
Deep Neural Networks for Approximating
Stream Reasoning with C-SPARQL

Ricardo Ferreira, Carolina Lopes, Ricardo Gonçalves, Matthias Knorr, Ludwig
Krippahl, and João Leite

NOVA LINCS & Departamento de Informática, Universidade Nova de Lisboa

Abstract. The amount of information produced, whether by newspa-
pers, blogs and social networks, or by monitoring systems, is increasing
rapidly. Processing all this data in real-time, while taking into considera-
tion advanced knowledge about the problem domain, is challenging, but
required in scenarios where assessing potential risks in a timely fashion
is critical. C-SPARQL, a language for continuous queries over streams of
RDF data, is one of the more prominent approaches in stream reasoning
that provides such continuous inference capabilities over dynamic data
that go beyond mere stream processing. However, it has been shown that,
in the presence of huge amounts of data, C-SPARQL may not be able
to answer queries in time, in particular when the frequency of incoming
data is higher than the time required for reasoning with that data. In
this paper, we investigate whether reasoning with C-SPARQL can be
approximated using Recurrent Neural Networks and Convolutional Neu-
ral Networks, two neural network architectures that have been shown to
be well-suited for time series forecasting and time series classification,
to leverage on their higher processing speed once the network has been
trained. We consider a variety of different kinds of queries and obtain
overall positive results with high accuracies while improving processing
time often by several orders of magnitude.

1 Introduction

Large amounts of data are constantly being produced, whether by newspapers,
blogs and social networks, or by monitoring systems (such as traffic sensors, fi-
nancial market prediction, weather forecasting, etc.) [22]. For such data streams,
it is often necessary to be able to infer new information with high efficiency in
real time. For example, observing data about a patient’s health status, diet and
physical activity can help to anticipate health problems and request medical sup-
port in case of an emergency. Also monitoring traffic in a city area can help react
to problems, such as traffic jams or accidents, in real time allowing to reroute
traffic to improve travel time and reduce environmental impact.

Data Stream Management Systems (DSMS) and Complex Event Processors
(CEP) tackle this problem [7], where the former allow continuous querying over
a data stream and the latter aim at identifying patterns of events that occur in
a data stream. However, these systems cannot handle situations when the data



is heterogeneous and it is necessary to integrate background knowledge, such as
the patient’s record, data on medication, or general medical knowledge expressed
in an ontology, and perform more complex reasoning tasks.

Stream reasoning aims at overcoming these limitations [8,9,22] and one of
the more prominent approaches is C-SPARQL (Continuous SPARQL) [1,2], a
language for continuously querying over streams, that combines the features of
DSMS and CEP, and the ability to incorporate background knowledge. C-SPARQL
builds on language standards for the Semantic Web whose development has been
driven by the World Wide Web Consortium (W3C), namely, on the Resource
Description Framework (RDF) [23], a standard model of data exchange on the
Web which has led to the development of Linked Open Data [16] with a large
amount of structured and interconnected data,1 and SPARQL the query lan-
guage for querying over RDF data [14]. In more detail, C-SPARQL is able to
process queries over various RDF streams simultaneously, employing so-called
windows that focus only on a limited (recent) portion of the stream, taking into
account background knowledge in the form of RDF graphs. Query answers can
be variable bindings or again RDF graphs, and both of these even in the form
of streams, thus C-SPARQL is capable of updating knowledge bases as new
information arrives.

While C-SPARQL is thus in principle well-suited to perform stream reason-
ing, these advanced reasoning capabilities come at a price [27]. It has been shown
that there is a limit on the amount of triples the system is capable of processing
per second, which varies depending on the complexity of the considered query,
and which may be prohibitive in real world scenarios. In fact, at higher rates
where the amount of triples per second is superior than the limit, C-SPARQL
provides erroneous answers.

It has been argued that in the face of huge amounts of data, sound and com-
plete reasoning can be considered as a gold standard, but for obtaining answers
in a timely fashion, approximate methods need to be applied [18]. These approx-
imate methods include approaches based on machine learning, such as Neural
Networks (NNs) [15], which are able to learn and generalize patterns from a given
data set, making them, once trained, applicable to unseen situations with a con-
siderably higher processing speed and robust to noisy data [17]. These methods
have gained further interest with the advent of Deep Neural Networks [13], which
are behind a variety of substantial recent advances in Artificial Intelligence, for
example, in speech and visual recognition oe vehicle control, and which allow to
detect considerably more sophisticated patterns in a data set.

A few solutions to such deductive reasoning using Deep Learning have ap-
peared within the field of neural-symbolic integration [3,17]. Namely, Makni and
Hendler [21] propose noise-tolerant reasoning for RDF(S) knowledge graphs [5],
Hohenecker and Lukasiewicz [20] introduce Recursive Reasoning Networks for
OWL 2 RL reasoning [24], and Ebrahimi et al. [10] tackle learning of simple
deductive RDFS reasoning. However, none of these approaches takes streaming

1 https://lod-cloud.net/



data into account, making them unsuitable in the scenarios where reacting to
temporal sequences of events is required.

In this paper, we investigate whether reasoning with C-SPARQL can be
approximated using Deep Learning. We consider Recurrent Neural Networks
(RNNs) [26] and Convolutional Neural Networks (CNN) [28], two neural net-
work architectures that have been shown to be well-suited for time series fore-
casting and time series classification [4,11]. Using a data set containing sensor
data on traffic, pollution and weather conditions, we consider different kinds of
queries aiming to cover different features within the expressiveness C-SPARQL
offers, and we generate the target labels for the training set using C-SPARQL
itself to avoid the cost of manually labeling the data. We are able to show that
such approximate reasoning is indeed possible and obtain overall positive results
with high accuracies while improving processing time often by several orders of
magnitude. We also provide considerations on which of the two arquitectures is
more suitable in which situation.

2 Background

In this section, we recall relevant notions to facilitate the reading of the remain-
ing material, namely on C-SPARQL, and the two kinds of neural networks we
consider, recurrent and convolutional neural networks.

2.1 C-SPARQL

C-SPARQL (Continuous SPARQL) [1,2] is a declarative query language that
combines the features of DSMS and CEP to continuously query over streams
of data taking into account background knowledge. C-SPARQL builds on the
Resource Description Framework (RDF) [23], a standard model of data exchange
on the Web and SPARQL the query language for querying over RDF data [14].

To represent continuous streams of data, RDF streams are introduced [1]. An
RDF stream is an ordered sequence of pairs, where each pair consists of an RDF
triple 〈subject, predicate, object〉 and its timestamp τ . Subsequent timestamps
τi and τi+1 are monotonically non-decreasing (τi ≤ τi+1), i.e., any (unbounded,
though finite) number of consecutive triples can have the same timestamp, but
they still occur sequentially according to the given order.

To be able to process such streaming data, C-SPARQL applies windows to
delimit a finite amount of triples to be considered, which aligns with the idea
that we cannot consider the entire stream when reasoning (nor store it). Such
windows can be physical, i.e., a specific number of triples is selected, or logical,
i.e., the triples that occur in a certain interval of time are selected. The latter
can be sliding windows, when they are progressively advancing with a time step
smaller than their interval, or non-overlapping (also called tumbling) when they
are advancing with exactly their time interval at each iteration [2].

Continuous queries in C-SPARQL extend SPARQL queries [14] with the nec-
essary features to handle streams of data. More concisely, a C-SPARQL query



starts with a registration statement to be able to produce continuous output
in the form of variable bindings, tables or graphs, also indicating at which fre-
quency the query is processed. A basic C-SPARQL query then contains SELECT,
FROM and WHERE statements, where the SELECT statement indicates the
variables one is interested in, the FROM statement the IRI of the stream con-
sidered, including the definition of the kind of applied window, and the WHERE
statement a condition for the query. In addition, C-SPARQL queries also permit
the usage of the following advanced characteristics:

– Aggregate functions, namely, count, sum, average, minimum and maximum,
which additionally allow grouping results as well as subsequent filters on the
aggregated data;

– Incorporation of static background knowledge in the form of external RDF
documents that can be referred to in the query (optionally introduced in the
prefix statement);

– Usage of the timestamp function to be able to compare the time of occurrence
of different events in the window of the stream;

– Querying various streams simultaneously;
– Stream the results of the continuous query, in addition to returning the

variable bindings and graphs.

For the concise description of the syntax of SPARQL queries, and their formal
semantics based on mappings we refer to [2].

It should be noted that, as shown in [27], the query execution time depends
on the complexity of the query and increases linearly with the growth of the
window size and the size of the static background knowledge, effectively limiting
the number of triples that can be processed per unit of time, resulting in wrong
answers if this threshold is passed.

2.2 Neural Networks for Time Series Classification

We assume a basic understanding of (deep) neural networks and how they can
be trained using supervised learning [13,15]. Here, we provide an overview on the
two network architechtures particularly well-suited for time series classification.

Recurrent Neural Networks Recurrent neural networks (RNNs) are a type
of deep neural networks specially designed for sequence modelling, that have
received a great amount of attention due to their flexibility in capturing nonlinear
relationships [26]. An RNN is very similar to a feedforward neural network with
the exception that, in RNNs, the output of the recurrent layer is passed as input
to that same layer in the next time step. At each time step, the neurons receive an
input vector and the output vector from the previous time step. RNNs have had
great success in forecasting and classifying time series. However, they suffer from
the vanishing gradient problem [25], which causes the RNN to lose the ability
to ”learn more” at a certain point and results in difficulties capturing long-term
dependencies. To overcome both problems, more sophisticated architectures were



introduced such as Long Short-Term Memory Units (LSTM) [19], and Gated
Recurrent Units (GRU) [6], which are a simplified version of LSTM, aimed at
being useful for smaller datasets.

Convolutional Neural Networks Convolutional Neural Networks (CNNs)
have first been applied very successfully in the context of image recognition,
and have shown impressive results when dealing with Time Series Classification
[11]. Their distinguishing characteristic is the usage of convolutional and pooling
layers for detecting patterns [28].

A convolutional layer aims at recognizing patterns that exist in the data.
This layer applies a finite number of filters to the input, creating as output, for
each filter, a feature map with the patterns detected by that filter. The values of
the kernel matrix used in the convolution operation for each filter are adjusted
during training, so that the network can learn the patterns it needs to find.
Pooling layers then allow us to reduce the dimensions of such data by joining
the outputs from a portion of the neurons in the previous layer into a single
neuron of the following layer, using, e.g., Max pooling where the highest value
is selected. This way, the data is compressed, simplifying the result without
losing the most relevant information. Combining these layers leads to a gradual
reduction in the amount of information to be processed along the network and
requires fewer parameters than an equivalent fully connected network.

3 Methodology

In order to test our hypothesis that stream reasoning with C-SPARQL can be
approximated using RNNs and CNNs, we designed and executed a series of
experiments, whose rationale is explained in this section.

In general, each experiment consists of performing the following two steps.

1. Formulate a C-SPARQL query using different combinations of features (men-
tioned in Section 2) and execute this query using C-SPARQL to obtain the
correct query answers;

2. Use an encoding of the original data together with the stream reasoner’s
answers for developing, training, and testing various models for RNNs and
CNNs to determine, for each of them, the one with the best performance in
terms of approximation of reasoning.

Both steps are detailed next after introducing the test data we have used.

3.1 Dataset

To perform our experiments, we chose a publicly available dataset 2 that gath-
ers data on traffic, pollution and weather conditions by 449 sensors distributed

2 http://iot.ee.surrey.ac.uk:8080/datasets.html

http://iot.ee.surrey.ac.uk:8080/datasets.html


throughout the city of Aarhus in Denmark. The data collected by the sensors
is diverse, including average speed, number of vehicles detected, measurements
of, for example, carbon, sulfur, ozone, nitrogen, as well as data on temperature,
pressure and humidity.

To aid our experiments, we created an event processor that returns discretized
events from the data in the dataset. The benefits of this are two-fold. Given the
known limitations in terms of capacity of processing large amounts of data of
C-SPARQL, we can perform simple event detection a-priori to reduce the amount
of data to be processed with C-SPARQL and at the same time avoid that it be
applied for simple event detection where it would not be necessary in the first
place. Such pre-processing also facilitates encoding the streaming data as input
for the neural networks, and, thus, in addition allows for a fairer comparison of
processing time, as both use the same pre-processed set of input data.

This event processor is a Python script3 that creates certain events based on
the present data, namely movement, no−movement, normal air, low carbon, high
carbon, low nitrogen, high nitrogen, low sulfure and high sulfure. For example, if
a sensor does not detect any vehicles at a given time instant, the event detector
would return the no−movement event, and if the carbon values are above nor-
mal (based on average values), the high−carbon event. In addition, to allow for
more interesting queries involving advanced reasoning, we divided the city (and
thus the sensors) into 10 sectors with the aim to allow comparisons between
different areas. To balance the amount of data per sector, we only considered 15
sensors per sector, and condensed the time step in the original dataset from 5
minutes to 1 minute. Thus, all computed events are associated with their sector
and a timestamp, given in minutes. The dataset resulting from this process con-
tains 17532 samples of sliding windows (with a time step of 1 minute) of size 5
corresponding to 5 minutes.

3.2 C-SPARQL Queries

The queries we designed aim to leverage the expressive features C-SPARQL
offers. In our experiments, we thus created queries of varying complexity using
different combinations of the features, most notably aggregations, background
knowledge and time comparisons, incorporating combinatorics over the different
sectors, which is not easily coverable by a stream processor.

Considering that Neural Networks are not able to straightforwardly provide
RDF triples as answers, we only took into account queries that return answers
that can be encoded into a constant number of neurons, i.e., queries that return
a Boolean answer (ASK operator) or a fixed number of answers. For similar
reasons, we also abstained from considering C-SPARQL queries that return a
stream of RDF data. This is not a major limitation and the queries we present
in Section 4 are expressive and showcase a wide variety of possible use cases.

To process C-SPARQL queries we have used the Ready-To-Go Pack.4 When
processing a query, time and memory usage were measured. To avoid that

3 https://github.com/CarolinaMagLopes/Deep-Neural-Networks-for-C-SPARQL.
4 http://streamreasoning.org/resources/c-sparql

https://github.com/CarolinaMagLopes/Deep-Neural-Networks-for-C-SPARQL
http://streamreasoning.org/resources/c-sparql


C-SPARQL starts giving wrong answers when passing the threshold of pro-
cessable amount of data per time step, we added sufficient delay to the query
processing (as determined in prior tests and higher than any processing times),
without affecting the measured processing times themselves.

3.3 Training RNNs and CNNs

The result of running the queries are windows of data together with the cor-
responding query result. To be able to train a neural network with this data,
we needed to encode the data accordingly. To cover the 9 events in 10 sectors,
a matrix of size (9×10 ) has been used. For the case of RNNs, a window of 5
minutes thus results in an input of 5 such matrices, whereas for CNNs an addi-
tional dimension of 5 is added, hence each window corresponds to a matrix of
size (9×10×5 ).

Then for each query, varying architectures with different numbers (and kinds)
of layers and neurons were designed, trained, and tested for both CNNs as well
as LSTM and GRU architectures, the RNNs, we considered here, using also
Dropout and Gaussian Noise to avoid overfitting of the networks. The quality
of their reasoning approximation has been measured using the accuracy (the
fraction of correct answers) obtained with the test set and from training.

From the 17532 samples, 1532 were reserved for testing and 16000 were used
for training and validation, typically with 10% of these being used in the valida-
tion set. The number of epochs used for training varies depending on the used
network and the query, corresponding in all cases to the best results achieved
while avoiding overfitting. For RNNs, this varies between 100 and 1000 epochs,
for CNN, 50 epochs provided the best results.

The networks were developed and tested using Python3, namely using Ten-
sorFlow5, Keras6 and SciKit-Learn 7, where Keras in particular provides imple-
mentations of CNNs, LSTM and GRU architectures.

4 Experiments and Results

In this section, we present the different experiments carried out with the aim of
assessing to what extent neural networks are able to approximate reasoning with
C-SPARQL. Among the many different queries that we tested, we have chosen
several representatives of certain combinations of the features of C-SPARQL
(cf. Section 2), and grouped them together in subsections according to the chosen
features to facilitate the reading.8

In each case, we indicate the representative queries and the processing times
of C-SPARQL, RNNs and CNNs, as well as the resulting accuracy for the test

5 https://www.tensorflow.org/
6 https://keras.io/
7 https://scikit-learn.org/stable/
8 An extended version of the paper contains the exact encoding of the queries, final

configurations of the networks, and plots of the learning phase [12].

https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/


set for both network architectures. Please note that w.r.t. RNNs, we often refer
directly to LSTM in this section, as they turned out to provide better results
than GRU for all the tests of RNNs.

The experiments were run on a computer with an Intel Core i3-3240T pro-
cessor with 2.90GHz and 4GB of RAM.

As this is common to all experiments, we remark here that running the event
processor to create the data set of events only required on average a few millisec-
onds per sample, meaning that this is irrelevant for the overall processing time
of windows covering 5 minutes, i.e., it is insignificant for ensuring whether pro-
cessing queries is possible in real-time. We also note that our experiments when
processing with C-SPARQL have shown overall that, even for more complicated
queries, memory consumption does nor surpass a few hundred MB, which does
not constitute a bottle-neck for processing or running the tests, which is why
we do not report it individually. Finally, we also report here that training the
networks took on average between 45 minutes to 4.5 hours for RNNs and 4 to 10
minutes for CNNs, depending on the query and the number of epochs to achieve
the best results. While this adds to the time necessary to use a neural network
instead of C-SPARQL, it only needs to be done once before applying the network
for approximating reasoning. Hence, once the network is trained, this does not
affect the usage in real time either.

4.1 Queries with temporal events

For the first set of queries, we tested the identification of sequences of tempo-
ral events for RDF triples with the timestamp function, which is one of the
fundamental characteristics of C-SPARQL.

Here, we wanted to determine within a window the occurrence, in a sector,
of the complex event composed of

t1: normal−air & no−movement t2: high−carbon & movement
t3: high−sulfure

where t1, t2 and t3 are timestamps such that t1 < t2 < t3.
For this event, we created different kinds of queries to cover the expressiveness

of C-SPARQL. Query 1 selects the sectors where the complex event occurred
(using the SELECT operator), while Query 2, tests whether the event occurred
in all ten sectors (using the ASK operator). Query 3 is considerably more complex
than the previous two since aggregation is added in the form of COUNT and
MAX, aiming to determine the sector with the highest number of occurrences
of this complex event. The obtained results are reported in the following table.9

C-SPARQL LSTM CNN
Results Time Train Acc Test Acc Time Train Acc Test Acc Time
Query 1 10-25min 0.9801 0.9780 180µs 0.9832 0.9976 280µs
Query 2 10-15min 0.8760 0.8695 210µs 0.9898 0.9852 450µs
Query 3 15-30+min 0.9350 0.9311 700µs 0.9324 0.9222 240µs

9 C-SPARQL processing times vary depending on the number of tuples per window.



We can see that CNNs provide excellent results for both Queries 1 and 2,
whereas LSTMs provide excellent results as well for Query 1, but only good
results for Query 2 (ASK), which is already observed during training. Such
difficulties can be circumvented though by counting the results of Query 1, for
which the results are excellent and obtain the correct answer with high precision.
For Query 3, which is considerably more complex with the aggregations, very
good results are achieved for both kinds of networks.

Overall, we conclude that detecting temporal sequences in stream reasoning
using neural networks is feasible with, in general, very good results even for more
complex queries. At the same time, processing with any of the trained networks
is at least 6 orders of magnitudes faster than reasoning with C-SPARQL. In
particular, for the queries considered here, C-SPARQL could not be used with
the considered data in real time as the processing time is far higher than the
admitted processing time of 1 minute (each window captures 5 minutes, but the
time step of the sliding window is 1 minute), thus resulting in incorrect answers
in such a setting, unlike the networks that easily permit processing in real time.

4.2 Queries with Background Knowledge

In the second part, we introduced an additional layer of complexity by adding
background knowledge in the form of an ontology containing information about
the type of sectors (school−area, urban−area, etc.), events, called infractions,
not allowed in the various types of sectors (for example, the high−carbon event
should not happen in school−area) and information about adjacency between
sectors. Here, we did not consider temporal comparisons between events, but
made use of various aggregation functions.

Query 4 consists in selecting the sectors where more infractions occurred
than the average of infractions in the adjacent sectors, thus making use of the
topological knowledge, whereas Query 5 asks if the number of sectors, where
more infractions occurred than the average of infractions in the adjacent sectors,
is greater than or equal to 4, requiring aggregations within an aggregation.

For Query 6, we further increased the complexity of the query and made use
of the Property Paths Operators that C-SPARQL provides, namely, among them
the ’/’ operator, where pred1/pred2 corresponds to the sequence path of pred1
followed by pred2. This allows to query for sectors where more infractions oc-
curred than the average of infractions in the sectors adjacent to adjacent sectors.
To allow for more meaningful answers, for this query, we increased the number
of sectors to 15 choosing sensors in the same way as described in Section 3, since
with the initial 10 sectors, any sector would be close to almost all the others.

C-SPARQL LSTM CNN
Results Time Train Acc Test Acc Time Train Acc Test Acc Time
Query 4 20-40ms 0.9810 0.9775 1ms 0.9797 0.9799 545µs
Query 5 20ms 0.9130 0.8930 1ms 0.9180 0.9066 460µs
Query 6 30ms 0.9840 0.9771 1ms 0.9795 0.9728 700µs

Both LSTMs and CNNs perform similarly, showing excellent results for both
queries 4 and 6, and only good results for Query 5 (using ASK). Similar to the



solution for Query 2 for LSTMs, we can circumvent this and take advantage of
the excellent performance for Query 4 and simply count the results there. We
observe that C-SPARQL reasoning involving ontologies can be captured with
LSTMs and CNNs as well. Notably, for this kind of queries C-SPARQL provides
very good processing times that allow its usage in real time, but using the trained
networks is still at least 30 and 60 times faster for LSTMs and CNNs, resp.

4.3 Combining Temporal Events and Background Knowledge

In the final set of queries, we combine comparisons of temporal events with
background knowledge and aggregations to obtain highly sophisticated queries
for testing our hypothesis. We reuse the complex event from Section 4.1 and the
ontology from Section 4.2 for the two final queries. Namely, with Query 7 we
determine those sectors that have more occurrences of the complex event than
the average in the adjacent sectors, and with Query 8, similar to Query 6, those
sectors that have more occurrences of the complex event than in the close, but
not immediately adjacent sectors.

C-SPARQL LSTM CNN
Results Time Train Acc Test Acc Time Train Acc Test Acc Time
Query 7 20-30+min 0.8990 0.8864 1ms 0.8310 0.8317 460µs
Query 8 25-30+min 0.8860 0.8718 1ms 0.8584 0.8555 555µs

We can observe that both kinds of networks achieve good results. Given the
observed results also from training, where our tests with more advanced models
would result in overfitting, we believe that this may be due to the fact that
for such complicated queries more training data would be necessary, and leave
this for future work. We also note that, here, LSTMs show a slightly better
performance. We conjecture that this could be related to the fact that for a
CNN the entire input is presented as a matrix possibly somewhat obfuscating
the temporal aspect, whereas for LSTMs the temporal component of the input
is separated, and thus possibly easier to distinguish. In any case, similar to
Section 4.1, C-SPARQL cannot be applied in real time, as the processing time
by far exceeds the limit, whereas the networks are again six orders of magnitude
faster. Thus, even though there is still space for improvement here in terms
of resulting precision for the approximation, given the unsuitability of using
C-SPARQL in real time for such queries, our approach is also very promising for
such highly complex queries.

5 Conclusions

We have investigated whether expressive stream reasoning with C-SPARQL can
be approximated using Recurrent and Convolutional Neural Networks, since
for more sophisticated queries with higher quantities of data to be processed,
C-SPARQL does not process the data fast enough to provide timely answers.



Our experiments on a real data set containing among others data on traffic
and air pollution show that both RNNs and CNNs are well-suited for this task,
as their processing time is vastly superior compared to C-SPARQL, in particular
when relative comparisons of temporal events are required, and in many cases,
they show excellent or very good results of approximation of reasoning, even
when utilizing more complex combinations of C-SPARQL’s features.

When comparing both architectures, we noted slightly better results for
RNNs ,i.e., LSTMs, when approximating highly complex queries in particular in-
cluding many temporal comparisons (Query 7 and 8). On the other hand, CNNs
performed a bit better for ASK queries (notably Query 2), which requires count-
ing globally, and training them is notably faster. Our preliminary conclusion is
that CNNs could be more suitable where space perception is more important,
while RNNs seem preferable for queries more oriented towards temporal aspects.

Still, C-SPARQL remains more suitable if the frequency of incoming data
is below its processing capabilities and when obtaining the correct result is
mandatory, or where ad-hoc variants of a query are needed, which would re-
quire re-training the network, as well as in situations when returning answer
substitutions where the domain is not previously limited and known, or when
returning constructed graphs (as streams).

In terms of future work, it would be interesting to further explore the sit-
uations where the networks were not providing excellent results. This could be
tackled by trying to use larger datasets and further test the combinations of fea-
tures of C-SPARQL that proved more difficult when approximating reasoning.
Another option would be to consider, e.g., Echo-State Networks (ESN), that
have shown promising results in term series classification as well [4].

Acknowledgments We thank the anonymous reviewers for their helpful comments
and acknowledge support by FCT project RIVER (PTDC/CCI-COM/30952/2017)
and by FCT project NOVA LINCS (UIDB/04516/2020).

References

1. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: Extended Semantic Web
Conference. pp. 1–15. Springer (2010)

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. International Journal of Seman-
tic Computing 4(01), 3–25 (2010)

3. Besold, T.R., d’Avila Garcez, A.S., Bader, S., Bowman, H., Domingos, P.M., Hit-
zler, P., Kühnberger, K., Lamb, L.C., Lowd, D., Lima, P.M.V., de Penning, L.,
Pinkas, G., Poon, H., Zaverucha, G.: Neural-symbolic learning and reasoning: A
survey and interpretation. CoRR abs/1711.03902 (2017)

4. Bianchi, F.M., Scardapane, S., Løkse, S., Jenssen, R.: Reservoir computing ap-
proaches for representation and classification of multivariate time series. IEEE
Trans. Neural Networks Learn. Syst. 32(5), 2169–2179 (2021)

5. Brickey, D., Guha, R. (eds.): RDF Schema 1.1. W3C Recommendation, 23 February
(2014)



6. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP. pp. 1724–1734. ACL (2014)

7. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR) 44(3), 1–62 (2012)

8. Della Valle, E., Ceri, S., Van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems 24(6), 83–
89 (2009)

9. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
A survey and outlook. Data Science 1(1-2), 59–83 (2017)

10. Ebrahimi, M., Sarker, M.K., Bianchi, F., Xie, N., Doran, D., Hitzler, P.: Reasoning
over RDF knowledge bases using deep learning. CoRR abs/1811.04132 (2018)

11. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for
time series classification: a review. Data Mining and Knowledge Discovery 33(4),
917–963 (2019)

12. Ferreira, R., Lopes, C., Gonçalves, R., Knorr, M., Krippahl, L., Leite, J.: Deep
neural networks for approximating stream reasoning with C-SPARQL. CoRR
abs/2106.08452 (2021)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
14. Harris, S., Seaborne, A., Prud’hommeaux, E. (eds.): SPARQL 1.1 Query Language.

W3C Recommendation, 21 March (2013)
15. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall PTR

(1994)
16. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.

Synthesis Lectures on the Semantic Web, Morgan & Claypool Publishers (2011)
17. Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration

and the semantic web. Semantic Web 11(1), 3–11 (2020)
18. Hitzler, P., van Harmelen, F.: A reasonable semantic web. Semantic Web 1(1-2),

39–44 (2010)
19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)
20. Hohenecker, P., Lukasiewicz, T.: Ontology reasoning with deep neural networks.

J. Artif. Intell. Res. 68, 503–540 (2020)
21. Makni, B., Hendler, J.A.: Deep learning for noise-tolerant RDFS reasoning. Se-

mantic Web 10(5), 823–862 (2019)
22. Margara, A., Urbani, J., Van Harmelen, F., Bal, H.: Streaming the web: Reasoning

over dynamic data. Journal of Web Semantics 25, 24–44 (2014)
23. Miller, E.: An introduction to the resource description framework. D Lib Mag. 4(5)

(1998)
24. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2

Web Ontology Language Profiles. W3C Recommendation, 11 December (2012)
25. Pascanu, R., Mikolov, T., Bengio, Y.: Understanding the exploding gradient prob-

lem. CoRR abs/1211.5063 (2012)
26. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage

attention-based recurrent neural network for time series prediction. In: IJCAI. pp.
2627–2633. ijcai.org (2017)

27. Ren, X., Khrouf, H., Kazi-Aoul, Z., Chabchoub, Y., Curé, O.: On measuring per-
formances of C-SPARQL and CQELS. In: SR+SWIT@ISWC. CEUR Workshop
Proceedings, vol. 1783, pp. 1–12. CEUR-WS.org (2016)

28. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: A strong baseline. In: IJCNN. pp. 1578–1585. IEEE (2017)


	Deep Neural Networks for Approximating Stream Reasoning with C-SPARQL

