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NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

Abstract. The Protégé plug-in NoHR allows the user to combine an OWL 2 EL
ontology with a set of non-monotonic (logic programming) rules – suitable, e.g.,
to express defaults and exceptions – and query the combined knowledge base
(KB). The formal approach realized in NoHR is polynomial (w.r.t. data complex-
ity) and it has been shown that even very large health care ontologies, such as
SNOMED CT, can be handled. As each of the tractable OWL profiles is moti-
vated by different application cases, extending the tool to the other profiles is of
particular interest, also because these preserve the polynomial data complexity
of the combined formalism. Yet, a straightforward adaptation of the existing ap-
proach to OWL 2 QL turns out to not be viable. In this paper, we provide the
non-trivial solution for the extension of NoHR to OWL 2 QL by directly translat-
ing the ontology into rules without any prior classification. We have implemented
our approach and our evaluation shows encouraging results.

1 Introduction

NoHR1 is a plug-in for the ontology editor Protégé2 that allows its users to query com-
binations of EL+

⊥ ontologies and non-monotonic rules in a top-down manner.
Its motivation stems from the fact that many ontologies, such as the very large health

care ontologies widely used in the area of medicine, e.g., SNOMED CT,3 are expressed
in OWL 2 EL, one of the OWL 2 profiles [24], and its underlying description logic (DL)
EL++ [4]. Yet, due to their monotonic semantics, i.e., previously drawn conclusions
persist when new additional information is adopted, DL-based ontology languages [3]
are not suitable to model defaults and exceptions with a closed-world view, a frequently
requested feature, e.g., when matching patient records to clinical trial criteria [26].

Among the plethora of approaches for extending DLs with non-monotonic features
and deal with this problem (c.f. related work in [9,25]), NoHR builds on (Hybrid)
MKNF KBs [25], which are based on the logic of minimal knowledge and negation as
failure (MKNF) [23], under their well-founded semantics [18], a formalism that com-
bines DLs and non-monotonic rules as known from Logic Programming.

This choice is motivated, on the one hand, by the fact that non-monotonic logic
programming rules are one of the most well-studied formalisms that admit expressing
defaults, exceptions, and also integrity constraints in a declarative way, and are part of
RIF [17], the other expressive language for the Semantic Web whose standardization

1 http://centria.di.fct.unl.pt/nohr/
2 http://protege.stanford.edu
3 http://www.ihtsdo.org/snomed-ct/

http://centria.di.fct.unl.pt/nohr/
http://protege.stanford.edu
http://www.ihtsdo.org/snomed-ct/


is driven by the W3C.4 On the other hand, MKNF KBs provide a very general and
flexible framework for combining DL ontologies and non-monotonic rules (see [25]).
In addition, [18], which is a variant of [25] based on the well-founded semantics [10] for
logic programs, has a (lower) polynomial data complexity and is amenable for applying
top-down query procedures, such as SLG(O) [1], to answer queries based only on the
information relevant for the query, i.e., without computing the entire model.

NoHR is thus applicable to combinations of non-monotonic rules and OWL 2 EL
ontologies. However, other applications (see, e.g., [6,27]) require ontologies using DL
constructors which are not covered by OWL 2 EL, such as concept and role negation or
role inverses – adding these to OWL 2 EL would raise its polynomial complexity [4].

OWL 2 QL and the DL-Lite family [5,2] to which the DL underneath OWL 2 QL
belongs, DL-LiteR, is suitable in these cases and has recently drawn a lot of atten-
tion in research and in applications. Even though a simple language at first glance, it is
expressive enough to capture basic ontology languages, conceptual data models, e.g.,
Entity-Relationship, and object-oriented formalisms, e.g., basic UML class diagrams.
Reasoning focuses on answering queries by rewriting the initial query, with the help of
the ontology, into a set of queries that can be answered using an industry-strength SQL
engine over the data. This yields that query answering in OWL 2 QL is in LOGSPACE

(more precisely AC0), but also links directly to applications in ontology-based data ac-
cess (OBDA) [6,20]. Altogether, OWL 2 QL is naturally tailored towards huge datasets.

To also provide such OWL 2 QL based applications with the additional expressive
power obtained from combining DL ontologies with non-monotonic rules, in this paper,
we extend NoHR to deal with the OWL 2 QL profile. Whereas, at first sight, this could
seem like a routine exercise, to the best of our knowledge, there is currently no dedicated
open-source OWL 2 QL classifier with OWL API available that also classifies negative
concepts (similar to the NI-closure in [5], but whose direct adaptation would potentially
introduce a huge number of additional axioms). Thus, since we cannot simply replace
the reasoner ELK [16], used currently in NoHR for EL, with a correspondent for DL-
LiteR, we translate the ontology directly into rules. This introduces some non-trivial
problems such as the need to capture unsatisfiable concepts and roles, and irreflexive
roles (covered in [5] also by the NI-closure). We solve this problem by introducing an
extension of the graph, used e.g., for classification in OWL QL [22], to negative axioms,
which is already a contribution in its own right. The resulting translation is implemented
as a module of NoHR, and its performance evaluated. Our main contributions are:

– A procedure for translating DL-LiteR ontologies into rules which allows answer-
ing queries over MKNF KBs combining such ontologies and non-monotonic rules;

– A substantial extension of the Protégé plug-in NoHR to include OWL 2 QL ontolo-
gies, beyondDL-LiteR via normalizations, including optimizations on the number
of created rules and the use of tabling in the top-down query engine XSB;5

– An evaluation of our extension that shows that NoHR for OWL 2 QL maintains all
positive evaluation results of the OWL 2 EL version [13], and is even faster during
pre-processing, as no classification is necessary, in exchange for a slightly longer
average response time during querying.

4 http://www.w3.org
5 http://xsb.sourceforge.net
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The remainder of the paper is structured as follows. In Sect. 2, we briefly recallDL-
LiteR and MKNF KBs as a tight combination of the former DL and non-monotonic
rules, followed, in Sect. 3, by the translation of DL-LiteR ontologies into rules. In
Sect. 4, we discuss the changes made in the implementation for OWL 2 QL including
optimizations, and evaluate it in Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

2.1 DL-LiteR

The description logic underlying OWL QL isDL-LiteR, one language of theDL-Lite
family [5,2], which we recall following the presentation in [19].

The syntax of DL-LiteR is based on three disjoint sets of individual names NI,
concept names NC, and role names NR. Complex concepts and roles can be formed
according to the following grammar

B → A | ∃Q C → B | ¬B Q→ P | P− R→ Q | ¬Q
where A ∈ NC is a concept name, P ∈ NR a role name, and P− its inverse. We also
call B a basic concept, Q a basic relation, C a general concept and R a general role.

A DL-LiteR knowledge base O = (T ,A) consists of a TBox T and an ABox
A. The TBox contains general inclusion axioms (GCI) of the form B v C and role
inclusion axioms (RI) of the form Q v R, with B, C, Q, and R defined as above. We
term positive inclusion axioms all GCIs and RIs in O such that C is a basic concept
and R is a basic relation, respectively, and all other GCIs and RIs negative inclusion
axioms. We also assume that Q− denotes the role P if Q = P−, and P− if Q = P .
The ABox contains assertions of the form A(a) and P (a, b) where A ∈ NC, P ∈ NR,
and a, b ∈ NI. Assertions C(a) for general concepts C can be included by A v C and
A(a) for a new concept name A.

The semantics of DL-LiteR is based on interpretations I = (∆I , ·I) consisting of
a nonempty interpretation domain ∆I and an interpretation function ·I that assigns to
each individual a a distinct6 element aI of ∆I , to each concept name A a subset AI ,
and to each role name P a binary relation P I over I. This can be extended as usual:

(P−)I = {(i2, i1) | (i1, i2) ∈ P I} (¬B)I = ∆I \BI

(∃Q)I = {i | (i, i′) ∈ QI} (¬Q)I = ∆I ×∆I \QI

An interpretation I is a model of GCI B v C and of RI Q v R if BI ⊆ CI and
QI ⊆ RI respectively. I is also a model of an assertion A(a) (P (a, b)) if aI ∈ AI

((aI , bI) ∈ P I). Given an axiom/assertion α we denote by I |= α that I is a model
of α. A model of a DL-LiteR KB O = (T ,A) is an interpretation I such that I |= α
holds for all α ∈ T ∪A, andO is satisfiable if it has at least one model, and unsatifiable
otherwise. Also, O entails axiom α, written O |= α, if every model of O satisfies α.

6 Hence, the unique name assumption is applied and, as shown in [2], dropping it would increase
significantly the computational complexity of DL-LiteR.



2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and negation
as failure (MKNF) [23]. Two main different semantics have been defined [25,18], and
we focus on the well-founded version [18], due to its lower computational complexity
and amenability to top-down querying without computing the entire model. Here, we
only point out important notions following [13], and refer to [18] and [1] for the details.

We start by recalling MKNF knowledge bases as presented in [1] to combine an
ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 1. Let O be an ontology. A function-free first-order atom P (t1, . . . , tn) s.t.
P occurs in O is called DL-atom; otherwise non-DL-atom. A rule r is of the form

H ← A1, . . . , An,not B1, . . . ,not Bm. (1)

where the head of r, H , and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body
of r are atoms. A program P is a finite set of rules, and an MKNF knowledge base K is
a pair (O,P). A rule r is DL-safe if all its variables occur in at least one non-DL-atom
Ai with 1 ≤ i ≤ n, and K is DL-safe if all its rules are DL-safe.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can be
achieved by introducing a new predicate o, adding o(i) toP for all constants i appearing
in K and, for each rule r ∈ P , adding o(X) for each variable X appearing in r to the
body of r. Therefore, we only consider DL-safe MKNF knowledge bases.

Example 2. Consider the following MKNF knowledge baseK for recommending CDs,
adapted from [18] (with some modifications). We denote DL-atoms and constants with
upper-case names and non-DL-atoms and variables with lower-case names.7

∃HasArtist− v Artist Piece v ∃HasArtist
∃HasComposed− v Piece Artist v ¬Piece
HasComposed− v HasArtist

recommend(x )←Piece(x ),not owns(x ),not lowEval(x ), interesting(x ).

interesting(x )←Piece(x ),not owns(x ),Piece(y), owns(y),

Artist(z ),HasArtist(y , z ),HasArtist(x , z ).

owns(Summertime). HasArtist(Summertime,Gershwin).

Piece(Summertime). HasComposed(Gershwin,RhapsodyInBlue).

This example shows that we can seamlessly express defaults and exceptions, such as
recommending pieces as long as they are not owned or having a low evaluation, and at
the same time taxonomic/ontological knowledge including information over unknown
individuals, such as every piece having at least one artist without having to specify
whom, but also features of DL-LiteR, such as domain and range restrictions (of roles).

7 To ease readability, we omit the auxiliary atoms that ensure DL-safety and leave them implicit.
Also, whenever the body of a rule is empty, we dub it a fact and omit the← occasionally.



The semantics of MKNF knowledge bases K is usually given by a translation π
into an MKNF formula π(K), i.e., a formula over first-order logic extended with two
modal operators K and not. Namely, every rule of the form (1) is translated into a rule
of the form KH ← KA1, . . . ,KAn,not B1, . . . ,not Bm, and π(P) is the conjunc-
tion of the translations of its rules, and π(K) = Kπ(O) ∧ π(P) where π(O) is the
first-order translation of O. Reasoning with such MKNF formulas is then commonly
achieved using a partition of modal atoms, i.e., all expressions of the form Kϕ for each
Kϕ or not ϕ occurring in π(K). For [18], such a partition assigns true, false, or un-
defined to (modal) atoms, and can be effectively computed in polynomial time. If K is
MKNF-consistent, then this partition does correspond to the unique model of K [18],
and, like in [1], we call the partition the well-founded MKNF model Mwf(K). Here, K
may indeed not be MKNF-consistent if the ontology alone is unsatisfiable, or by the
combination of appropriate axioms in O and rules in P , e.g., axiom A v ¬B in O,
and facts A(a) and B(a) in P . Strictly speaking, unlike [13], we do not have to make
assumptions on the satisfiability of O as we are not going to use a classifier when pro-
cessing DL-LiteR ontologies. Still, for the technical results established in Sec. 3, we
will rely on satisfiability since we are able to entail everything from an unsatisfiable O,
whereas the translation into rules defined in Sec. 3 would not permit that. This is why,
in the following, we assume that O occurring in K is satisfiable, which does not truly
constitute a restriction as we can always turn the ABox into rules without any effect on
Mwf(K). An alternative approach would be to use one of the paraconsistent semantics
for MKNF knowledge bases [15], but this is outside the scope of this paper, and an
issue for future work, as no paraconsistent correspondence to the querying procedure
SLG(O) used here currently exists.

2.3 Querying in MKNF Knowledge Bases

In [1], a procedure, called SLG(O), is defined for querying MKNF knowledge bases
under the well-founded MKNF semantics. This procedure extends SLG resolution with
tabling [7] with an oracle to O that handles ground queries to the DL-part of K by
returning (possibly empty) sets of atoms that, together with O and information already
proven true, allows us to derive the queried atom. We refer to [1] for the full account of
SLG(O), and only recall a few crucial notions necessary in the following.

SLG(O) is based on creating top-down derivation trees with the aim of answer-
ing (DL-safe) conjunctive queries Q = q(X) ← A1, . . . , An,not B1, . . . ,not Bm,
where each variable in Q occurs in at least one non-DL atom in Q, and where X is the
(possibly empty) set of requested variables appearing in the body.

In general, the computation of Mwf(K) uses two different versions of K in parallel
to guarantee that a) coherence is ensured, i.e., if ¬P (a) is derivable, then not P (a) has
to be true as well (cf. also [18]), and b) MKNF-consistency of K can be verified. For
a top-down approach this is impractical, so, instead, a doubled MKNF knowledge base
Kd = (O,Od,Pd) is defined in which a copy of O with new doubled predicates is
added, and two rules occur in Pd for each rule in P , intertwining original and doubled
predicates (see Def. 3.1 in [1]). It is shown that an atom A is true in Mwf(K) iff A is
true in Mwf(Kd) and A is false in Mwf(K) iff Ad is false in Mwf(Kd). Note that Kd is
necessary in general, but we can use K here if it contains no negative inclusion axioms.



In [1], the notion of oracle is defined to handle ground queries to the ontology, but
before we recall that notion, we use an example to illustrate the idea.

Example 3. Recall K in Ex. 2. As this suffices for our purposes, we omit Kd and re-
strict ourselves to K here. Consider query q = recommend(Summertime). There is a
matching rule head in K, and, by instantiating the rule body with x = Summertime ,
we obtain a new set of queries. The first one, Piece(Summertime), can be answered
by means of the rule with matching head. The second, not owns(Summertime), is
handled by querying for owns(Summertime), for which also exists a corresponding
rule, which means that not owns(Summertime) fails, so q is false.

Consider q1 = recommend(RhapsodyInBlue). We can use the same rule with
matching rule head and, again, obtain four new instantiated queries from the rule body.
Now, Piece(RhapsodyInBlue) cannot be derived from the rules, but we can query the
ontology and the oracle will return, e.g., a query HasComposed(x1 ,RhapsodyInBlue)
that if proven true can be added to O, which would allow us to derive the queried goal.
Because of the fact HasComposed(Gershwin,RhapsodyInBlue), this query succeeds,
and so does Piece(RhapsodyInBlue). Subsequently, neither owns(RhapsodyInBlue)
nor lowEval(RhapsodyInBlue) can be proven, so both fail, and their (default) negated
queries succeed. For the remaining new query interesting(RhapsodyInBlue), the sec-
ond rule head matches, which creates a further set of subgoals. The first two have just
been answered, so have the next two with y = Summertime for q, and it can be verified
that the remaining also follow from the interplay of O and P in K. Thus, q1 succeeds.

We recall the notions of a complete and a (correct) partial oracle from [1].

Definition 4. Let Kd = (O,Od,Pd) be a doubled MKNF KB, I a set of ground atoms
(already proven to be true), S a ground query, and L a set of ground atoms such that
each L ∈ L is unifiable with at least one rule head in Pd. The complete oracle for
O, denoted compTO, is defined by compTO(I, S,L) iff O ∪ I ∪ L |= S or Od ∪ I ∪
L |= S. A partial oracle for O, denoted pTO, is a relation pTO(I, S,L) such that if
pTO(I, S,L), then O ∪ I ∪ L |= S or Od ∪ I ∪ L |= S for consistent O ∪ I ∪ L and
Od ∪ I ∪ L, respectively.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent Kd,
replacing compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

Partial oracles may avoid returning unnecessary answers L, such as non-minimal an-
swers or those that try to derive an MKNF-inconsistency even though Kd is MKNF-
consistent. Also, correctness of partial oracles is only defined w.r.t MKNF-consistent
K. The rationale is that, when querying top-down, we want to avoid checking whether
the entire KB Kd is MKNF-consistent. This leads to para-consistent derivations if Kd

is not MKNF-consistent, e.g., some atom P is true, yet P d is false, while other inde-
pendent atoms are evaluated as if Kd was MKNF-consistent (see [1]).

3 Translating the Ontology into Rules

As argued for the case of EL+
⊥ [13], axioms with ∃ on the right-hand side, e.g., Piece v

∃HasArtist , cannot be translated straightforwardly into rules, nor do they directly con-
tribute to the result when querying for ground instances, e.g., of HasArtist(x , y). Still,



such axioms may contribute to derivations within O, which is why, in [13], classifica-
tion using the dedicated and highly efficient EL reasoner ELK [16] is first applied to
derive implicit consequences. These, together with all axioms in O, are then translated
into rules, now discarding certain axioms with ∃ on the right-hand side.

Since, to the best of our knowledge, no dedicated and open-source OWL 2 QL clas-
sifier with OWL API that also classifies negative concepts is currently available, we
translate the ontology directly into rules. This also simplifies and shortens the prepro-
cessing phase and avoids a priori-classification, but requires some non-trivial consider-
ations to ensure that no derivations are lost in the process, which we now explain.

Essentially, axioms, such as Piece v ∃HasArtist , cannot be translated into a rule
HasArtist(x , y) ← Piece(x ) using a universal variable y, as this would allow us to
derive HasArtist(x , y) for any Piece(x ) and y, which is clearly not what the axiom
expresses. Using a new constant c instead of y would not be correct either, as query-
ing for HasArtist(x , y) would return HasArtist(x , c) for any Piece(x ) for the same
c. Therefore, we proceed differently by introducing new auxiliary predicates that in-
tuitively represent the domain and range of roles. For our example, this will yield
the rule DHasArtist(x ) ← Piece(x ) where DHasArtist stands for the domain of
HasArtist (and RHasArtist its range). Using such auxiliary predicates also means
that we have to make sure that, e.g., HasArtist(Summertime,Gershwin) allows us
to derive DHasArtist(Summertime), which can be achieved via an additional rule
DHasArtist(x ) ← HasArtist(x , y). Moreover, for HasComposed− v HasArtist , it
does not suffice to translate the axiom to HasArtist(x , y)← HasComposed(y , x ), but
also link the new auxiliary predicates for both roles, through the addition of the rules
DHasArtist(x )← RHasComposed(x ) and RHasArtist(x )← DHasComposed(x ).

We now formalize this translation, and start by introducing notation on how to trans-
late general concepts and roles. For that purpose, we formally introduce for each role
P ∈ NR auxiliary predicates DP and RP with the intuition of representing the do-
main and range of P . Also, similar to previous work in [1,13], we use special atoms
NH(ti) in SLG(O) that represent a query ¬H(ti) to the oracle. These are, of course,
only relevant if O contains negative inclusion axioms.

Definition 5. LetC be a concept,R a role, x and y variables, and v a new (anonymous)
variable (disjoint from x and y). We define tr(C, x) and tr(R, x, y) as follows:

tr(C, x) =



A(x) if C = A

DP (x) if C = ∃P
RP (x) if C = ∃P−

NA(x) if C = ¬A
tr(¬Q, x, v) if C = ¬∃Q

tr(R, x, y) =


P (x, y) if R = P

P (y, x) if R = P−

NP (x, y) if C = ¬P
NP (y, x) if C = ¬P−

We obtain trd(C, x) and trd(Q, x, y) from tr(C, x) and tr(Q, x, y) by substituting all
predicates P in tr(C, x) and tr(Q, x, y) with P d, respectively.

This way, tr(C, x) and tr(R, x, y) handle both positive and negative inclusions and no
additional case distinction is necessary.

Before we present the actual translation, we need to introduce one central notion,
namely a graph to represent the axioms in a given TBox T as well as the implicitly
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Fig. 1. The digraph GT for Example 2

derivable axioms, which will be necessary for defining the translation itself, but also
turn out useful when establishing the correctness of the translation. Graphs have been
used for classification in OWL QL (of positive inclusion axioms) [22], and we extend
the notion here to also take negative inclusion axioms into account. We thus introduce
the digraph (directed graph) of T as follows.

Definition 6. Let T be a DL-LiteR TBox. The digraph of T , GT = 〈V, E〉, is con-
structively defined as follows.

1. If A ∈ NC , then A and ¬A are in V;
2. If R ∈ NR, then P , ∃P , ∃P−, ¬P , ¬∃P , and ¬P− are in V;
3. If B1 v B2 ∈ T , then the edges (B1, B2) and (¬B2,¬B1) are in E;
4. If Q1 v Q2 ∈ T , then the edges (Q1, Q2), (Q−1 , Q

−
2 ), (∃Q1,∃Q2), (∃Q−1 ,∃Q

−
2 ),

(¬Q2,¬Q1),(¬Q−2 ,¬Q
−
1 ), (¬∃Q2,¬∃Q1) e (¬∃Q−2 ,¬∃Q

−
1 ) are in E;

5. If B1 v ¬B2 ∈ T , then the edges (B1,¬B2) and (B2,¬B1) are in E;
6. If Q1 v ¬Q2 ∈ T , then the edges (Q1,¬Q2), (Q−2 ,¬Q

−
1 ), (∃Q1,¬∃Q2),

(∃Q2,¬∃Q1), (∃Q−1 ,¬∃Q
−
2 ) and (∃Q−2 ,¬∃Q

−
1 ) are in E .

Basically, each possible general concept and general role over NC and NR is a node
in GT , and the directed edges represent logical implications that follow from the axioms.
Namely, for items 3. and 5., the subset inclusion itself and its contrapositive are in E , and
this is similar for items 4. and 6., only that the additional combinations due to inverses,
∃, and ¬ have to be taken into account. In this sense, the graph can be understood as
capturing all subset inclusions (explicit and implicit) in O, i.e., whenever there is a
path from concept C1 to concept C2 and from role R1 to role R2, then C1 v C2 and
R1 v R2 hold respectively. An Example of such a digraph is given in Fig. 1 for the
TBox T from Example 2.

One observation w.r.t. Fig. 1, is that ∃HasComposed v ¬∃HasComposed−, i.e.,
HasComposed is irreflexive. Even though this does not entail any assertion, knowing
that ∀x.¬HasComposed(x , x ) does hold should be captured in the translation. We in-
troduce Ψ(T ), the set of irreflexive roles in T , to be able to ensure exactly that.

Definition 7. Let T be a DL-LiteR TBox and GT its digraph. We define Ψ(T ) as the
smallest set of all P ∈ NR that satisfy at least one of the following conditions:



1. For some B1 v ¬B2 ∈ T , there exist paths from ∃P to B1 and from ∃P− to B2;
2. For some B1 v ¬B2 ∈ T , there exist paths from ∃P− to B1 and from ∃P to B2;
3. For some Q1 v ¬Q2 ∈ T , there exist paths from P to Q1 and from P− to Q2;
4. For some Q1 v ¬Q2 ∈ T , there exist paths from P− to Q1 and from P to Q2.

This notion builds on GT , which is also required for detecting a further set of deriva-
tions. Imagine we would (wrongfully) add Artist v ∃HasComposed− to O in Ex-
ample 2. Then there would be a path from Artist to both Piece and ¬Piece, i.e., the
concept Artist would be unsatisfiable. Note that independently of whether the MKNF
KB is MKNF-inconsistent or not, we need to make sure that all unsatisfiable concepts
and roles are determined, so we introduce Ω(T ), quite similar in spirit to Ψ(T ).

Definition 8. Let T be a DL-LiteR TBox and GT its digraph. We define Ω(T ) as the
smallest set of all A ∈ NC such that, for some B1 v ¬B2 ∈ T , there exist paths from A
to both B1 and B2, and all P ∈ NR that satisfy at least one of the following conditions:

1. For some B1 v ¬B2 ∈ T , there exist paths from ∃P to both B1 and B2;
2. For some B1 v ¬B2 ∈ T , there exist paths from ∃P− to both B1 and B2;
3. For some Q1 v ¬Q2 ∈ T , there exist paths from P to both Q1 and Q2;
4. For some Q1 v ¬Q2 ∈ T , there exist paths from P− to both Q1 and Q2.

With all pieces in place, we can introduce the translation of a DL-LiteR ontology.

Definition 9. LetO be aDL-LiteR ontology. We define Pd
O fromO, whereB1,B2 are

basic concepts, Q1, Q2 basic roles, x, y variables, and a, b individuals, as the smallest
set containing:
(e) for every P ∈ NR:

DP (x)← P (x, y). DP d(x)← P d(x, y).
RP (y)← P (x, y). RP d(y)← P d(x, y).

(a1) for every A(a) ∈ O:
A(a)← . Ad(a)← not NA(a).

(a2) for every P (a, b) ∈ O:
P (a, b)← . P d(a, b)← not NP (a, b).

(s1) for every B1 v B2 ∈ O:
tr(B2, x)← tr(B1, x). trd(B2, x)← trd(B1, x),not tr(¬B2, x).
tr(¬B1, x)← tr(¬B2, x).

(s2) for every Q1 v Q2 ∈ O:
tr(Q2, x, y)← tr(Q1, x, y). trd(Q2, x, y)← trd(Q1, x, y),not tr(¬Q2, x, y).
tr(∃Q2, x)← tr(∃Q1, x). trd(∃Q2, x)← trd(∃Q1, x),not tr(¬∃Q2, x).
tr(∃Q−2 , x)← tr(∃Q−1 , x). trd(∃Q−2 , x)← trd(∃Q−1 , x),not tr(¬∃Q

−
2 , x).

tr(¬Q1, x, y)← tr(¬Q2, x, y).
(n1) for every B1 v ¬B2 ∈ O:

tr(¬B1, x)← tr(B2, x). tr(¬B2, x)← tr(B1, x).
(n2) for every Q1 v ¬Q2 ∈ O:

tr(¬Q2, x, y)← tr(Q1, x, y). tr(¬Q1, x, y)← tr(Q2, x, y).
(i1) for every A ∈ Ω(T ): NA(x)← .
(i2) for every P ∈ Ω(T ): NP (x, y)← .
(ir) for every P ∈ Ψ(T ): NP (x, x)← .



Item (e) ensures that the domain and range of roles is correctly encoded, items (a1) and
(a2) translate the ABox, items (s1) and (s2) the positive inclusions, items (n1) and (n2)
the negative inclusions, and items (i1), (i2), and (ir) introduce the rules representing
unsatisfiable concepts and unsatisfiable and irreflexive roles. Note, that Pd

O contains the
rule representation for both O and Od, which is why items (e)–(s2) contain doubled
rules. Of course, if O does not contain negative inclusion axioms, then we can skip all
these, as well as items (n1)–(ir) which will not contribute anything anyway in this case.
The additional default atoms are added to the doubled rules to be in line with the idea
of the doubling of rules in [1]: whenever, e.g., A(x) is “classically false” for some x,
i.e., NA(x) holds, then we make sure that Ad(x) is derivable as false for that same
x from the rules, but not necessarily A(x), thus allowing to detect potential MKNF-
inconsistencies. That is also the reason why neither (n1)–(ir) nor the contrapositives
in (s1) and (s2) do produce the doubled counterparts: atoms based on predicates of
the forms NCd or NRd are not used anywhere. Finally, the doubled rules in (e) do
not contain the default negated atom as this case does really just associate domain and
range to a role assertion, either present in the ABox or derived elsewhere. Additionally,
predicatesNDP orNRP are not used anywhere, so such default negated atoms would
be of no impact anyway.

We can establish three correspondences between entailment from satisfiable O and
the program resulting from the translation Pd

O. First, we consider positive atoms.

Lemma 10. Let O be a DL-LiteR ontology, A a unary and R a binary predicate:

– O |= A(a) iff Pd
O |= A(a) and O |= R(a, b) iff Pd

O |= R(a, b).

A similar property holds for (classically) negated atoms.

Lemma 11. Let O be a DL-LiteR ontology, A a unary and R a binary predicate:

– O |= ¬A(a) iff Pd
O |= NA(a) and O |= ¬R(a, b) iff Pd

O |= NR(a, b).

We can also show the correspondent to Lemma 10 for the doubled predicates.

Lemma 12. Let O be a DL-LiteR ontology, A a unary and R a binary predicate:

– Od |= Ad(a) iff Pd
O |= Ad(a) and Od |= Rd(a, b) iff Pd

O |= Rd(a, b).

Thus, we can define a correct partial oracle based on Pd
O.

Theorem 13. Let Kd = (O,Od,Pd) be a doubled MKNF KB and pTQL
O a partial QL

oracle such that pTQL
O (I, S,L) iff Pd

O ∪ I ∪ L |= S. Then pTQL
O is a correct partial

oracle w.r.t. compTO.

Instead of coupling two rule reasoners that interact with each other using an oracle,
we can integrate both into one rule reasoner. The resulting approach is polynomial w.r.t.
data complexity (as in [1,13], but not in AC0 any longer as for OWL 2 QL alone).

Theorem 14. Let K = (O,P) be an MKNF KB with O in DL-LiteR. An SLG(O)
evaluation of a query in KQL = (∅, (Pd ∪ Pd

O)) is decidable with data complexity in
PTIME.



Fig. 2. Query response times for NoHR and Pellet

4 System Description

In this section, we briefly describe the changes to the architecture of our plug-in and
discuss some optimizations implemented w.r.t. the translation described in Sec. 3.

To allow the usage of OWL QL ontologies, changes were essentially made in the
translator. Since NoHR now supports two OWL profiles a switch was introduced that
checks the profile of the loaded/edited ontology. Whenever it belongs to OWL EL,
NoHR behaves as described in [13], i.e., the reasoner ELK is used to classify the ontol-
ogy and return the inferred axioms to translator, which are then translated. Otherwise,
we treat O of the hybrid KB based on the translation described in Sec. 3 for OWL QL.

Notably, in Sec. 3, we only considered DL-LiteR, while OWL QL includes a
number of additional constructs which often can be expressed in DL-LiteR. To ac-
count for that, we first normalize such expressions to axioms in DL-LiteR. This in-
cludes ignoring certain expressions, most of which do not contribute to derivations, e.g.,
SubClassOf(B owl:Thing), while others make the ontology unsatisfiable, such
as ClassAssertion(owl:Nothing a), although, as mentioned before, with no
effect when querying the translated rules.

Subsequently, the graph is constructed, for determining unsatisfiable concepts and
unsatisfiable and irreflexive roles, after which the translation is performed, which in-
cludes a number of optimizations. First, whenever there are no negative inclusions, the
doubled rules are omitted in the cases (e)–(s2) of Def. 9. Additionally, case (e) is lim-
ited to those rules whose heads appear in the body of another rule. Both steps reduce
the overall number of rules created during the translation.

The second group of optimizations is related to tabling in XSB, which contributes
to help answering queries very efficiently in a top-down manner, and avoid infinite
loops while querying. However, simply declaring all predicates to be tabled is very
memory-consuming, so we reduced the number of tabled predicates without affecting
loop detection. For example, only predicates that appear in any rule head and under
negation in any rule body need to be tabled. In addition, rules with an empty body
(facts) can be ignored in the previous criterion, as these will never cause infinite loops.

5 Evaluation

In this section, we evaluate our system and show that a) our system scales reasonably
well for OWL query answering (only being considerably slower for memory-intensive
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cases), b) preprocessing is even faster when compared to NoHR’s previous version
using a classifier (for EL), which was already capable of preprocessing large ontologies
in a short period of time, c) querying scales well, even for over a million facts/assertions
in the ABox, despite being slightly slower on average in comparison to EL, and d)
adding rules scales linearly for pre-processing and querying, even for an ontology with
many negative inclusions.

All tests were performed on a MacBook Pro (Retina, 13-inch, Early 2015) under
OS X Yosemite 10.10.4 with 2.9 GHz Intel Core i5 processor and 16 GB of 1867 MHz
DDR 3 memory. We ran all tests with a terminal version of NoHR with max. 8 GB of
RAM allocated to Java 8 and we used XSB 3.6.0 for querying with the remaining RAM.
Test results are averages over 5 runs.

We considered LUBM8 [12], a standard benchmark for evaluating queries over a
large data set. The benchmark’s ontology contains 43 classes, 25 object and 7 data
properties and 243 axioms, and it comes with a data generator and 14 queries q1–q14.
First, to test general scalability, we utilized the material9 in [21], that provides data
instances of LUBMn for n = 1, 9, 20, where n specifies the number of universities
and where LUBM is slightly simplified to fall completely into the QL profile. For our
test, we focused on the provided material for Pellet,10 as it worked correctly right away.
Regarding pre-processing we observe that NoHR is slightly slower than Pellet (with the
factor varying between 1.6 and 6.2), mainly due to the time of additionally loading the
file in XSB, a step not necessary for Pellet. The results of answering queries q2–q10,
q13, and q14 can be found in Fig. 2.11 We observe that NoHR is faster for some queries
(q3, q10, q13 – up to factor 16), and slower for others, either below factor 15 (q2, q4,
q7), or with a significant difference (the remainder). The latter occurs due to the huge
amount of data being stored in XSB’s tables in the query process, ultimately intended
for handling non-monotonic rules that are not even part of Pellet. Yet, at the same time,

8 http://swat.cse.lehigh.edu/projects/lubm/
9 https://github.com/ontop/iswc2014-benchmark

10 https://github.com/complexible/pellet
11 q1 is flawed for Pellet and the other two queries have been omitted here, as the restriction to

QL cancels the OWL reasoning capability intended to be tested (transitivity and realization).

http://swat.cse.lehigh.edu/projects/lubm/
https://github.com/ontop/iswc2014-benchmark
https://github.com/complexible/pellet
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tabling enables NoHR to be faster, namely, when an already computed result can simply
be looked up (see the test below on LIPID for further details).

Next, with the aim of comparing our new approach, based on a direct translation,
with the one using a classifier (for OWL EL), we created instances of LUBMn with
n = 1, 5, 10, 15, 20 using the provided generator, and a restricted version of LUBM
which fits both OWL EL and QL (thus rendering q13 meaningless, but now permit-
ting q1 in exchange), with the number of assertions ranging from roughly 100,000 to
over 2,700,000. We performed pre-processing and the results for both kinds of trans-
lators (EL and QL) can be found in Fig. 3. Note that “Initialization” includes loading
the ontology and for EL also classifying it, “Ontology Processing” includes the actual
translation, and “XSB Processing” the writing of the rule file and loading it in XSB.
We observe that QL is considerably faster, indeed up to 80s for LUBM20, which is to
a considerable extent due to avoiding classification and a smaller rule file being cre-
ated. Besides that, the preprocessing time increases linearly, and the overall time for
preprocessing is acceptable in our opinion as this is only done once before querying.

We also queried in XSB for both versions, EL and QL. Some representative results
are shown in Fig. 4. Basically, for queries q1–q5, q7 and q10 the response time is below
18s, often strictly below 1s, in general slightly in favor of the EL version (up to factor
8). For the other queries, response time increases more significantly with huge amounts
of data, divided into those slightly in favor of QL (q6, q8, q14, with a factor below 2,
but up to 20s in absolute value), and those in favor of EL (q9, up to factor 4 and 150s
in absolute value). In all cases, the response time grows linearly w.r.t. the increasing
size of data, and querying in QL is slightly slower on average. Here, EL compensates
for the longer preprocessing, and it thus seems that deciding which of the two forms of
translations performs better depends on the kind (and number) of queries we pose.

Finally, with the aim of also testing a more expressive OWL 2 QL ontology, we
used the LIPID ontology,12 which has, besides 749 subclass axioms, 1, 486 class dis-
jointness axioms and 20 inverse object properties in combination with non-monotonic

12 http://bioonto.dcs.aber.ac.uk/ql-ont/

http://bioonto.dcs.aber.ac.uk/ql-ont/


0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

)

LIPID with 100 rules and 1k*facts

Query 1

Query 2

Query 3

Query 4

Query 4'

Fig. 5. Query time for LIPID

rules. The latter were created by means of the rule generator previously used in [13],
containing a fixed number of 100 rules and a number of facts increasing in steps of 1k,
also introducing some new predicates not present in the ontology itself. We performed
the preprocessing step and observed only small effects due to the increasing amount
of rules. The time for processing the ontology was naturally stable for all steps, and
overall processing time was between 1.4 and 3.3s. Notably, the considerable amount
of negative inclusions had no significant impact on time, e.g., when constructing the
graph. Then, we posed four simple queries (Query1–4), namely Acyl Ester Chain(X),
Lipid(X), Organic Group(X), and Entity(X) to the resulting rule sets in XSB, with the
position in the concept hierarchy varying from the lowest level (Query 1) to the top-
most below > (Query 4) with 715 subclasses. The results are shown in Fig. 5. As we
can see, the response time is very reasonable, from well below 1s to at most 2.2s. We
also posed Query 4 without posing the three previous queries beforehand. The result
is also included in Fig. 5 as Query 4’, and it shows the speed-up that tabling of prior
query results for subclasses has on the response time of Query 4 (up to factor 11.5).
Overall, the results somehow also show the effect of the arbitrary rules in raising the
time for query answering, since they introduce additional non-hierarchical (positive and
negative) links within the ontology. We conclude with noting that performance tests of
querying (non-monotonic) rules and ontologies would considerably benefit from real
datasets, but, unfortunately, to the best of our knowledge, none are currently available.

6 Conclusions

We have extended NoHR, the Protégé plug-in that allows to query non-monotonic rules
and ontologies in OWL 2 EL, to also admit ontologies in OWL 2 QL. While the prin-
cipal architecture of the tool remains the same, the crucial module that translates the
ontology into rules with the help of a classifier simply cannot be re-used, which is why
we introduced a novel direct translation for OWL 2 QL ontologies to cover this pro-
file. We have implemented this translation and discussed optimizations. The evaluation
shows that it maintains all positive evaluation results of the OWL 2 EL version [13],



and is even faster during pre-processing, as no classification is necessary, in exchange
for an on average slightly longer response time during querying.

Besides the OWL 2 EL profile supported by NoHR, and compared to in Sect. 5,
also [11,19] both build on the well-founded MKNF semantics [18]. While [11] uses the
non-standard CDF framework integrated in XSB, which complicates compatibility to
standard OWL tools based on the OWL API, [19] presents an OWL 2 QL oracle based
on common rewritings in the underlying DL DL-LiteR [2], but would require constant
interaction between a rule reasoner and a DL reasoner, which is why we believe it is
ultimately less efficient than our approach. Two related tools are DReW [29] and HD
Rules [8], but both are based on different base formalisms to combine ontologies and
non-monotonic rules w.r.t. the way information can flow between its two components
and how flexible the language is [9,25], which considerably complicates comparison.

For future work, the extension to OWL 2 RL seems an obvious next step, but de-
veloping an alternative for OWL 2 QL using the classifier integrated in ontop [21] or
even the general reasoner Konclude [28], could shed more light on whether classifica-
tion or direct translation fares better for proper OWL 2 QL ontologies. The efficiency
of the latter reasoner also motivates looking into non-polynomial DLs, with possible
influences from recent work on rewriting disjunctive datalog programs [14]. Using a
relational database for the data as in OBDA would also be interesting, yet this would
require non-trivial theoretical work on rewriting queries including non-monotonic rules.
Finally, we may extend NoHR for OWL 2 QL (and EL) to the paraconsistent semantics
[15] that would provide true support to the paraconsistent behavior already observed .
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