of S.

A similar argument applies when Sj = {φ ∈ Φ | M |= φ } for some MKNF model
M of O′ ∪ {H(π) | π ∈ P ′ ∧ S |= αj(B(π)) }. It follows from Lemma 41 that M
is an S5 model of O′ ∪ P ′ and thus by Proposition 39, O′ ∪ P ′ has an MKNF model
M′ ⊇ M. Let S′j = {φ ∈ Φ | M′ |= φ }. It easily follows that S′j ⊆ Sj . Put
S′ = 〈S1, . . . , Sj−1, S

′
j , Sj+1, . . . , Sn〉. Clearly, S′ � S. Thus by the monotonicity of

TM we obtain TM (S′) � TM (S). Furthermore, TM (S) = S′, so we can conclude that
TM (S′) � S′ and by Proposition 46 we conclude that for the grounded equilibrium S∗

of M it holds that S∗ � S′. It also follows from the above that S∗ � S. Moreover,
by the first part of this proof we conclude that S∗ is an equilibrium of M ′, and by the
minimality of S we obtain S � S∗. Consequently, S = S∗ = S′.

Finally, since the grounded equilibrium of M is an equilibrium of M ′ and the
grounded equilibrium of M ′ is an equilibrium of M , it follows by the minimality of
grounded equilibria that the grounded equilibria of M and M ′ coincide.

Proposition 48. Let M = 〈C1, . . . , Cn〉 be a reducible MCS such that for some j with
1 ≤ j ≤ n, Cj = (LMKNF,O ∪ P, br j) is a ground MKNF context, and

M ′ = 〈C1, . . . , Cj−1, C
′
j , Cj+1, . . . , Cn〉 ,

whereC ′j = (LMKNF,O, br j∪αj(P)). The grounded equilibria ofM andM ′ coincide.

Proof. This follows from the definition of αj , the reduct of bridge rules brSj and logic
programsPSj and the fact that for every belief state S, the pair of definite multi-context
systems MS , (M ′)S satisfies the conditions of Proposition 47.
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Theorem 16 (Reduction Into First-Order Context). Let M = 〈C1, . . . , Cn〉 be a
reducible MCS such that for some j with 1 ≤ j ≤ n, Cj is a ground MKNF context,
and

M ′ = 〈C1, . . . , Cj−1, C
FO
j , Cj+1, . . . , Cn〉 .

The grounded equilibria of M and M ′ coincide.

Proof. This follows from Proposition 48 and from [10, Theorem 5.9.4] together with
the fact that we work under the UNA, so equality is interpreted the same way for first-
order and MKNF theories.

A.5 Reduction to DL + Database
The proof proceeds in three steps. At first, we show that, starting from a first-order con-
text which resulted from an MKNF context, we can obtain two corresponding contexts,
one FO context and one database context.

Definition 49. Let Cj = (LFO, {κ(O) } , br j) be the first-order context corresponding
to a ground MKNF context. The two-context MCS corresponding to Cj , 〈C ′j , C ′k〉, is
defined as follows:

• C′j = (LFO, {κ(O)}, br ′j), where

br ′j = {σ | σ ∈ βk
j (br j) ∧H(σ) resulted from applying κ } ;

• C′k = (LDB, ∅, br ′k), where

br ′k = {σ | σ ∈ βk
j (br j) ∧H(σ) is a non-DL-literal } .

Proposition 50. LetM = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j with 1 ≤ j ≤ n, Cj is a first-order context corresponding to a ground
MKNF context, and

M ′ = 〈C ′1, . . . , C ′j−1, C
′
j , C

′
j+1, . . . , C

′
n, C

′
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DL
j , S

′
j+1, . . . , S

′
n, S

DB
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and
Sj = (SDL

j ∪ SDB
n+1)∗.

Proof. First, let S = 〈S1, . . . , Sn〉 be a grounded equilibrium of M . We show that
S′ = 〈S′1, . . . , S′n+1〉 is an equilibrium of M ′. Since S is a grounded equilibrium of
M we know that, for all i with 1 ≤ i ≤ n,

{Si } = ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) })

Consider the first-order context Cj corresponding to a finite ground MKNF context:

{Sj } = ACCj(κ(O) ∪ {H(σ) | σ ∈ br j ∧ S |= B(σ) })

where rules in br j can be divided into rules whose head resulted from applying κ and
rules with a non-DL-literal in the head. Thus the following is equivalent:

{Sj } = ACCj(κ(O)∪
{H(σ) | σ ∈ br j ∧ S |= B(σ) ∧H(σ) resulted from applying κ }∪
{H(σ) | σ ∈ br j ∧ S |= B(σ) ∧H(σ) is a non-DL-literal })
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Since non-DL-atoms do not appear inO, and UNA prevents any further derivations
due to equalities in O, we can rewrite this (for some integer k) as follows: Sj =
(S′j ∪ S′k)∗ where

{S′j } = ACCj(κ(O)∪
{H(σ) | σ ∈ br j ∧ S |= B(σ) ∧H(σ) resulted from applying κ })

{S′k } = ACCj({H(σ) | σ ∈ br j ∧ S |= B(σ) ∧H(σ) is a non-DL-literal }))∗

Note that the deductive closure is necessary to capture first-order sentences in Sj that
contain elements from both its parts.

Recall, that all bridge literals referring to Cj are objective literals or ontology ax-
ioms to which κ has been applied, i.e. one of the two contexts suffices to verify whether
such a bridge literal holds. Moreover, note that S′k alone is just a set of facts and does
not require a first-order context. Thus, we can introduce the two-context MCS corre-
sponding to Cj , 〈C ′j , C ′k〉 to which 〈S′j , S′k〉 corresponds, and, for k = n + 1, obtain
M ′ by applying βkj to all the bridge rules in each context in M , which simply redirects
bridge literals that refer to non-DL-literals to C ′n+1.

We obtain immediately that, for all i with 1 ≤ i 6= j ≤ n, Si = S′i, and also
Sj = (S′j ∪ S′n+1)∗, and, subsequently, that, for all 1 ≤ i′ ≤ n+ 1,

{Si′ } = ACCi′(kbi′ ∪ {H(σ) | σ ∈ br i′ ∧ S |= B(σ) })

Consequently, S′ is an equilibrium of M ′.
Now, let S′ = 〈S′1, . . . , S′n+1〉 be a grounded equilibrium of M ′. We can show

that S = 〈S1, . . . , Sn〉 is an equilibrium of M following the (inverted) constructive
argument of the previous part.

Finally, since a grounded equilibrium 〈S1, . . . , Sn〉 of M yields an equilibrium
〈S′1, . . . , S′n+1〉 of M ′, and a grounded equilibrium 〈S′1, . . . , S′n+1〉 of M ′ yields an
equilibrium 〈S1, . . . , Sn〉 of M , such that, for all i with 1 ≤ i 6= j ≤ n, Si = S′i, and
Sj = (S′j ∪ S′n+1)∗, we conclude by the minimality of grounded equilibria that the
grounded equilibria of M and M ′ are equivalent.

In the next step, the transformation is lifted to work for an MKNF context directly.

Definition 51. Let Cj = (LMKNF,O ∪ P, br j) be a ground MKNF context. The two-
context FO MCS corresponding to Cj , 〈CFOL

j , CDB
k 〉, is defined as follows:

• CFOL
j = (LFO, {κ(O)}, br FOL

j ), where

br FOL
j = {σ | σ ∈ βk

j (br j ∪ αj(P)) ∧H(σ) resulted from applying κ } ;

• CDB
k = (LDB, ∅, brk), where

brk = {σ | σ ∈ βk
j (br j ∪ αj(P)) ∧H(σ) is a non-DL-literal } .

Note that CFOL
j is different from CFO

j in Theorem 16.

Proposition 52. LetM = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j with 1 ≤ j ≤ n, Cj is a ground MKNF context, and set

M ′ = 〈C ′1, . . . , C ′j−1, C
FOL
j , C ′j+1, . . . , C

′
n, C

DB
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).
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The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is
a grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DL
j , S

′
j+1, . . . , S

′
n, S

DB
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and
Sj = (SDL

j ∪ SDB
n+1)∗.

Proof. This follows directly from Proposition 50 since, despite the differing original
context Cj (ground MKNF context in Proposition 52 vs. a first-order context cor-
responding to a ground MKNF context in Proposition 50), both two-context MCS
〈C ′j , C ′k〉 and 〈CFOL

j , CDB
k 〉 are identical.

Theorem 20. Let M = 〈C1, . . . , Cn〉 be a reducible MCS such that, for some j with
1 ≤ j ≤ n, Cj is a ground MKNF context, and

M ′ = 〈C ′1, . . . , C ′j−1, C
DL
j , C

′
j+1, . . . , C

′
n, C

DB
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is
a grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DL
j , S

′
j+1, . . . , S

′
n, S

DB
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and
Sj = (SDL

j ∪ SDB
n+1)∗.

Proof. This follows directly from Proposition 52. The only differences are that CFOL
j

uses {κ(O)} as kb instead of O, since CFOL
j uses LFO instead of LDL, and that some

bridge rule heads are results of applying κ in the former case instead of ontology ax-
ioms, which can be remedied by a simple inverse function κ−.

A.6 Reduction to DL + ASP
In the following, we proceed as in the previous subsection. We first define an interme-
diate translation from DL-DB MCS to DL-ASP MCS. For that purpose, we define the
DL-ASP MCS corresponding to a DL-DB MCS.

Definition 53. Let 〈CDL
j , C

DB
k 〉 = 〈(LDL,O, br DL

j ), (LDB, ∅, br DB
k )〉 be a DL-DB MCS

corresponding to a ground MKNF context. The DL-ASP MCS corresponding to 〈CDL
j , C

DB
k 〉,

〈CDLm
j , CASP

k 〉, is defined as follows:

• CDLm
j = (LDL,O, br DLm

j ), where

br DLm
j = {σ | σ ∈ (br DL

j )m} ∪ {H(σ)← (k : γj(H(σ))). | σ ∈ (br DL
j )n} ;

• CASP
k = (LASP, kbk, br

ASP
k ), where

kbk = {H(σ)← γk(B(σ)). | σ ∈ (br DB
k )n }

∪ { γj(H(σ))← γk(B(σ)). | σ ∈ (br DL
j )n } ,

br ASP
k = {σ | σ ∈ (br DB

k )m } ∪ { γi(p)← (i : p). | σ ∈ ((br DL
j )n ∪ (br DB

k )n)

∧ k 6= i ∧ (i : p) ∈ B(σ)+ ∪B(σ)− } .

Proposition 54. LetM = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j and k with 1 ≤ j 6= k ≤ n, 〈CDL

j , C
DB
k 〉 is a DL-DB MCS corresponding to

a ground MKNF context, and M ′ = 〈C ′1, . . . , C ′n〉 where, for all i with 1 ≤ i ≤ n and
j 6= i 6= k, C ′i = Ci, C ′j = CDLm

j and C ′k = CASP
k .
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The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′n〉 is a grounded equilibrium for M ′

where, for all i with 1 ≤ i ≤ n and i 6= k, Si = S′i, and Sk = S′k \ SAUX where
SAUX ⊆ S′k is the set of all new ground atoms introduced by γ.

Proof. First, let S = 〈S1, . . . , Sn〉 be a grounded equilibrium of M . We show that
S′ = 〈S′1, . . . , S′n〉 is an equilibrium of M ′. Since S is a grounded equilibrium of M
we know that, for all i with 1 ≤ i ≤ n,

{Si } = ACCi(kbi ∪ {H(σ) | σ ∈ br i ∧ S |= B(σ) })

Consider the DL-DB MCS 〈CDL
j , C

DB
k 〉 corresponding to a ground MKNF context:

{Sj } = ACCj(O ∪ {H(σ) | σ ∈ br DL
j ∧ S |= B(σ) })

{Sk } = ACCk({H(σ) | σ ∈ br DB
k ∧ S |= B(σ) })

We can distinguish monotonic and non-monotonic bridge rules as follows without any
effect on the belief sets.

{Sj } = ACCj(O ∪ {H(σ) | σ ∈ (br DL
j )m ∧ S |= B(σ) } ∪

{H(σ) | σ ∈ (br DL
j )n ∧ S |= B(σ) })

{Sk } = ACCk({H(σ) | σ ∈ (br DB
k )m ∧ S |= B(σ) }∪

{H(σ) | σ ∈ (br DB
k )n ∧ S |= B(σ) })

We can also switch the part of Sj resulting from non-monotonic bridge rules to Sk
using ground atoms γj(H(σ)) as links in the additional monotonic bridge rules from
Ck to Cj .

{Sj } = ACCj(O ∪ {H(σ) | σ ∈ (br DL
j )m ∧ S |= B(σ) }∪

{H(σ) | γj(H(σ)) ∈ Sk ∧ σ ∈ (br DL
j )n })

{S′′k } = ACCk({H(σ) | σ ∈ (br DB
k )m ∧ S |= B(σ) }∪

{H(σ) | σ ∈ (br DB
k )n ∧ S |= B(σ) }∪

{ γj(H(σ)) | σ ∈ (br DL
j )n ∧ S |= B(σ) })

This step does obviously not change Sj but potentially adds new ground atoms to S′′k ,
so Sk ⊆ S′′k .

Now, we join the two belief sets based on the of non-monotonic bridge rules and
turn them into ASP rules using γ. We only have to ensure that the necessary infor-
mation for the bridge literals from other contexts is correctly imported, where again γ
ensures that only new ground atoms are introduced.

{Sj } = ACCj(O ∪ {H(σ) | σ ∈ (br DL
j )m ∧ S |= B(σ) }∪

{H(σ) | γj(H(σ)) ∈ Sk ∧ σ ∈ (br DL
j )n })

{S′′k } = ACCk({H(σ) | σ ∈ (br DB
k )m ∧ S |= B(σ) }∪

{H(σ)← γk(B(σ)). | σ ∈ (br DB
k )n}∪

{γj(H(σ))← γk(B(σ)). | σ ∈ (br DL
j )n}∪

{γi(p) | p ∈ Si ∧ σ ∈ ((br DL
j )n ∪ (br DB

k )n) ∧ k 6= i

∧ (i : p) ∈ B(σ)+ ∪B(σ)−})
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We derive from this that Sj = S′j and S′′k = S′k. Indeed, Sk = S′k \ SAUX holds.
Now, since all elements added to S′k are new ground atoms, we can be sure that their

addition to Sk does not yield any additional information in any other context (apart
from the intended transfer for γj(H(σ)) to Sj). We conclude that S′ is an equilibrium
of M ′.

Assuming that S′ is a grounded equilibrium of M ′, we can also show that S is an
equilibrium of M following the inverse of the just presented construction. By mini-
mality, we obtain that both obtained equilibria are indeed grounded equilibria, which
finishes the proof.

Theorem 25. Let M = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j with 1 ≤ j ≤ n, Cj is a ground MKNF context, and

M ′ = 〈C ′1, . . . , C ′j−1, C
DLm
j , C ′j+1, . . . , C

′
n, C

ASP
n+1〉

where, for allCi = (Li, kbi, br i) with 1 ≤ i ≤ n and i 6= j,C ′i = (Li, kbi, βn+1
j (br i)).

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

DLm
j , S′j+1, . . . , S

′
n, S

ASP
n+1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i 6= j ≤ n, Si = S′i, and
Sj = (SDLm

j ∪ (SASP
n+1 \SAUX))∗ where SAUX ⊆ SASP

n+1 is the set of all new ground atoms
introduced by γ.

Proof. Consider Defs. 19 and 53 for the step-wise correspondences from MKNF con-
text via DL-DB MCS to DL-ASP MCS in comparison with Def. 24 for the direct cor-
respondence from MKNF context to DL-ASP MCS. Consider in particular the two
resulting DL-ASP MCS in Defs. 53 and 24. They are indeed identical in every aspect
but one: in Def. 53, br DLm

j contains also the monotonic rules from P of the MKNF KB
K, while in Def. 24 these rules are added to the kb of the ASP context. The equiva-
lence of the grounded equilibria of M and M ′ thus follows from a similar argument as
in Prop. 54, Theorem 20, and Prop. 54 itself.

Theorem 28. Let M = 〈C1, . . . , Cn〉 be a reducible MCS with Ci = (Li, kbi, br i) for
all i with 1 ≤ i ≤ n and Cj a ground ASP context for some j with 1 ≤ j ≤ n, and
M ′ = 〈C ′1, . . . , C ′n〉 with

• C′i = (Li, kbi, br
′
i) for all i with i 6= j, where

br ′i = brm
i ∪ {H(σ)← (j : γi(H(σ))). | σ ∈ brn

i } ;

• C′j = (Lj , kb
′
j , br

′
j), where kb′j = kbj ∪

S
i{γi(H(σ)) ← γj(B(σ)). | σ ∈ brn

i },
and

br ′j = brm
j ∪

S
i { γk(p)← (k : p). | σ ∈ brn

i ∧ j 6= k ∧ (k : p) ∈ B(σ)+ ∪B(σ)− } .

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is a
grounded equilibrium for M iff S′ = 〈S′1, . . . , S′n〉 is a grounded equilibrium for M ′

where, for all i with 1 ≤ i ≤ n and i 6= j, Si = S′i, and Sj = S′j \ SAUX where
SAUX ⊆ S′j is the set of all new ground atoms introduced by γ.

Proof. This theorem is indeed a generalisation of Proposition 54. Indeed, the DL-
ASP MCS defined in Definition 53 contains CDLm

j which exactly corresponds to all C ′i
whose non-monotonic bridge rules are transferred to the ASP context. Moreover, Cj
is the ASP context CASP

k , only that now kb contains the union of all non-monotonic
(transformed) bridge rules, and the bridge rules itself are also a union of imports from
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all different contexts. Note that since new ground atoms are disjoint with already ele-
ments of the belief sets, the transfer of additional beliefs into the ASP context does not
affect the equilibria.

A.7 Reduction to MKNF Context
Theorem 31. Let M = 〈C1, . . . , Cn〉 be a reducible multi-context system such that,
for some j and k with 1 ≤ j < k ≤ n, Cj and Ck are ground MKNF contexts, and

M ′ = 〈C ′1, . . . , C ′j−1, C
MKNF
j , C ′j+1, . . . , C

′
n−1〉

where, given Ci = (Li, kbi, br i), for all i with 1 ≤ i < n and i 6= j, C ′i =
(Li, kbi, δkj (br i)) if i < k, and C ′i = (Li+1, kbi+1, δ

k
j (br i+1)) otherwise.

The grounded equilibria of M and M ′ are equivalent, i.e. S = 〈S1, . . . , Sn〉 is
a grounded equilibrium for M iff S′ = 〈S′1, . . . , S′j−1, S

MKNF
j , S′j+1, . . . , S

′
n−1〉 is a

grounded equilibrium for M ′ where, for all i with 1 ≤ i < n and i 6= j, S′i = Si if
i < k and S′i = Si+1 otherwise, and SMKNF

j = (Sj ∪ Sk)∗.

Proof. First, let S = 〈S1, . . . , Sn〉 be a grounded equilibrium of M . We show that
S′ = 〈S′1, . . . , S′n〉 is an equilibrium of M ′.

Let Cj and Ck be ground MKNF contexts. The corresponding belief sets are:

{Sj } = ACCj(O1 ∪ P1 ∪ {H(σ) | σ ∈ br 1
j ∧ S |= B(σ) })

{Sk } = ACCk(O2 ∪ P2 ∪ {H(σ) | σ ∈ br 2
k ∧ S |= B(σ) })

Since, by assumption, all predicates appearing in the two contexts are disjoint, we
obtain that

{ (Sj ∪ Sk)∗ } = ACCMKNF(O1 ∪ P1 ∪ O2 ∪ P2

∪ {H(σ) | σ ∈ (br 1
j ∪ br 2

k) ∧ S |= B(σ) }) .

This exactly corresponds to SMKNF
j apart from the reordering δ. Now, since the other

belief sets are not changed at all (apart from the reordering), we derive that S′ is an
equilibrium of M ′.

Assuming that S′ is a grounded equilibrium of M ′ , we can show S is an equilib-
rium of M following the inverse of the constructive argument just presented.

By minimality, we obtain that both obtained equilibria are indeed grounded equi-
libria, which finishes the proof.
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