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Abstract. Ontology languages and non-monotonic rule languages are both well-
known formalisms in knowledge representation and reasoning, each with its own
distinct benefits and features which are quite orthogonal to each other. Both ap-
pear in the Semantic Web stack in distinct standards – OWL and RIF – and over
the last decade a considerable research effort has been put into trying to provide
a framework that combines the two. Yet, the considerable number of theoretical
approaches resulted, so far, in very few practical reasoners, while realistic use-
cases are scarce. In fact, there is little evidence that developing applications with
combinations of ontologies and rules is actually viable. In this paper, we present
a tool called NoHR that allows one to reason over ontologies and non-monotonic
rules, illustrate its use in a realistic application, and provide tests of scalability of
the tool, thereby showing that this research effort can be turned into practice.

1 Introduction

Ontology languages in the form of Description Logics (DLs) [4] and non-monotonic
rule languages as known from Logic Programming (LP) [6] are both well-known for-
malisms in knowledge representation and reasoning (KRR) each with its own distinct
benefits and features. This is also witnessed by the emergence of the Web Ontology
Language (OWL) [18] and the Rule Interchange Format (RIF) [7] in the ongoing stan-
dardization of the Semantic Web driven by the W3C. 1

On the one hand, ontology languages have become widely used to represent and
reason over taxonomic knowledge and, since DLs are (usually) decidable fragments of
first-order logic, are monotonic by nature which means that once drawn conclusions
persist when adopting new additional information. They also allow reasoning on ab-
stract information, such as relations between classes of objects even without knowing
any concrete instances and a main theme inherited from DLs is the balance between ex-
pressiveness and complexity of reasoning. In fact, the very expressive general language
OWL 2 with its high worst-case complexity includes three tractable (polynomial) pro-
files [27] each with a different application purpose in mind.

On the other hand, non-monotonic rules are focused on reasoning over instances
and commonly apply the Closed World Assumption (CWA), i.e., the absence of a piece
of information suffices to derive it being false, until new information to the contrary is
provided, hence the term non-monotonic. This permits to declaratively model defaults
and exceptions, in the sense that the absence of an exceptional feature can be used to

1 http://www.w3.org
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derive that the (more) common case applies, and also integrity constraints, which can
be used to ensure that the considered data is conform with desired specifications.

Combining both formalisms has been frequently requested by applications [1]. For
example, in clinical health care, large ontologies such as SNOMED CT,2 that are cap-
tured by the OWL 2 profile OWL 2 EL and its underlying description logic (DL) EL++

[5], are used for electronic health record systems, clinical decision support systems, or
remote intensive care monitoring, to name only a few. Yet, expressing conditions such
as dextrocardia, i.e., that the heart is exceptionally on the right side of the body, is not
possible and requires non-monotonic rules.

Finding such a combination is a non-trivial problem due to the considerable differ-
ences as to how decidability is ensured in each of the two formalisms and a naive com-
bination is easily undecidable. In recent years, there has been a considerable amount of
effort devoted to combining DLs with non-monotonic rules as known from Logic Pro-
gramming – see, e.g., related work in [12,28]) – but this has not been accompanied by
similar variety of reasoners and applications. In fact, only very few reasoners for com-
bining ontologies and non-monotonic rules exist and realistic use-cases are scarce. In
other words, there is little evidence so far that developing applications in combinations
of ontologies and rules is actually viable.

In this paper, we want to contribute to showing that this paradigm is viable by de-
scribing a tool called NoHR and show how it can be used to handle a real use-case
efficiently as well as its scalability. NoHR is theoretically founded in the formalism
of Hybrid MKNF under the well-founded semantics [22] which comes with two main
arguments in its favor. First, the overall approach, which was introduced in [28] and is
based on the logic of minimal knowledge and negation as failure (MKNF) [26], provides
a very general and flexible framework for combining DL ontologies and non-monotonic
rules (see [28]). Second, [22], which is a variant of [28] based on the well-founded se-
mantics [13] for logic programs, has a lower data complexity than the former – it is
polynomial for polynomial DLs – and is amenable for applying top-down query proce-
dures, such as SLG(O) [2], to answer queries based only on the information relevant
for the query, and without computing the entire model – no doubt a crucial feature when
dealing with large ontologies and huge amounts of data.

NoHR is realized as a plug-in for the ontology editor Protégé 4.X,3 that allows
the user to query combinations of EL+

⊥ ontologies and non-monotonic rules in a top-
down manner. To the best of our knowledge, it is the first Protégé plug-in to integrate
non-monotonic rules and top-down queries. We describe its features including the pos-
sibility to load and edit rule bases, and define predicates with arbitrary arity; guaranteed
termination of query answering, with a choice between one/many answers; robustness
w.r.t. inconsistencies between the ontology and the rule part and demonstrate its effec-
tive usage on the application use-case combining EL+

⊥ ontologies and non-monotonic
rules outlined in the following and adapted from [29], as well as an evaluation for real
ontology SNOMED CT with over 300,000 concepts.

Example 1. The customs service for any developed country assesses imported cargo for
a variety of risk factors including terrorism, narcotics, food and consumer safety, pest

2 http://www.ihtsdo.org/snomed-ct/
3 http://protege.stanford.edu
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Syntax Semantics
atomic concept A ∈ NC AI ⊆ ∆I

atomic role R ∈ NR RI ⊆ ∆I ×∆I

individual a ∈ NI aI ∈ ∆I

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
concept inclusion C v D CI ⊆ DI

role inclusion R v S RI ⊆ SI

role composition R1 ◦ · · · ◦Rk v S (x1, x2) ∈ RI
1 ∧ . . . ∧ (xk, y) ∈ RI

k → (x1, y) ∈ SI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

Table 1. Syntax and semantics of EL+
⊥.

infestation, tariff violations, and intellectual property rights. Assessing this risk, even
at a preliminary level, involves extensive knowledge about commodities, business enti-
ties, trade patterns, government policies and trade agreements. Parts of this knowledge
is ontological information and taxonomic, such as the classification of commodities,
while other parts require the CWA and thus non-monotonic rules, such as the policies
involving, e.g., already known suspects. The overall task then is to access all the in-
formation and assess whether some shipment should be inspected in full detail, under
certain conditions randomly, or not at all.

The remainder of the paper is structured as follows. In Sect. 2, we briefly recall the
DL EL+

⊥ and MKNF knowledge bases as a tight combination of the former DL and
non-monotonic rules. Then, in Sect. 3, we present the Protégé plug-in NoHR, and, in
Sect. 4, we discuss the cargo shipment use case and its realization using NoHR. We
present some evaluation data in Sect. 5, before we conclude in Sect. 6.4

2 Preliminaries

2.1 Description Logic EL+
⊥

We start by recalling the syntax and semantics of EL+
⊥, a large fragment of EL++ [5],

the DL underlying the tractable profile OWL 2 EL [27], following the presentation in
[21]. For a more general and thorough introduction to DLs we refer to [4].

The language of EL+
⊥ is defined over countably infinite sets of concept names NC,

role names NR, and individual names NI as shown in the upper part of Table 1. Building
on these, complex concepts are introduced in the middle part of Table 1, which, together
with atomic concepts, form the set of concepts. We conveniently denote individuals by
a and b, (atomic) roles by R and S, atomic concepts by A and B, and concepts by C
and D. All expressions in the lower part of Table 1 are axioms. A concept equivalence

4 Details on the translation of EL ontologies into rules used in NoHR can be found in [19].



C ≡ D is an abbreviation forC v D andD v C. Concept and role assertions are ABox
axioms and all other axioms TBox axioms, and an ontology is a finite set of axioms.

The semantics of EL+
⊥ is defined in terms of an interpretation I = (∆I , ·I) consist-

ing of a non-empty domain ∆I and an interpretation function ·I . The latter is defined
for (arbitrary) concepts, roles, and individuals as in Table 1. Moreover, an interpretation
I satisfies an axiom α, written I |= α, if the corresponding condition in Table 1 holds.
If I satisfies all axioms occurring in an ontology O, then I is a model of O, written
I |= O. If O has at least one model, then it is called consistent, otherwise inconsistent.
Also,O entails axiom α, writtenO |= α, if every model ofO satisfies α. Classification
requires to compute all concept inclusions between atomic concepts entailed by O.

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and negation
as failure (MKNF) [26]. Two main different semantics have been defined [28,22], and
we focus on the well-founded version [22], due to its lower computational complexity
and amenability to top-down querying without computing the entire model. Here, we
only point out important notions, and refer to [22] and [2] for the details.

We start by recalling MKNF knowledge bases as presented in [2] to combine an
(EL+

⊥) ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 2. Let O be an ontology. A function-free first-order atom P (t1, . . . , tn) s.t.
P occurs in O is called DL-atom; otherwise non-DL-atom. A rule r is of the form

H ← A1, . . . , An,notB1, . . . ,notBm (1)

where the head of r, H , and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body
of r are atoms. A program P is a finite set of rules, and an MKNF knowledge base K
is a pair (O,P). A rule r is DL-safe if all its variables occur in at least one non-DL-
atom Ai with 1 ≤ i ≤ n, and K is DL-safe if all its rules are DL-safe. The ground
instantiation of K is the KB KG = (O,PG) where PG is obtained from P by replacing
each rule r of P with a set of rules substituting each variable in r with constants from
K in all possible ways.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can be
achieved by introducing a new predicate o, adding o(i) toP for all constants i appearing
in K and, for each rule r ∈ P , adding o(X) for each variable X appearing in r to the
body of r. Therefore, we only consider DL-safe MKNF knowledge bases.

The semantics of K is based on a transformation of K into an MKNF formula
to which the MKNF semantics can be applied (see [22,26,28] for details). Instead of
spelling out the technical details of the original MKNF semantics [28] or its three-
valued counterpart [22], we focus on a compact representation of models for which the
computation of the well-founded MKNF model is defined.5 This representation is based
on a set of K-atoms and π(O), the translation of O into first-order logic.

5 Strictly speaking, this computation yields the so-called well-founded partition from which the
well-founded MKNF model is defined (see [22] for details).



Definition 3. Let KG = (O,PG) be a ground hybrid MKNF knowledge base. The set
of K-atoms of KG, written KA(KG), is the smallest set that contains (i) all ground
atoms occurring in PG, and (ii) an atom ξ for each ground not-atom notξ occurring
in PG. For a subset S of KA(KG), the objective knowledge of S w.r.t. KG is the set of
first-order formulas OBO,S = {π(O)} ∪ S.

The set KA(KG) contains all atoms occurring in KG, only with not-atoms substituted
by corresponding atoms, while OBO,S provides a first-order representation of O to-
gether with a set of known/derived facts. In the three-valued MKNF semantics, this set
of K-atoms can be divided into true, undefined and false atoms. Next, we recall op-
erators from [22] that derive consequences based on KG and a set of K-atoms that is
considered to hold.

Definition 4. Let KG = (O,PG) be a positive, ground hybrid MKNF knowledge base.
The operators RKG

, DKG
, and TKG

are defined on subsets of KA(KG):

RKG
(S) ={H | PG contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n,Ai ∈ S}
DKG

(S) ={ξ | ξ ∈ KA(KG) and OBO,S |= ξ}
TKG

(S) =RKG
(S) ∪DKG

(S)

The operator TKG
is monotonic, and thus has a least fixpoint TKG

↑ ω. Transforma-
tions can be defined that turn an arbitrary hybrid MKNF KB KG into a positive one
(respecting the given set S) to which TKG

can be applied. To ensure coherence, i.e.,
that classical negation in the DL enforces default negation in the rules, two slightly
different transformations are defined (see [22] for details).

Definition 5. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
S ⊆ KA(KG). The MKNF transform KG/S is defined as KG/S = (O,PG/S), where
PG/S contains all rules H ← A1, . . . , An for which there exists a rule of the form
(1) in PG with Bj 6∈ S for all 1 ≤ j ≤ m. The MKNF-coherent transform KG//S is
defined as KG//S = (O,PG//S), where PG//S contains all rules H ← A1, . . . , An

for which there exists a rule of the form (1) with Bj 6∈ S for all 1 ≤ j ≤ m and
OBO,S 6|= ¬H . We define ΓKG

(S) = TKG/S ↑ ω and Γ ′
KG

(S) = TKG//S ↑ ω.

Based on these two antitonic operators [22], two sequences Pi and Ni are defined,
which correspond to the true and non-false derivations.

P0 = ∅ N0 = KA(KG)

Pn+1 = ΓKG
(Nn) Nn+1 = Γ ′

KG
(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

The fixpoints yield the well-founded MKNF model [22] (in polynomial time).

Definition 6. The well-founded MKNF model of an MKNF-consistent ground hybrid
MKNF knowledge base KG = (O,PG) is defined as (Pω,KA(KG) \Nω).
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Fig. 1. System Architecture of NoHR

If K is MKNF-consistent, then this partition does correspond to the unique model of
K [22], and, like in [2], we call the partition the well-founded MKNF model Mwf(K).
Here,Kmay indeed not be MKNF-consistent if the EL+

⊥ ontology alone is inconsistent,
which is possible if⊥ occurs, or by the combination of appropriate axioms inO and P ,
e.g.,A v ⊥ andA(a)←. In the former case, we argue that the ontology alone should be
consistent and be repaired if necessary before combining it with non-monotonic rules.
Thus, we assume in the following that O occurring in K is consistent.

3 System Description

In this section, we briefly describe the architecture of the plug-in for Protégé as shown
in Fig. 1 and discuss some features of the implementation and how querying is realized.

The input for the plug-in consists of an OWL file in the DL EL+
⊥ as described in

Sect. 2.1, which can be manipulated as usual in Protégé, and a rule file. For the latter,
we provide a tab called NoHR Rules that allows us to load, save and edit rule files in a
text panel following standard Prolog conventions.

The NoHR Query tab (see Fig. 2) also allows for the visualization of the rules, but
its main purpose is to provide an interface for querying the combined KB. Whenever the
first query is posed by pushing “Execute”, a translator is started, initiating the ontology
reasoner ELK [21] tailored for EL+

⊥ and considerably faster than other reasoners when
comparing classification time [21]. ELK is used to classify the ontology O and then
return the inferred axioms to the translator. It is also verified whether DisjointWith
axioms appear inO, i.e., in EL+

⊥ notation, axioms of the form C uD v ⊥ for arbitrary
classes C andD, which determines whether inconsistencies may occur in the combined
hybrid knowledge base. Then the result of the classification is translated into rules and
joined with the already given non-monotonic rules in P , and the result is conditionally
further transformed if inconsistency detection is required.

The result is used as input for the top-down query engine XSB Prolog 6 which real-
izes the well-founded semantics for logic programs [13]. To guarantee full compatibility
with XSB Prolog’s more restrictive admitted input syntax, the joint resulting rule set is

6 http://xsb.sourceforge.net
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Fig. 2. NoHR Query tab with a query for TariffCharge(x,y) (see Sect. 4)

further transformed such that all predicates and constants are encoded using MD5. The
result is transfered to XSB via InterProlog [9],7 which is an open-source Java front-end
allowing the communication between Java and a Prolog engine.

Next, the query is sent via InterProlog to XSB, and answers are returned to the
query processor, which collects them and sets up a table showing for which variable
substitutions we obtain true, undefined, or inconsistent valuations (or just shows the
truth value for a ground query). The table itself is shown in the Result tab (see Fig. 2)
of the Output panel, while the Log tab shows measured times of pre-processing the
knowledge base and answering the query. XSB itself not only answers queries very
efficiently in a top-down manner, with tabling, it also avoids infinite loops.

Once the query has been answered, the user may pose other queries, and the system
will simply send them directly without any repeated preprocessing. If the user changes
data in the ontology or in the rules, then the system offers the option to recompile, but
always restricted to the part that actually changed.

4 Cargo Shipment Use Case

The customs service for any developed country assesses imported cargo for a variety of
risk factors including terrorism, narcotics, food and consumer safety, pest infestation,
tariff violations, and intellectual property rights.8 Assessing this risk, even at a prelim-
inary level, involves extensive knowledge about commodities, business entities, trade
patterns, government policies and trade agreements. Some of this knowledge may be
external to a given customs agency: for instance the broad classification of commodi-
ties according to the international Harmonized Tariff System (HTS), or international

7 http://www.declarativa.com/interprolog/
8 The system described here is not intended to reflect the policies of any country or agency.
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* * * O * * *

Commodity ≡ (∃HTSCode.>) Tomato v EdibleVegetable
CherryTomato v Tomato GrapeTomato v Tomato
CherryTomato u GrapeTomato v ⊥ Bulk u Prepackaged v ⊥
EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>) u (∃CommodCountry.EUCountry)

ShpmtCommod(s1 , c1 ) ShpmtDeclHTSCode(s1 , h7022)
ShpmtImporter(s1 , i1 ) CherryTomato(c1 ) Bulk(c1 )
ShpmtCommod(s2 , c2 ) ShpmtDeclHTSCode(s2 , h7022)
ShpmtImporter(s2 , i2 ) GrapeTomato(c2 ) Prepackaged(c2 )
ShpmtCountry(s2 , portugal)
ShpmtCommod(s3 , c3 ) ShpmtDeclHTSCode(s3 , h7021)
ShpmtImporter(s3 , i3 ) GrapeTomato(c3 ) Bulk(c3 )
ShpmtCountry(s3 , portugal) ShpmtProducer(s3 , p1 )
RegisteredProducer(p1 , portugal) EUCountry(portugal)
RegisteredProducer(p2 , slovakia) EUCountry(slovakia)

* * * P * * *

AdmissibleImporter(x)← ShpmtImporter(y,x),notSuspectedBadGuy(x).
SuspectedBadGuy(i1 ).
ApprovedImporterOf(i2 ,x)← EdibleVegetable(x).
ApprovedImporterOf(i3 ,x)← GrapeTomato(x).
CommodCountry(x,y)← ShpmtCommod(z,x), ShpmtCountry(z,y).
ExpeditableImporter(x,y)← ShpmtCommod(z,x),ShpmtImporter(z,y),

AdmissibleImporter(y),ApprovedImporterOf(y,x).
CompliantShpmt(x)← ShpmtCommod(x,y),HTSCode(y, z), ShpmtDeclHTSCode(x, z).
Random(x)← ShpmtCommod(x,y),notRandom(x).
NoInspection(x)← ShpmtCommod(x,y),CommodCountry(y, z),EUCountry(z).
Inspection(x)← ShpmtCommod(x,y),notNoInspection(x),Random(x).
Inspection(x)← ShpmtCommod(x,y),notCompliantShpmt(x).
Inspection(x)← ShpmtCommod(x,y),Tomato(y),ShpmtCountry(x, slovakia).
HTSChapter(x, 7)← EdibleVegetable(x).
HTSHeading(x, 702)← Tomato(x).
HTSCode(x, h7022)← CherryTomato(x).
HTSCode(x, h7021)← GrapeTomato(x).
TariffCharge(x, 0)← CherryTomato(x),Bulk(x).
TariffCharge(x, 40)← GrapeTomato(x),Bulk(x).
TariffCharge(x, 50)← CherryTomato(x),Prepackaged(x).
TariffCharge(x, 100)← GrapeTomato(x),Prepackaged(x).

Fig. 3. MKNF knowledge base for Cargo Imports



trade agreements. Other knowledge may be internal to a customs agency, such as lists
of suspected violators or of importers who have a history of good compliance with
regulations.

Figure 3 shows a simplified fragment K = (O,P) of such a knowledge base. In
this fragment, a shipment has several attributes: the country of its origination, the com-
modity it contains, its importer and producer. The ontology contains a geographic clas-
sification, along with information about producers who are located in various countries.
It also contains (partial) information about three shipments: s1 , s2 and s3 . There is
also a set of rules indicating information about importers, and about whether to in-
spect a shipment either to check for compliance of tariff information or for food safety
issues. For that purpose, the set of rules also includes a classification of commodi-
ties based on their harmonized tariff information (HTS chapters, headings and codes,
cf. http://www.usitc.gov/tata/hts), and tariff information, based on the
classification of commodities as given by the ontology.

The overall task then is to access all the information and assess whether some ship-
ment should be inspected in full detail, under certain conditions randomly, or not at all.
In fact, an inspection is considered if either a random inspection is indicated, or some
shipment is not compliant, i.e., there is a mismatch between the filed cargo codes and the
actually carried commodities, or some suspicious cargo is observed, in this case toma-
toes from slovakia. In the first case, a potential random inspection is indicated whenever
certain exclusion conditions do not hold. To ensure that one can distinguish between
strictly required and random inspections, a random inspection is assigned the truth value
undefined based on the rule Random(x)← ShpmtCommod(x,y),notRandom(x).

The result of querying this knowledge base for Inspection(x) reveals that of the
three shipments, s2 requires an inspection (due to mislabeling) while s1 may be subject
to a random inspection as it does not knowingly originate from the EU. It can also be
verified using the tool that preprocessing the knowledge base can be handled within
300ms and the query only takes 12ms, which certainly suffices as interactive response.
Please also note that the example indeed utilizes the features of rules and ontologies:
for example exceptions to the potential random inspections can be expressed, but at the
same time, taxonomic and non-closed knowledge is used, e.g., some shipment may in
fact originate from the EU, this information is just not available.

5 Evaluation

In this section, we present some tests showing that a) the huge EL+ ontology SNOMED
CT can be preprocessed for querying in a short period of time, b) adding rules increases
the time of the translation only linearly, and c) querying time is in comparison to a)
and b) in general completely neglectable. We performed the tests on a Mac book air
13 under Mac OS X 10.8.4 with a 1.8 GHz Intel Core i5 processor and 8 GB 1600
MHz DDR3 of memory. We ran all tests in a terminal version and Java with the “-
XX:+AggressiveHeap” option, and test results are averages over 5 runs.

We considered SNOMED CT, freely available for research and evaluation,9 and
added a varying number of non-monotonic rules. These rules were generated arbitrarily,

9 http://www.ihtsdo.org/licensing/
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Fig. 4. Preprocessing time for SNOMED with a varying number of Rules

using predicates from the ontology and additional new predicates (up to arity three),
producing rules with a random number of body atoms varying from 1 to 10 and facts
(rules without body atoms) with a ratio of 1:10. Note that, due to the translation of
the DL part into rules, all atoms literally become non-DL-atoms. So ensuring that each
variable appearing in the rule is contained in at least one non-negated body atom suffices
to guarantee DL-safety for these rules.

The results are shown in Fig. 4 (containing also a constant line for classification
of ELK alone and starting with the values for the case without additional rules), and
clearly show that a) preprocessing an ontology with over 300,000 concepts takes less
than 70 sec. (time for translator+loading in XSB), b) the time of translator and loading
the file in XSB only grows linearly on the number of rules with a small degree, in
particular in the case of translator, and c) even with up to 500,000 added rules the time
for translating does not surpass ELK classification, which itself is really fast [21], by
more than a factor 2.5. All this data indicates that even on with a very large ontology,
preprocessing can be handled very efficiently.

Finally, we also tested the querying time. To this purpose, we randomly generated
and handcrafted several queries of different sizes and shapes using SNOMED with a
varying number of non-monotonic rules as described before. In all cases, we observed
that the query response time is interactive, observing longer reply times only if the num-
ber of replies is very high because either the queried class contains many subclasses in
the hierarchy or if the arbitrarily generated rules create too many meaningless links,
thus in the worst case requiring to compute the entire model. Requesting only one solu-
tion avoids this problem. Still, the question of realistic randomly generated rule bodies
for testing querying time remain an issue of future work.

6 Conclusions

We have presented NoHR, the first plug-in for the ontology editor Protégé that inte-
grates non-monotonic rules and top-down queries with ontologies in the OWL 2 profile



OWL 2 EL. We have discussed how this procedure is implemented as a tool and shown
how it can be used to implement a real use case on cargo shipment inspections. We
have also presented an evaluation which shows that the tool is applicable to really huge
ontologies, here SNOMED CT.

There are several relevant approaches discussed in the literature. Most closely re-
lated are probably [15,23], because both build on the well-founded MKNF semantics
[22]. In fact, [15] is maybe closest in spirit to the original idea of SLG(O) oracles repre-
sented in [2] on which the implementation of NoHR is theoretically founded. It utilizes
the CDF framework already integrated in XSB, but its non-standard language is a draw-
back if we want to achieve compatibility with standard OWL tools based on the OWL
API. On the other hand, [23], presents an OWL 2 QL oracle based on common rewrit-
ings in the underlying DL DL-Lite [3]. Less closely related is the work pursued in [8,14]
that investigates direct non-monotonic extensions of EL, so that the main reasoning task
focuses on finding default subset inclusions, unlike this query-centered approach.

Two other related tools are DReW [30] and HD Rules [10], but both are based on
different underlying formalisms to combine ontologies and non-monotonic rules. The
former builds on dl-programs [12] and focuses on datalog-rewritable DLs [17], and
the latter builds on Hybrid Rules [11]. While a more detailed comparison is surely
of interest, the main problem is that both underlying formalisms differ from MKNF
knowledge bases in the way information can flow between its two components and how
flexible the language is [12,28].

We conclude with pointing out that given the successful application of the tool to the
use-case as well as its evaluation, an obvious next step will be to try applying it to other
use-case domains. This will allow gathering data, which may then be used for a) further
dissemination in particular of query processing, which would b) stimulate application-
driven optimizations and enhancements of the tool NoHR. Other future directions are
extensions to paraconsistency [20] or more general formalisms [16,24,25].
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18. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer (Second Edition). W3C Recommendation 11 December 2012
(2012), available from http://www.w3.org/TR/owl2-primer/

19. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules. In: Procs. of
ISWC. LNCS, vol. 8218, pp. 216–231. Springer (2013)

20. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontologies and
rules. In: Procs. of IJCAI. IJCAI/AAAI (2015)
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