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Abstract. Recent developments triggered by initiatives such as the Semantic
Web, Linked Open Data, the Web of Things, and geographic information systems
resulted in the wide and increasing availability of machine-processable data and
knowledge in the form of data streams and knowledge bases. Applications build-
ing on such knowledge require reasoning with modal and intensional concepts,
such as time, space, and obligations, that are defeasible. E.g., in the presence of
data streams, conclusions may have to be revised due to newly arriving infor-
mation. The current literature features a variety of domain-specific formalisms
that allow for defeasible reasoning using specific intensional concepts. However,
many of these formalisms are computationally intractable and limited to one of
the mentioned application domains. In this paper, we define a general method for
obtaining defeasible inferences over intensional concepts, and we study condi-
tions under which these inferences are computable in polynomial time.

1 INTRODUCTION

In this paper, we develop a solution that allows us to tractably reason with intensional
concepts, such as time, space and obligations, providing defeasible/non-monotonic in-
ferences in the presence of large quantities of data.

Initiatives such as the Semantic Web, Linked Open Data, and the Web of Things, as
well as modern Geographic Information Systems, resulted in the wide and increasing
availability of machine-processable data and knowledge in the form of data streams and
knowledge bases. To truly take advantage of this kind of knowledge, it is paramount to
be able to reason in the presence of intensional or modal concepts, which has resulted in
an increased interest in formalisms, often based on rules with defeasible inferences, that
allow for reasoning with time [5,26,12,10,14,41], space [13,42,28,39], and possibility
or obligations [36,25,27,11]. Examples of such concepts may be found in applications
with data referring for example to time (e.g., operators such as “next”, “at time”, “during
interval T”) or space (e.g., “at place P”, “within a given radius”, “connected to”), but
also legal reasoning (e.g., “is obliged to”, “is permitted”).

Example 1. In a COVID-19-inspired setting, we consider an app for contact-tracing. It
tracks where people move and stores their networks of persons, i.e., their colleagues
and family whom they meet regularly. Once a person tests positive, the app informs
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anyone at risk (e.g. someone who was in the proximity of an infected person for a
longer amount of time or because someone in their network is at risk) that they have to
stay in quarantine for 10 days. If a negative test result can be given, this quarantine is
not obligatory anymore. It is important that the app can explain to persons being orderd
in quarantine the reason for their being at risk (e.g. since they were in contact with an
infected person for a longer amount of time) while preserving anonymity to abide with
laws of data protection (e.g. someone being ordered into quarantine should not be able
to see who is the reason for this).

In this context, efficient reasoning with non-monotonic rules over intensional con-
cepts is indeed mandatory, since a) rules allow us to encode monitoring and intervention
guidelines and policies in a user-friendly and declarative manner; b) conclusions may
have to be revised in the presence of newly arriving information; c) different inten-
sional concepts need to be incorporated in the reasoning process; d) timely decisions
are required, even in the presence of large amounts of data, as in streams; e) intensional
concepts can preserve anonymity, e.g. in user-friendly explanations without having to
change the rules. However, relevant existing work usually deals with only one kind of
intensional concepts (as detailed before), and, in general, the computational complex-
ity of the proposed formalisms is too high, usually due to both the adopted underlying
formalism and the unrestricted reasoning with expressive intensional concepts.

In this paper, we introduce a formalism that allows us to seamlessly represent and
reason with defeasible knowledge over different intensional concepts. We build on so-
called intensional logic programs [34], extended with non-monotonic default negation,
and equip them with a novel three-valued semantics with favorable properties. In par-
ticular, we define a well-founded model in the line of the well-founded semantics for
logic programs [22]. Provided the adopted intensional operators satisfy certain proper-
ties, which turn out to be aligned with practical applications such as the one outlined
in Ex. 1, the well-founded model is unique, minimal among the three-valued models,
in the sense of only providing derivable consequences, and, crucially, its computation
is tractable. Our approach allows us to add to relevant related work in the sense of pro-
viding a well-founded semantics to formalisms that did not have one so far, which we
illustrate on a relevant fragment of LARS programs [10].

We introduce intensional logic programs in Sec. 2, define our three-valued seman-
tics in Sec. 3, show how to compute the well-founded model in Sec. 4, discuss the
complexity and related work in Secs. 5 and 6, respectively, before we conclude.

2 INTENSIONAL LOGIC PROGRAMS

In this section, building on previous work by Orgun and Wadge [34], we introduce
intensional logic programs, a very expressive framework that allows us to reason with
intensional concepts, such as time, space, and obligations, in the presence of large quan-
tities of data, including streams of data. Intensional logic programs are based on rules,
as used in normal logic programs, enriched with atoms that introduce the desired inten-
sional concepts. The usage of default negation in the rules is a distinctive feature com-
pared to the original work [34] and particularly well-suited to model non-monotonic and
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defeasible reasoning [23] and allows us to capture many other forms of non-monotonic
reasoning, see, e.g., [16,19]. To assign meaning to intensional programs, we rely on the
framework of neighborhood semantics [35], a generalization of the Kripke semantics,
that easily allows us to capture a wide variety of intensional operators.

We start by defining the basic elements of our language. We consider a function-free
first-order signature Σ = 〈P,C〉, a set X of variables, and a set of operation symbols
O, such that the sets P (of predicates), C (of constants),X andO are mutually disjoint.
The set of atoms over Σ and X is defined in the usual way. We say that an atom is
ground if it does not contain variables, and we denote by AΣ the set of all ground
atoms over Σ. In what follows, and without loss of generality, we leave the signature Σ
implicit and consider only the set of ground atoms over Σ, denoted by A.

The set O contains the symbols representing the various intensional operators ∇.
Based on these, we introduce the set of intensional atoms IAO .

Definition 1. Given a set of atoms A and a set of operation symbols O, the set IAO of
intensional atoms over A and O is defined as IAO = {∇p | p ∈ A and∇ ∈ O}3, and
the set of program atoms LAO is defined as LAO = A ∪ IAO .

We can define intensional logic programs as sets of rules with default negation,
denoted by ∼, over program atoms.

Definition 2. Given a set of atoms A and a set of operation symbols O, an intensional
logic program P over A and O is a finite set of rules r of the form:

A← A1, . . . , An,∼ B1, . . . ,∼ Bm (1)

whereA,A1, . . . , An, B1, . . . , Bm ∈ LAO. We distinguish between the head of r,A, and
its body, A1, . . . , An,∼ B1, . . . ,∼ Bm.

We also call P simply a program when this does not cause confusion and positive if it
does not contain default negation. Intensional logic programs are highly expressive as
intensional operators can appear arbitrarily anywhere in the rules, in particular in rule
heads and in scope of default negation.

Example 2. Let a set of agents A = {a, b, r} (for Anita, Bonnie and Ruth) be given, a
set of locations L = {α, β, γ, . . .} and a set of time points T = {1, 2, . . . , }. We also
assume that every agent has a network Ni ⊆ A which represents the people the agent
has regular close contact with (e.g. family, colleagues or partner). In our example,Na =
{b}, Nb = {a} and Nr = ∅. We furthermore assume a function ν : L → ℘(L) which
assigns to each place ` the places in its vicinity ν(`). In our example, for simplicity’s
sake, we just assume that ν(α) = {β}. We define the following operators for our use-
case as O1 = {[i]`, [i], [i]t, [t, t′], .it, ˆ̀i, 〈A〉`, 〈Ni〉 | i ∈ A, ` ∈ L, t ∈ T} with the
following informal interpretations: [i]`φ says that φ is true for agent i at location `; [i]φ
says that φ is true for agent i; [i]tφ says that φ is true for agent i at time t; [t, t′]φ means
that φ is the case in the interval between t and t′; .itφ means φ is the case at or after

3 For simplicity, we restrict ourselves to non-nested (or equivalently in view of Def. 2, com-
posed) intensional atoms. This does not result in any loss of generality, since nested operators
can straightforwardly be modelled as non-nested operators, see Remark 1.
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time t for agent i; ˆ̀iφ says that φ is true for an agent i in the vicinity of `; 〈A〉t`φ says
that φ is true for some agent i ∈ A at location `; and 〈Ni〉φ says that φ is true for some
agent in i’s network.

We use the atoms risk, reside, inf, neg.test, quar, and spread, which rep-
resent that someone is at risk of infection, is residing, is infected, has a negative test
result, is imposed quarantine, and is a potential spreader, respectively. We can now, for
example, succinctly write the following program (for any i ∈ A, ` ∈ L and t ∈ T ):

[i]`spread← [i]inf, [i]`reside

[i]trisk← [t, t+ x]ˆ̀ireside, [t, t+ x]〈A〉`spread
[i]risk← 〈Ni〉risk

[t, t+ 10][i]quar← [i]trisk,∼ .itneg.test

These rules express that someone who is infected and resides at ` is a potential spreader
at place `; if agent i is in the vicinity of a potential spreader for at least x time units, i is
at risk: if someone in agent i’s network is at risk, so is i; if i is at risk at time t and does
not have a negative test result after time t, i is imposed quarantine for the time between
t and t+ 10.

In order to give semantics to intensional operators, we follow the ideas employed
by Orgun and Wadge [34] and consider the neighborhood semantics, a strict general-
ization of Kripke-style semantics that allows capturing intensional operators [35] such
as temporal, spatial, or deontic operators, even those that do not satisfy the normality
property imposed by Kripke frames [18]. We start by recalling neighborhood frames.

Definition 3. Given a set of operation symbols O, a neighborhood frame (over O) is a
pair F = 〈W,N〉 where W is a non-empty set (of worlds) and N = {θ∇ | ∇ ∈ O} is
a set of neighborhood functions θ∇ :W → ℘(℘(W )).4

Thus, in comparison to Kripke frames, instead of a relation over W , neighborhood
frames have functions for each operator that map worlds to a set of sets of worlds.
These sets intuitively represent the atoms necessary (according to the corresponding
intensional operator) at that world.

Example 3. The operators from Ex. 2 are given semantics using a neighborhood frame.
We define worlds w ∈ W as triples (i, `, t) where i ∈ A, ` ∈ L and t ∈ T . These
represent the space-time locations for an agent i.

The neighborhoods of O1 are defined, for t, t′, t? ∈ T , `, `′ ∈ L and i, i′ ∈ A:
– θ[i]`((i

′, `′, t)) = {W ′ ⊆ W | (i, `, t) ∈ W ′}.
– θ[i]t((i

′, `, t′)) = {W ′ ⊆ W | (i, `, t) ∈ W ′}.
– θ[i]((i

′, `, t)) = {W ′ ⊆ W | (i, `, t) ∈ W ′}.
– θ[t,t′]((i, `, t

†)) = {W ′ ⊆ W | {(i, `, t?) | t? ∈ [t, t′]} ⊆ W ′}.
– θ/it((i, `, t

′)) = {W ′ ⊆ W | {(i, `, t?) | ` ∈ L} ⊆ W ′ for some t? ≤ t}.

4 Note that we often leave O implicit as N allows to uniquely determine all elements from O.
Also, to ease the presentation, we only consider unary intensional operators. Others can then
often be represented using rules (see also [34]).
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– θˆ̀i((i
′, `′, t)) = {W ′ ⊆ W | (i, `?, t) ∈ W ′ for some `? ∈ ν(`)}.

– θ〈A〉`((i
′, `′, t′)) = {W ′ ⊆ W | (i?, `, t) ∈ W ′ for some i? ∈ A}.

– θ〈Ni〉t`((i
′, `′, t′)) = {W ′ ⊆ W | (i?, `, t) ∈ W ′ for some i? ∈ Ni}.

Intuitively, e.g., θ[i]`((i
′, `′, t)) consists of all the sets of worlds that include the

world (i, `, t) that shares a time component with the world (i′, `′, t), but has ` and i as
spatial and agent components; θ[t,t′]i consists of all the sets of worlds that include all
worlds (i, `, t?) with some time component t? between or equal to t and t′ (for every
place ` ∈ L); and a set of worlds is contained in θ〈A〉t` if it contains at least one world
with time component t and space component ` and some agent component i.

As the example above shows, neighborhood functions θ can be both invariant under
the input w or variate depending on w (e.g., θ〈A〉t,` and θ[t,t′]i are invariant, while θ[i]`
and θ[i]t variate depending on w). This is why the above definitions of neighborhood
functions that depend on w need to explicit the components of the world w, i.e., (i, `, t).

3 THREE-VALUED SEMANTICS

In this section, we define a three-valued semantics for intensional logic programs as an
extension of the well-founded semantics for logic programs [22] that incorporates rea-
soning over intensional concepts. The benefit of this approach over the more commonly
used two-valued models is that, although there are usually several such three-valued
models, we can determine a unique minimal one – intuitively the one which contains
all the minimally necessary consequences of a program – which can be efficiently com-
puted. Recall that even for programs without intensional concepts, a unique two-valued
minimal model does not usually exist [24].

We consider three truth values, “true”, “false”, and “undefined”, where the latter
corresponds to neither true nor false. Given a neighborhood frame, we start by defining
interpretations that contain a valuation function which indicates in which worlds (of the
frame) an atom from A is true (W>), and in which ones it is true or undefined (Wu),
i.e., not false 5.

Definition 4. Given a set of atomsA and a frame F = 〈W,N〉, an interpretation I over
A and F is a tuple 〈W,N, V 〉 with a valuation function V : A → ℘(W )×℘(W ) s.t., for
every p ∈ A, V (p) = (W>,Wu) with W> ⊆ Wu. If, for every p ∈ A, W> = Wu,
then we call I total.

The subset inclusion on the worlds ensures that no p ∈ A can be true and false
in some world simultaneously. This intuition of the meaning is made precise with the
denotation of program atoms for which we use the three truth values. We denote the
truth values true, undefined and false with >, u, and ⊥, respectively, and we assume
that the language LAO contains a special atom u (associated to u).

Definition 5. Given a set of atomsA, a frame F, and an interpretation I = 〈W,N, V 〉,
we define the denotation of A ∈ LAO in I:

5 We follow the usual notation in modal logic and interpretations explicitly include the corre-
sponding frame.
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– ‖p‖†I =W † if A = p ∈ A, with V (p) = (W>,Wu) and † ∈ {>, u};
– ‖u‖u =W and ‖u‖> = ∅, if A = u;
– ‖∇p‖†I = {w ∈W | ‖p‖

†
I ∈ θ∇(w)} if A = ∇p ∈ IAO and † ∈ {>, u};

– ‖A‖⊥I =W \ ‖A‖uI for A ∈ LAO.

For a formula A ∈ LAO and an interpretation I , ‖A‖>I is the set of worlds in which
A is true, ‖A‖uI is the set of worlds in which A is not false, i.e., undefined or true,
and ‖A‖⊥I is the set of worlds in which A is false. For atoms p ∈ A, the denotation
is straightforwardly derived from the interpretation I , i.e., from the valuation function
V , and for the special atom u it is defined as expected (undefined in all worlds). For
an intensional atom ∇p, w is in the denotation ‖∇p‖†I of ∇p if the denotation of p
(according to I) is a neighborhood of∇ for w, i.e. ‖p‖†I ∈ θ∇(w).

We often leave the subscript I from ‖A‖†I as well as the reference to A and F for
interpretations and programs implicit.

Example 4. Consider I1 = 〈W1,O1, V 〉 with the set of worlds W1 and the neighbor-
hoods as in Ex. 3 where:

V (reside) = ({(a, α, 1)}, {(a, α, 1)})
Then the following are examples of denotations of intensional atoms:
‖[a]αreside‖>I1 = {(i, `, 1) | i ∈ A, ` ∈ L}
‖β̂areside‖>I1 = {(i, `, 1), (i, `, 2) | i ∈ A, ` ∈ L}
We explain the first denotation ‖[a]αreside‖>I1 as follows: since reside is true

for agent a at α and time 1, [a]αreside is true at every world with time stamp 1.
More formally, this can be seen since the set of worlds in which reside is true is a
neighborhood θ[a]α .

Based on the denotation, we can now define our model notion, which is inspired
by partial stable models [38], which come with two favorable properties, minimality
and support. The former captures the idea of minimal assumption, the latter provides
traceable inferences from rules. We adapt this notion here by defining a reduct that,
given an interpretation, transforms programs into positive ones, for which a satisfaction
relation and a minimal model notion are defined.

Remark 1. Operators can be straightforwardly combined within our framework. In-
deed, given two operators ∇1 and ∇2, the nesting of them, ∇1∇2, can be seen as an
operator∇1 ⊕∇2, where the neighborhood θ∇2⊕∇1(w) is defined as follows. First we
define θ−1∇ : W → W as θ−1∇ (W ′) = {w′ ∈ W | W ′ ∈ θ∇(w′)}. Intuitively, this is
the set of worlds w′ for which W ′ is a ∇-neighborhood of w′, i.e. w′ ∈ θ−1∇ (W ′) iff
W ′ ∈ θ∇(w′). We then define the neighborhood of the composition of ∇1 and ∇2 as:

θ∇2⊕∇1
(w) = {W ′ ⊆ W | θ−1∇1

(W ′) ∈ θ∇2
(w)}

It is not hard to see that for any φ ∈ A, w ∈ ‖∇2 ⊕∇1φ‖† iff ‖∇1φ‖† ∈ θ∇2
(w) (for

any † ∈ >, u}). In other words, ∇2 ⊕∇1φ is true at w iff the worlds at which ∇1φ is
true is a neighborhood of∇2, as expected from a sound definition of nested operators.
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Example 5. As an example of the neighborhood of a nesting of operators, consider
[t, t + x]ˆ̀i as it occurs in the second rule of Example 2. Since θ−1ˆ̀i (W ′) = {(i′, `′, t) |
t ∈ T for which (i, l?, t) ∈ W ′ for some l? ∈ ν(l), `′ ∈ L, i′ ∈ A}, one can observe:

θ[t,t+x]ˆ̀i(w) = {W
′ ⊆ W1 | ∀t? ∈ [t, t+ x] ∃l? ∈ ν(l) s.t. (i, l?, t?) ∈ W ′}

In other words, a formula [t, t + x]ˆ̀iφ is true at (at world w) iff φ is true for agent i at
some place l? in the vicinity of l for every time point t? within the inteval [t, t+ x].

We first adapt two orders for interpretations, the truth ordering, v, and the knowl-
edge ordering, vk. The former prefers higher truth values in the order ⊥ < u < >, the
latter more knowledge (i.e., less undefined knowledge). Formally, for interpretations I
and I ′, and every p ∈ A: I v I ′ iff ‖p‖†I ⊆ ‖p‖

†
I′ for every † ∈ {>, u}; I vk I ′

iff ‖p‖>I ⊆ ‖p‖>I′ and ‖p‖⊥I ⊆ ‖p‖⊥I′ . We write I ≺ I ′ if I � I ′ and I ′ 6� I for
�∈ {v,vk}.

We now generalize the notion of reduct to programs with intensional atoms.

Definition 6. Let A be set of atoms, and F = 〈W,N〉 a frame. P/Iw, the reduct of a
program P at w ∈W w.r.t. an interpretation I , contains for each r ∈ P of the form (1):

– A← A1, . . . , An if w 6∈
⋃
i≤m ‖Bi‖u

– A← A1, . . . , An, u if w ∈
⋃
i≤m ‖Bi‖u \

⋃
i≤m ‖Bi‖>

Intuitively, for each rule r of P , the reduct P/Iw contains either (a) a rule of the first
form, if all negated program atoms in the body of r are false at w (or the body does not
have negated atoms), or (b) a rule of the second form, if none of the negated program
atoms in the body of r are true at w, but some of these are undefined at w, or (c) none,
otherwise. This also explains why the reduct is defined at w: truth and undefinedness
vary for different worlds. The special atom u is applied to ensure that rules for the
second case cannot impose the truth of the head in the notion of satisfaction for positive
programs.

As reducts are positive programs, we can define a notion of satisfaction as follows.

Definition 7. Let A be a set of atoms, and F = 〈W,N〉 a frame. An interpretation I
satisfies a positive program P at w ∈ W iff for each r ∈ P of the form (1), we have
that w ∈

⋂
i≤n ‖Ai‖† implies w ∈ ‖A‖† (for any † ∈ {>, u}) 6.

Stable models can now be defined by imposing minimality w.r.t. the truth ordering
on the corresponding reduct.

Definition 8. Let A be set of atoms, and F = 〈W,N〉 a frame. An interpretation I is a
stable model of a program P if:

– for every w ∈W , I satisfies P/Iw at w, and
– there is no interpretation I ′ s.t. I ′ @ I and, for each w ∈W , I ′ satisfies P/Iw at w.

6 Since the intersection of an empty sequence of subsets of a set is the entire set, then, for n=0,
i.e., when the body of the rule is empty, the satisfaction condition is just w ∈ ‖A‖† for any
† ∈ {>, u}.
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Example 6. We consider the following program on the basis of P from Ex. 2, zooming
in on the part restricted to considerations pertaining to the network of an agent (rules 3
and 4 of that example) and adding the information that Anita was at risk at place α on
time 1. This results in the following program P ′:

[i]risk← 〈Ni〉risk [t, t+ 10]iquar← [i]trisk,∼ .itneg.test [a]1arisk←

Consider F = 〈W1,O1〉 as in Ex. 3 and the total interpretation I1 defined by:

‖risk‖>I1 = {(a, α, 1), (b, α, 1)} ‖quar‖>I1 = {(i, α, t), | t ≤ 10, i ∈ {a, b}}
‖neg.test‖>I1 = ∅

We see that, for any w ∈W1, P ′/(I1)w consists of the following rules:

[i]risk← 〈Ni〉risk [t, t+ 10]iquar← [i]trisk [a]t`risk←

It can be checked that I1 satisfies minimality and is therefore a stable model of P .
Consider now the following total interpretation I2 defined by:

‖risk‖>I2 = {(a, α, 1)} ‖quar‖>I2 = ∅ ‖neg.test‖>I2 = ∅

We see that for any w ∈ W1, P ′/(I2)w = P ′/(I1)w. Notice that I1 is not a stable
model of P , since for (a, α, 1) ∈ ‖〈Nb〉risk‖>I1 yet (a, α, 1) 6∈ ‖[b]risk‖>I1 , since
(b, α, 1) 6∈ ‖risk‖>I1 .

We can show that our model notion is faithful w.r.t. partial stable models of normal
logic programs [38], i.e., if we consider a program without intensional atoms, then its
semantics corresponds to that of partial stable models.

Proposition 1. Let A be set of atoms, F a frame, and P a program with no intensional
atoms. Then, there is a one-to-one correspondence between the stable models of P and
the partial stable models of the normal logic program P .

While partial stable models are indeed truth-minimal, this turns out not to be the
case for intensional programs due to non-monotonic intensional operators.

Example 7. Consider the operator |j, k|a representing that an atom is true during all
time points in [j, k] for agent a, and not in any interval properly containing [j, k]. This
operator has the following neighborhood (given W1 from Ex. 3): θ|j,k|a((i, `, t)) =
{W ′ ⊆W1 | {(a, `, j), (a, `, j+1), . . . , (a, `, k)} ⊆W ′ and (a, `, j−1), (a, `, k+1) 6∈
W ′}. Consider the following program P:

[a]1resides← [a]2resides← [a]3resides←∼ |1, 2|aresides

For simplicity we restrict ourselves to Wα
1 = {(i, α, t) | i ∈ A, t ∈ T}. Then this

program has two stable models, and one of them is not minimal. Namely, these inter-
pretations are stable: I1 with ‖resides‖>I1 = ‖resides‖uI1 = {(a, α, 1), (a, α, 2)}
and I2 with ‖resides‖>I2 = ‖resides‖uI2 = {(a, α, 1), (a, α, 2), (a, α, 3)}. To see
that I2 is stable, observe first that since {(a, α, 1), (a, α, 2), (a, α, 3)} 6∈ θ|1,2|a(w) for
any w ∈ W1, ‖|1, 2|aresides‖>I2 = ∅, which means that P/I2 = {[a]1resides ←
; [a]2resides ←; [a]3resides ←}. Clearly, I2 is the @-minimal interpretation that
satisfies P/I2. However, I1 @ I2 and thus, I2 is not a truth-minimal stable model.
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To counter that, we consider monotonic operators. Formally, given a set of atomsA
and a frame F, an intensional operator ∇ is said to be monotonic in F if, for any two
interpretations I and I ′ such that I v I ′, we have that ‖∇p‖†I ⊆ ‖∇p‖

†
I′ for every

p ∈ A and † ∈ {>, u}.
If all intensional operators in a frame are monotonic, then truth-minimality of stable

models is guaranteed.

Proposition 2. LetA be set of atoms, and F a frame in which all intensional operators
are monotonic. If I is a stable model of P , then there is no stable model I ′ of P such
that I ′ @ I .

Regarding support, recall that the stable models semantics of normal logic programs
satisfies the support property, in the sense that for every atom of a stable model there is
a rule that justifies it. In other words, if we remove an atom p from a stable model some
rule becomes false in the resulting model. Such rule can be seen as a justification for
p being true at the stable model. In the case of intensional logic programs we say that
an interpretation I = 〈W,N, V 〉 is supported for a program P if, for every p ∈ A and
w ∈W , ifw ∈ ‖p‖>, then there is a rule r ∈ P/Iw that is not satisfied by I ′ atw, where
I ′ = 〈W,N, V ′〉 is such that V ′(q) = V (q) for q 6= p, and V ′(p) = 〈W> \ {w},Wu〉
where V (p) = 〈W>,Wu〉.

This notion of supportedness is desirable for intensional logic programs since we
also want a justification why each atom is true at each world in a stable model. The
following results show that this is indeed the case.

Proposition 3. Let A be set of atoms, and F a frame. Then, every stable model of a
program P is supported.

Yet, existence and uniqueness of stable models of a program are not guaranteed, not
even for positive programs under the restriction of all operators being monotonic.

Example 8. Let O = {⊕}, A = {p} and F = 〈{1, 2}, {θ⊕}〉 where θ⊕(1) = θ⊕(2) =
{{1}, {2}}. Let P = {⊕p ←}. This program has two stable models: I1 with V1(p) =
({1}, {1}) and I2 with V2(p) = ({2}, {2}).

The existence of two stable models of the above positive program is caused by
the non-determinism introduced by the intensional operator in the head of the rule.
Formally, an operator θ of a frame F = 〈W,N〉 is deterministic if

⋂
θ(w) ∈ θ(w) for

every w ∈ W . A program P is deterministic in the head if, for every rule r ∈ P of the
form (1), if A = ∇p, then θ∇ is deterministic.

We can show that every positive program that is deterministic in the head and only
considers monotonic operators has a single minimal model.

Proposition 4. Given a set of atoms A and a frame F, if P is a positive program that
is deterministic in the head and every ∇ ∈ O is monotonic in F, then it has a unique
stable model.

Due to this result, in what follows, we focus on monotonic operators and programs
that are deterministic in the head, as this is important for several of the results we obtain
subsequently.
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Remark 2. This does not mean that non-montonic intensional operators cannot be used
in our framework. In fact, we can take advantage of the default negation operator ∼ to
define non-monotonic formulas on the basis of monotonic operators and default nega-
tion. E.g., consider again the operator |j, k| from Ex. 7. We can use the following rule
to define |j, k|p for some atom p ∈ A: |j, k|αap← [j, k]`[i]p,∼ [a]αj−1p,∼ [a]αk+1p.

Among the stable models of a program, we can distinguish the well-founded models
as those that are minimal in terms of the knowledge order.

Definition 9. Given a set of atoms A and a frame F, an interpretation I = 〈W,N, V 〉
is a well-founded model of a program P if it is a stable model of P , and, for every
stable model I ′ of P , it holds that I vk I ′.

Example 9 (Example 6 continued). Since I2 is in fact the unique stable model, it is
therefore the well-founded model.

Given our assumptions about monotonicity and determinism in the head, we can
show that the well-founded model of an intensional program exists and is unique.

Theorem 1. Given a set of atoms A, and a frame F, every program P has a unique
well-founded model.

This is an important result as a unique model can be computed rather than guessed and
checked.

4 ALTERNATING FIXPOINT

In this section, we show how the well-founded model can be efficiently computed.
Essentially, we extend the idea of the alternating fixpoint developed for logic programs
[21], that builds on computing, in an alternating manner, underestimates of what is
necessarily true, and overestimates of what is not false, with the mechanisms to handle
intensional inferences.7

First, since different pieces of knowledge are inferable in different worlds, we need a
way to distinguish between these. Therefore, we introduce labels referring to worlds and
apply them to formulas of a given language as well as programs, resulting in formulas
w : A and program rules w : r constituting a labelled language LW and a labelled
program PW , respectively.

Secondly, three operators are defined to ensure that information is extracted cor-
rectly from rules and intensional atoms:

– the immediate consequence operator TPW : ℘(LW ) → ℘(LW ) which allows to
derive labelled programs atoms occuring in the head of rules in the labelled program
PW if the atoms in the body of the rule are in the set we apply the operator to.

– the intensional extraction operator IEPW (∆) which allows, for a labelled inten-
sional atom w : ∇A, to derive the labelled atoms w′ : A for w′ ∈

⋂
θ∇(w

′) that
are required to guarantee the truth of w : ∇A.

7 Due to space restrictions, we are not able to provide full details and examples of this procedure.
However, all definitions and relevant propositions are provided in full detail in the appendix.
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– the intensional consequence operator IC∇(∆) which maps labelled atoms to in-
tensional atoms that are implied by the former, i.e. it maps w1 : A, . . . , wn : A to
w : ∇A if {w1, . . . , wn} ∈ θ∇(w).

These three operators allow us to define a closure operator for a a labelled positive
program PW as the least fixpoint of:

⋃
∇∈O

IC∇

( ⋃
∇∈OP

IE∇(TPW )

)
.

Based on this closure operator, the alternating fixpoint procedure can now be defined in
the usual way as: Given a frame F = 〈W,N〉 and a program P , we define:

P 0 = ∅ P i+1 = Cn(PW /N i) Pω =
⋃
i P

i

N0 = LW N i+1 = Cn(PW /P i) Nω =
⋂
iN

i

Given a frame F, for which any ∇ ∈ O is monotonic in F, the alternating fixpoint
construction defined above offers a characterization of the well-founded model for pro-
grams that are deterministic in the head. In more detail, given a pair 〈∆,Θ〉 of sets of
LW -formulas, we define a partial interpretation I(〈∆,Θ〉) = (W,N, V ) on the basis
of ∆ as follows: for every A ∈ A, V (A) = ({w ∈ W | w : A ∈ ∆}, {w ∈ W | w :
A ∈ Θ}). We can then show this correspondence.

Theorem 2. Given a frame F = 〈W,N〉, and a program P s.t. every ∇ ∈ O is mono-
tonic in F and P is deterministic in the head, then I(〈Pω, Nω〉) is the well-founded
model of P .

Note that this procedure can be explored for providing explanations for inferences.
It is possible to determine the least i such that a labelled program atom is true in P i. This
then allows us to determine justifications building on the construction of the involved
operators. We leave exploring this line of research as future work.

5 COMPUTATIONAL COMPLEXITY

In this section, we study the computational complexity of several of the problems con-
sidered. We recall that the problem of satisfiability under neighborhood semantics has
been studied for a variety of epistemic structures [40]. Here, we consider the problem
of determining models for the two notions we established, stable models and the well-
founded model, focussing on the propositional case, 8 and we assume familiarity with
standard complexity concepts, including oracles and the polynomial hierarchy.

We first provide a result in the spirit of model-checking for programs P . As we do
not impose any semantic properties on the neighborhood frames, determining a model
for a frame that can be arbitrarily chosen is not meaningful. Thus, we assume a fixed
frame F, fixing the worlds and the semantics of the intensional operators.9

8 Corresponding results for the data complexity of this problem for programs with variables can
then be achieved in the usual way [20].

9 This also aligns well with related work, e.g., for reasoning with time, such as stream reasoning
where a finite timeline is often assumed, and avoids the exponential explosion on the number
of worlds for satisfiability for some epistemic structures [40].
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Proposition 5. Given a program P and an interpretation I , deciding whether I is a
stable model of P is in coNP, and in P if all operators occurring in P are monotonic.

This result is due to the minimization of stable models, i.e., we need to check for
satisfaction and verify that there is no other interpretation which is smaller (see Def. 8).
This also impacts on the complexity of finding a stable model given a fixed frame.

Theorem 3. Given a program P , deciding whether there is a stable model of P is in
ΣP

2 , and in NP if all operators occurring in P are monotonic.

Thus, if all operators are monotonic the complexity results do coincide with that of
normal logic programs (without intensional atoms) [20], which indicates that monotonic
operators do not add an additional burden in terms of computational complexity.

Now, if we in addition consider programs that are deterministic in the head, then we
know that there exists the unique well-founded model (see Thm. 1). As we have shown,
this model can be computed efficiently (see Thm. 2), and we obtain the following result
in terms of computational complexity.

Theorem 4. Given a program P that is deterministic in the head and all operators
occurring in P are monotonic, computing the well-founded model of P is P-complete.

Note that this result is indeed crucial in contexts were reasoning with a variety of
intensional concepts needs to be highly efficient.

6 RELATED WORK

In this section, we discuss related work establishing relations to relevant formalisms in
the literature.

Intensional logic programs were first defined by Orgun and Wadge [34] focussing
on the existence of models in function of the properties of the intensional operators.
Only positive programs are considered, and thus our approach covers the previous work.
Since [34] covers classical approaches for intensional reasoning, such as TempLog [1]
and MoLog [17], our work applies to these as well.

It also relates to more recent work with intensional operators, and we first discuss
two prominent approaches in the area of stream reasoning.

LARS [10] assumes a set of atoms A and a stream S = (T, v), where T is a closed
interval of the natural numbers and v is an evaluation function that defines which atoms
are true at each time point of T . Several temporal operators are defined, including ex-
pressive window operators, and answer streams, a generalization of FLP-semantics, are
employed for reasoning. A number of related approaches are covered including CQL
[6], C-SPARQL [8], and CQELS [37]. Among the implementations exists LASER [9],
which focuses on a considerable fragment, called plain LARS. We can represent a plain
LARS program and have shown (in the appendix) that there is a one-to-one correspon-
dence between answer streams of the program and the total stable models of the cor-
responding intensional logic program. In addition, we can apply our well-founded se-
mantics, since the operators applied in plain LARS are monotonic and deterministic.
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Hence, our work also provides a well-founded semantics for plain LARS, i.e., we allow
the usage of unrestricted default negation while preserving polynomial reasoning.

ETALIS [5] aims at complex event processing. It assumes as input atomic events
with a time stamp and uses complex events, based on Allen’s interval algebra [4],
that are associated with a time interval, and is therefore considerably different from
LARS (which considers time points). It contains no negation in the traditional sense,
but allows for a negated pattern among the events. Many of the complex event patterns
from ETALIS can be captured as neighborhood functions in our framework. However,
ETALIS also makes use of some event patterns that would result in a non-monotonic
operator, such as the negated pattern not(p)[q, r] which expresses that p is not the case
in the interval between the end time of q and the starting time of r. We conjecture that
such a negation can be modelled with help of the non-monotonic default negation ∼
and monotonic operators (see also Remark 2).

Other formalisms that extend logic programming with intensional operators include
Deontic Logic Programs [25], Answer Set Programming Modulo Theories extended to
the Qualitative Spatial Domain [42] and Metric Temporal Answer Set Programming
[15]. In future work, we plan to study instantiations of our general framework that
represent (fragments) of these languages.

7 CONCLUSIONS

We have presented intensional logic programs that allow defeasible reasoning with in-
tensional concepts and streams of data, and introduced a novel three-valued semantics
based on the neighborhood semantics [35] and partial stable models [38]. We have
studied the characteristics of our semantics for monotonic intensional operators and
programs that only admit deterministic operators in the heads of the rules, and shown
that a unique minimal model, the well-founded model, exists and can be computed in
polynomial time. Still, several relevant approaches in the literature can be covered, and
for one of them our work also provides a well-founded semantics for the first time.

In terms of future work, several generalizations are possible, for example, allowing
for first-order formulas in the programs and non-deterministic intensional operators.
We can possibly resort to techniques from well-founded semantics for disjunctive logic
programs [32] to resolve the non-determinism that occurs when studying the latter.
Finally, the integration with taxonomic knowledge in the form of description logic on-
tologies [7] may also be worth pursuing as applications sometimes require both (see
e.g. [2,3,29]). Hybrid MKNF knowledge bases [33] are a more prominent approach
among the existing approaches for combining non-monotonic rules and such ontologies,
and the well-founded semantics for these [31] together with its efficient implementation
[30] may prove fruitful for such an endeavour.
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