
On Some Properties of Forgetting in ASP
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Abstract. Many approaches for forgetting in Answer Set Program-
ming (ASP) have been proposed in recent years, in the form of spe-
cific operators, or classes of operators, following different principles
and obeying different properties. Whereas each approach was devel-
oped to somehow address some particular view on forgetting, thus
aimed at obeying a specific set of properties deemed adequate for
such view, only a recently published comprehensive overview of ex-
isting operators and properties provided a uniform and complete pic-
ture, including many novel (even surprising) results on relations be-
tween properties and operators. Yet, this overview ignored to a large
extent a different set properties for forgetting in ASP, and in this pa-
per we close this gap. It turns out that, while some of these properties
are closely related to the properties previously studied, four of them
are distinct providing novel results and insights further strengthening
established relations between existing operators.

1 Introduction
Forgetting – or variable elimination – is an operation that allows
the removal, from a knowledge base, of middle variables no longer
deemed relevant. The importance of forgetting is witnessed by its
application to cognitive robotics [23, 24, 27], resolving conflicts [16,
37, 7, 17], and ontology abstraction and comparison [33, 15, 13, 14].
With its early roots in Boolean Algebra [20], it has been extensively
studied in the context of classical logic [1, 16, 18, 19, 25, 26, 34].

Only more recently, the operation of forgetting began to receive
attention in the context of logic programming and non-monotonic
reasoning, notably of Answer Set Programming (ASP). It turns out
that the rule-based nature and non-monotonic semantics of ASP cre-
ate very unique challenges to the development of forgetting operators
– just as to the development of other belief change operators such as
those for revision and update, c.f. [28] – making it a special endeav-
our with unique characteristics distinct from those for classical logic.

Over the years, many have proposed different approaches to for-
getting in ASP, through the characterization of the result of forgetting
a set of atoms from a given program up to some equivalence class,
and/or through the definition of concrete operators that produce a
specific program for each input program and atoms to be forgotten
[37, 7, 36, 31, 30, 12, 32, 6].

All these approaches were typically proposed to obey some spe-
cific set of properties that their authors deemed adequate, some
adapted from the literature on classical forgetting [38, 31, 32], others
specifically introduced for the case of ASP [7, 36, 31, 30, 12, 6]. Ex-
amples of such properties include strengthened consequence, which
requires that the answer sets of the result of forgetting be bound to
the answer-sets of the original program modulo the forgotten atoms,
or the so-called existence, which requires that the result of forgetting
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belongs to the same class of programs admitted by the forgetting op-
erator, so that the same reasoners can be used and the operator be
iterated, among many others.

The result is a complex landscape filled with operators and prop-
erties, with very little effort put into drawing a map that could help
to better understand the relationships between properties and opera-
tors. Recently, this problem has been tackled in [9] by presenting a
systematic study of forgetting in ASP, thoroughly investigating the
different approaches found in the literature, their properties and rela-
tionships – including many novel results – giving rise to a compre-
hensive guide aimed at helping users navigate this topic’s complex
landscape and ultimately assist them in choosing suitable operators
for each application.

However, this study ignores to a large extent the postulates on for-
getting in ASP introduced in [36], and it is our aim to close this gap
here.2 As a result of our study of these postulates, we are able to
conclude that, while some of them are implied by one of the pre-
viously studied properties in [9], hence ultimately weaker than these
and thus of less importance, others are distinct and provide additional
novel results further strengthening the relations between properties
and classes of operators as established previously.

To make the presentation self-contained, we first adapt part of the
material presented in [9]. Namely, we present general notation on
HT-models, logic programs, and answer sets, a section on forgetting
in ASP, recall existing properties of forgetting, as discussed in [9],
and the classes of operators existing in the literature. In the latter two
cases, we also include results on relations of properties and classes of
properties. Subsequently, we introduce the postulates from [36] and
present our results on relations w.r.t. previously established proper-
ties and concerning which of the different classes of operators satis-
fies which postulate. We conclude with an outlook on future work.

2 Preliminaries
We assume a propositional language LA over a signature A, a fi-
nite set of propositional atoms3. The formulas of LA are inductively
defined using connectives ⊥, ∧, ∨, and ⊃:

ϕ ::= ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. In addition, ¬ϕ and > are resp. shortcuts for ϕ ⊃ ⊥
and ⊥ ⊃ ⊥. Given a finite set S of formulas,

∨
S and

∧
S denote

resp. the disjunction and conjunction of all formulas in S. In particu-
lar,

∨
∅ and

∧
∅ stand for resp.⊥ and>, and ¬S and ¬¬S represent

resp. {¬ϕ | ϕ ∈ S} and {¬¬ϕ | ϕ ∈ S}. Unless otherwise stated,
we assume that the underlying signature for a particular formula ϕ is
A(ϕ), the set of atoms appearing in ϕ.
2 We use the term postulate to follow [36] and easily distinguish them from

the properties discussed in [9]. However, their role is the same as the role
of other properties.

3 Often, the term propositional variable is used synonymously.



HT-models Regarding the semantics of propositional formulas,
we consider the monotonic logic here-and-there (HT) and equilib-
rium models [21]. An HT -interpretation is a pair 〈H,T 〉 s.t. H ⊆
T ⊆ A. The satisfiability relation in HT, denoted |=HT, is recursively
defined as follows for p ∈ A and formulas ϕ and ψ:

• 〈H,T 〉 |=HT p if p ∈ H;
• 〈H,T 〉 6|=HT ⊥;
• 〈H,T 〉 |=HT ϕ ∧ ψ if 〈H,T 〉 |=HTϕ and 〈H,T 〉 |=HTψ;
• 〈H,T 〉 |=HT ϕ ∨ ψ if 〈H,T 〉 |=HT ϕ or 〈H,T 〉 |=HT ψ;
• 〈H,T 〉 |=HT ϕ ⊃ ψ if both (i) T |= ϕ ⊃ ψ,4 and (ii)
〈H,T 〉 |=HT ϕ implies 〈H,T 〉 |=HT ψ.

A given HT -interpretation is an HT -model of a formula ϕ if
〈H,T 〉 |=HT ϕ. We denote by HT (ϕ) the set of all HT-models of
ϕ. In particular, 〈T, T 〉 ∈ HT (ϕ) is an equilibrium model of ϕ if
there is no T ′ ⊂ T s.t. 〈T ′, T 〉 ∈ HT (ϕ).

Given two formulas ϕ and ψ, ifHT (ϕ) ⊆ HT (ψ), then ϕ entails
ψ in HT, written ϕ |=HT ψ. Also, ϕ and ψ are HT-equivalent, written
ϕ ≡HT ψ, ifHT (ϕ) = HT (ψ).

For sets of atoms X,Y and V ⊆ A, Y ∼V X denotes that Y \
V = X\V . ForHT -interpretations 〈H,T 〉 and 〈X,Y 〉, 〈H,T 〉 ∼V

〈X,Y 〉 denotes that H ∼V X and T ∼V Y . Then, for a setM of
HT -interpretations,M†V denotes the set {〈X,Y 〉 | 〈H,T 〉 ∈ M
and 〈X,Y 〉 ∼V 〈H,T 〉}.

Logic Programs An (extended) logic program P is a finite set of
(extended) rules, i.e., formulas of the form∧

¬¬D ∧
∧
¬C ∧

∧
B ⊃

∨
A , (2)

where all elements in A = {a1, . . . , ak}, B = {b1, . . . , bl}, C =
{c1, . . . , cm}, D = {d1, . . . , dn} are atoms.5 Such rules r are also
commonly written as

a1 ∨ . . . ∨ ak ← b1, ..., bl, not c1, ..., not cm,

not not d1, ..., not not dn , (3)

and we will use both forms interchangeably. Given r, we distinguish
its head, head(r) = A, and its body, body(r) = B ∪ ¬C ∪ ¬¬D ,
representing a disjunction and a conjunction.

As shown by Cabalar and Ferraris [4], any set of (propositional)
formulas is HT-equivalent to an (extended) logic program which is
why we can focus solely on these.

This class of logic programs, Ce, includes a number of special
kinds of rules r: if n = 0, then we call r disjunctive; if, in addi-
tion, k ≤ 1, then r is normal; if on top of that m = 0, then we call
r Horn, and fact if also l = 0. The classes of disjunctive, normal
and Horn programs, Cd, Cn, and CH , are defined resp. as a finite set
of disjunctive, normal, and Horn rules. We also call extended rules
with k ≤ 1 non-disjunctive, thus admitting a non-standard class Cnd,
called non-disjunctive programs, different from normal programs.
We have CH ⊂ Cn ⊂ Cd ⊂ Ce and also Cn ⊂ Cnd ⊂ Ce.

We now recall the answer set semantics [8] for logic programs.
Given a program P and a set I of atoms, the reduct P I is defined
as P I = {A ← B : r of the form (3) in P,C ∩ I = ∅,D ⊆ I}.
A set I ′ of atoms is a model of P I if, for each r ∈ P I , I ′ |= B
implies I ′ |= A. I is minimal in a set S, denoted by I ∈MIN (S),
if there is no I ′ ∈ S s.t. I ′ ⊂ I . Then, I is an answer set of P iff
I is a minimal model of P I . Note that, for Cnd and its subclasses,

4 |= is the standard consequence relation from classical logic.
5 Extended logic programs [22] are actually more expressive, but this form is

sufficient here.

this minimal model is in fact unique. The set of all answer sets of P
is denoted by AS(P ). Note that, for Cd and its subclasses, all I ∈
AS(P ) are pairwise incomparable. If P has an answer set, then P is
consistent. Also, the V -exclusion of a set of answer setsM, denoted
M‖V , is {X \ V | X ∈ M}. Two programs P1, P2 are equivalent
if AS(P1) = AS(P2) and strongly equivalent if P1 ≡HT P2. It is
well-known that answer sets and equilibrium models coincide [21],
but since the former notion is frequently used in the literature and
arguably easier to use, we will mainly rely on it. Finally, determining
if program P has an answer set is Σp

2-complete, and NP-complete if
P is non-disjunctive [5].

3 Forgetting
The principal idea of forgetting in logic programming is to remove
or hide certain atoms from a given program, while preserving its se-
mantics for the remaining atoms.

Example 1 Consider the following program P :

d← not c a← e e← b b←

The result of forgetting about atom e from P should be a program
over the remaining atoms of P , i.e., it should not contain e. Intu-
itively, in the result, the fact b ← should persist since it is indepen-
dent of e. In addition, the link between a and b should be preserved
in some way, even if e is absent. Also, d should still follow from the
result of forgetting as the original rule d ← not c does not contain
e.

As the example indicates, preserving the semantics for the remain-
ing atoms is not necessarily tied to one unique program. Rather often,
a representative up to some notion of equivalence between programs
is considered. In this sense, many notions of forgetting for logic pro-
grams are defined semantically, i.e., they introduce a class of opera-
tors that satisfy a certain semantic characterization. Each single oper-
ator in such a class is then a concrete function that, given a program
P and a set of atoms V to be forgotten, returns a unique program, the
result of forgetting about V from P .

Definition 1 Given a class of logic programs C over A, a forgetting
operator is a partial function f : C × 2A → C s.t. f(P, V ) is a
program over A(P ) \ V , for each P ∈ C and V ∈ 2A. We call
f(P, V ) the result of forgetting about V from P . Furthermore, f is
called closed for C′ ⊆ C if, for every P ∈ C′ and V ∈ 2A, we have
f(P, V ) ∈ C′. A class F of forgetting operators is a set of forgetting
operators.

Note that the requirement for being a partial function is a natural one
given the existing notions in the literature, where some are not closed
for certain classes of programs.

To remain as general and uniform as possible, we focus on classes
of operators. Whenever a notion of forgetting in the literature is de-
fined through a concrete forgetting operator only, we consider the
class containing that single operator.

It is worth noting that some notions of forgetting do not explic-
itly require that atoms to be forgotten be absent from the result of
forgetting, but instead that they be irrelevant:

(IR) f(P, V ) ≡HT P
′ for some P ′ not containing any v ∈ V .

Although (IR) allows (irrelevant) occurrences of atoms in a result of
forgetting, in the literature they are subsequently assumed to be not
occurring, which is sanctioned by (IR). Hence, focusing on opera-
tors that yield programs without the atoms to be forgotten is not a
restriction in these cases.
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4 Properties of Forgetting

Previous work on forgetting in ASP has introduced a variety of desir-
able properties. In this section, we recall the relevant properties found
in the literature and investigate existing relations between them.

Unless otherwise stated, F is a class of forgetting operators, and C
the class of programs over A of a given f ∈ F.

The first three properties were proposed by Eiter and Wang [7],
though not formally introduced as such. The first two were in fact
guiding principles for defining their notion of forgetting, while the
third was later formalized by Wang et al. [30].

(sC) F satisfies strengthened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) ⊆ AS(P )‖V .

Strengthened Consequence requires that the answer sets of the result
of forgetting be answer sets of the original program, ignoring the
atoms to be forgotten.

(wE) F satisfies weak Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(f(P ′, V )) whenever
AS(P ) = AS(P ′).

Weak Equivalence requires that forgetting preserves equivalence of
programs (equality of answer sets).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P, P ′ ∈ C
and V ⊆ A: if P ≡HT P

′, then f(P, V ) ≡HT f(P ′, V ).

Strong Equivalence requires that forgetting preserves strong equiva-
lence of programs.

The next three properties, together with (IR), were introduced by
Zhang and Zhou [38] in the context of forgetting in modal logics, and
later adopted by Wang et al. [31, 32] for forgetting in ASP.

(W) F satisfies Weakening if, for each f ∈ F, P ∈ C and V ⊆ A,
we have P |=HT f(P, V ).

Weakening requires that the HT -models of P also be HT -models
of f(P, V ), thus implying that f(P, V ) has at most the same conse-
quences as P .

(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P |=HT P

′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) |=HT P

′.

Positive Persistence requires that the consequences of P not contain-
ing atoms to be forgotten be preserved in the result of forgetting.

(NP) F satisfies Negative Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A: if P 6|=HT P

′, with P ′ ∈ C and A(P ′) ⊆ A \ V , then
f(P, V ) 6|=HT P

′.

Negative Persistence requires that a program not containing atoms to
be forgotten not be a consequence of f(P, V ), unless it was already
a consequence of P .

The following property was introduced by Wong [36], but the
more descriptive name is novel here.

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈
C and V ⊆ A, we have f(P, V ) ∪ R ≡HT f(P ∪ R, V ) for all
programs R ∈ C with A(R) ⊆ A \ V .

Strong Invariance requires that it be (strongly) equivalent to add a
program without the atoms to be forgotten before or after forgetting.

The property called existence was discussed by Wang et al. [31]
and formalized by Wang et al. [30]. It requires that a result of forget-
ting for P in C exists in the class C, important to iterate. We extend
this property s.t. it be explicitly tied to a class C, thus allowing to
speak about F being closed/not closed for different classes C.

(EC) F satisfies existence for C, i.e., F is closed for a class of pro-
grams C if there exists f ∈ F s.t. f is closed for C.

In the literature, classes of operators are often defined in ways such
that only some of its members are closed for a certain class. Thus,
class F being closed for some C only requires that there exists some
“witness in favor of it”, instead of having to restrict the class to the
closed operators.

The next property was introduced by Wang et al. [30] building on
the ideas behind (sC) by Eiter and Wang [7].

(CP) F satisfies Consequence Persistence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(f(P, V )) = AS(P )‖V .

Consequence persistence requires that the answer sets of the result
of forgetting correspond exactly to the answer sets of the original
program, ignoring the atoms to be forgotten.

The following property was introduced by Knorr and Alferes [12]
with the aim of imposing the preservation of all dependencies con-
tained in the original program.

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C and
V ⊆ A, we have AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all
programs R ∈ C with A(R) ⊆ A \ V .

This strengthens (CP) by imposing that the correspondence between
answer-sets of the result of forgetting and those of the original pro-
gram be preserved in the presence of any additional set of rules not
containing the atoms to be forgotten.

The final property here is due to Delgrande and Wang [6], although
its name is novel as well.

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈ C
and V ⊆ A, we have AS(P )‖V ⊆ AS(f(P, V )).

Weakened Consequence requires that the answer sets of the origi-
nal program be preserved while forgetting, ignoring the atoms to be
forgotten.

These properties are not orthogonal to one another, and several re-
lations between them exist. The following proposition (from [9]) es-
tablishes all known relevant relations between properties, some novel
and some to be found in the literature.

Proposition 1 The following relations hold for all F:6

1. (CP) is incompatible with (W) as well as with (NP) (for F closed
for C, where C contains normal logic programs);

2. (W) is equivalent to (NP);
3. (SP) implies (PP);
4. (SP) implies (SE);
5. (W) and (PP) together imply (SE);
6. (CP) and (SI) together are equivalent to (SP);
7. (sC) and (wC) together are equivalent to (CP);

6 To ease the reading, here “(P)” stands for “F satisfies (P)”.
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8. (CP) implies (wE);
9. (SE) and (SI) together imply (PP).

Items 1.-4. are known from the literature: 1. in [30], 2.-3. in [11], and
4. in [12]. The remainder are novel.

Note first, that 1. and 2. also rely on (IR) in their original formu-
lation, in particular, (W) is equivalent to (NP) and (IR). As (IR) is
incorporated directly into our definition of forgetting operators, this
reliance is ensured implicitly. This means that, by 2., the four proper-
ties proposed by Zhang and Zhou [38] actually reduce to two distinct
ones. In addition, 5. ensures that these two imply (SE), which is con-
sidered desirable by Wang et al. [31] in addition to the former. So,
five desired properties can be represented by two.

As indicated by 3. and 4., (SP) seems to be an expressive property,
further confirmed by the new result 6. that provides a non-trivial de-
composition of (SP) into (CP) and (SI). These two are themselves
expressive, as witnessed by other new results. Namely, 7. shows that
(CP) is the combination of (sC) and (wC), and 8. that it implies
preservation of equivalence, while 9. provides the non-trivial result
that Strong Equivalence and Strong Invariance imply Positive Per-
sistence. The latter means that 3. can actually be obtained without
relying on (CP). Altogether, (SP) implies all properties in this sec-
tion, except for (W) and (NP), to which it is incompatible under the
condition given in 1., and (EC), where we need to consider concrete
classes of programs.

5 Operators of Forgetting
We now turn our attention to operators of forgetting in ASP, review-
ing the approaches found in the literature and establishing novel re-
lations between them.

Strong and Weak Forgetting The first proposals are due to Zhang
and Foo [37] introducing two syntactic operators for normal logic
programs, termed Strong and Weak Forgetting. Both start with com-
puting a reduction corresponding to the well-known weak partial
evaluation (WGPPE) [2], defined as follows: for a normal logic pro-
gram P and a ∈ A,R(P, a) is the set of all rules in P and all rules of
the form head(r1)← body(r1)\{a}∪body(r2) for each r1, r2 ∈ P
s.t. a ∈ body(r1) and head(r2) = a. Then, the two operators dif-
fer on how they subsequently remove rules containing a, the atom to
be forgotten. In Strong Forgetting, all rules containing a are simply
removed:

fstrong(P, a) = {r ∈ R(P, a) | a 6∈ A(r)}

In Weak Forgetting, rules with occurrences of not a in the body are
kept, after not a is removed.

fweak(P, a) = {head(r)← body(r) \ {not a} |
r ∈ R(P, a), a 6∈ head(r) ∪ body(r)}

The motivation for this difference is whether such not a is seen as
support for the rule head (Strong) or not (Weak). In both cases, the
actual operator for a set of atoms V is defined by the sequential ap-
plication of the respective operator to each a ∈ V . Both operators
are closed for Cn. The corresponding singleton classes are defined as
follows.

Fstrong = {fstrong} Fweak = {fweak}

Semantic Forgetting Eiter and Wang [7] proposed Semantic For-
getting to improve on some of the shortcomings of the two purely

syntax-based operators fstrong and fweak. Semantic Forgetting in-
troduces a class of operators for consistent disjunctive programs7 de-
fined as follows:

Fsem = {f | AS(f(P, V )) =MIN (AS(P )‖V )}

The basic idea is to characterize a result of forgetting just by its
answer sets, obtained by considering only the minimal sets among
the answer sets of P ignoring V . Three concrete algorithms are pre-
sented, two based on semantic considerations and one syntactic. Un-
like the former, the latter is not closed for classes8 C+d and C+n , since
double negation is required in general.

Semantic Strong and Weak Forgetting Wong [36] argued that
semantic forgetting should not be focused on answer sets only, as
these do not contain all the information present in a program. He
defined two classes of forgetting operators for disjunctive programs,
building on HT-models.9 First, given a program P and an atom a,
the set of all consequences of P is defined as Cn(P, a) = {r |
r disjunctive, P |=HT r, A(r) ⊆ A(P )}. We obtain PS(P, a) and
PW (P, a), the results of strongly and weakly forgetting a single atom
a from P , as follows:

1. Consider P1 = Cn(P, a).
2. Obtain P2 by removing from P1: (i) r with a ∈ body(r), (ii) a

from the head of each r with not a ∈ body(r).
3. Given P2, obtain PS(P, a) and PW (P, a) by replacing/removing

certain rules r in P2 as follows:

r with not a in body r with a in head
S (remove) (remove)
W remove only not a remove only a

The generalization to sets of atoms V , i.e., PS(P, V ) and PW (P, V ),
can be obtained by simply sequentially forgetting each a ∈ V , yield-
ing the following classes of operators.

FS = {f | f(P, V ) ≡HT PS(P, V )}
FW = {f | f(P, V ) ≡HT PW (P, V )}

While steps 2. and 3. are syntactic, different strongly equivalent rep-
resentations of Cn(P, a) exist, thus providing different instances.
Wong [36] defined one construction based on inference rules for HT-
consequence, closed for Cd.

HT-Forgetting Wang et al. [31, 32] introduced HT-Forgetting,
building on properties introduced by Zhang and Zhou [38] in the
context of modal logics, with the aim of overcoming problems with
Wongs notions, namely that each of them did not satisfy one of the
properties (PP) and (W). HT-Forgetting is defined for extended pro-
grams and uses representations of sets of HT-models directly.

FHT = {f | HT (f(P, V )) = HT (P )†V }

A concrete operator is presented [32] that is shown to be closed for
Ce and CH , and it is also shown that no operator exists that is closed
for either Cd or Cn.

7 Actually, classical negation can occur in scope of not , but due to the re-
striction to consistent programs, this difference is of no effect [8], so we
ignore it here.

8 Here, + denotes the restriction to consistent programs.
9 Wong [36] considers SE-models [29]. Without loss of generality, we con-

sider the more general HT-models.
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sC wE SE W PP NP SI CP SP wC ECH ECn ECd ECnd
ECe

Fstrong × × × X × X X × × × X X - - -
Fweak × × × × X × X × × × X X - - -
Fsem X X × × × × × × × × X X X - -
FS × × X X X X × × × × X × X - -
FW X X X × X × X × × × X X X - -
FHT × × X X X X X × × × X × × × X
FSM X X X × X × × X × X X × × × X
FSas X X X × X × X X X X X × × × ×
FSE × × X X X X × × × × X × X - -

Figure 1. Satisfaction of properties for known classes of forgetting operators. For class F and property P, ’X’ represents that F satisfies P, ’×’ that F does not
satisfy P, and ’-’ that F is not defined for the class C in consideration.

SM-Forgetting Wang et al. [30] defined a modification of HT-
Forgetting, SM-Forgetting, for extended programs, with the objective
of preserving the answer sets of the original program (modulo the
forgotten atoms).

FSM = {f | HT (f(P, V )) is a maximal subset of

HT (P )†V s.t. AS(f(P, V )) = AS(P )‖V }

A concrete operator is provided that, like for FHT, is shown to be
closed for Ce and CH . It is also shown that no operator exists that is
closed for either Cd or Cn.

Strong AS-Forgetting Knorr and Alferes [12] introduced Strong
AS-Forgetting with the aim of preserving not only the answer sets of
P itself but also those of P ∪R for any R over the signature without
the atoms to be forgotten. The notion is defined abstractly for classes
of programs C.

FSas = {f | AS(f(P, V ) ∪R) = AS(P ∪R)‖V for all

programs R ∈ C with A(R) ⊆ A(P ) \ V }

A concrete operator is defined for Cnd, but not closed for Cn and only
defined for certain programs with double negation.

SE-Forgetting Delgrande and Wang [6] recently introduced SE-
Forgetting based on the idea that forgetting an atom from program
P is characterized by the set of those SE-consequences, i.e., HT-
consequences, of P that do not mention the atoms to be forgot-
ten. The notion is defined for disjunctive programs building on an
inference system by Wong [35] that preserves strong equivalence.
Given that `s is the consequence relation of this system, CnA(P ) is
{r ∈ LA | r disjunctive, P `s r}. The class is defined by:

FSE = {f | f(P, V ) ≡HT CnA(P ) ∩ LA(P )\V }

An operator is provided, which is closed for Cd.

While all these classes were introduced with differing motivations,
they coincide under certain conditions, e.g., when restricted to spe-
cific classes of programs [9].

Proposition 2 For all Horn programs P , every V ⊆ A(P ), and all
forgetting operators f1, f2 in the classes Fstrong , Fweak, FS , FHT,
FSM, FSas, and FSE , it holds that f1(P, V ) ≡HT f2(P, V ).

Example 2 Consider the subset of rules of P in Ex. 1 that are Horn,
P ′ = {a ← e, e ← b, b ←}. Then, f(P ′, {e}) for any f in any
of these classes is strongly equivalent to a ← b and b ←. All three

known operators in Fsem actually also satisfy this condition, but the
class is not sufficiently restricted to ensure this in general. FW com-
pletely differs since any operator in FW must include ← b in its
result.

Wang et al. [31, 32] additionally show that, for CH , the result of FHT

is strongly equivalent to that of classical forgetting. We thus obtain
as a corollary that this holds for all classes of forgetting operators
mentioned in Prop. 2.

Perhaps surprisingly, two classes of operators coincide [9].

Theorem 1 Consider the class of disjunctive programs. Then, FS

and FSE coincide.

This coincidence can be traced back to the fact that the inference
system used for FSE is the same as that used to define the example
operator for FS . This correspondence can be extended to FHT in a
particular case [9].

Proposition 3 Let P be a disjunctive logic program, V ⊆ A(P ),
fS ∈ FS , fHT ∈ FHT, and fSE ∈ FSE . Then, fS(P, V ) ≡HT

fHT(P, V ) ≡HT fSE(P, V ) whenever fHT(P, V ) is strongly equiv-
alent to a disjunctive program.

This does not hold in general, as the next example shows.

Example 3 Given P = {a ← not b, b ← not a,← a, b}, consider
forgetting about b from P . For any fHT, fHT(P, {b}) must contain
a← not not a, which is not disjunctive.

This also means that item 1. in Prop. 2 [6] actually does not hold.
For the sake of completeness and to ease later comparisons, we

also include a table with the results on satisfaction of properties for
known classes of forgetting operators obtained in [9] – these results
are shown in Fig. 1.

Complexity All approaches show or mention that computing the
result of forgetting with one particular operator is in EXP. The only
exception is f ∈ FSE , where forgetting one atom leads only to at
most a quadratic increase in program size. Still, if a set of atoms is
forgotten, then, e.g., Ex. 9 by Brass et al. [3] applies, hence, it is
also in EXP. Sometimes the complexity of other problems is estab-
lished, such as satisfiability of f(P, V ) or whether some a holds in
some or all S ∈ AS(f(P, V )). In most cases, these results match
those considering P itself, with the exception of Fsem where slight
modifications are due to the additional minimality test.
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6 Wongs Properties of Forgetting
With all notions and notation in place regarding forgetting in ASP,
the commonly considered properties and the existing classes of for-
getting operators, we can now turn to the postulates introduced by
Wong [36]. These postulates were in fact defined in a somewhat dif-
ferent way compared to the properties presented in Sec. 4. Namely,
they are only defined for forgetting a single atom, for disjunctive pro-
grams (as this is the maximal class of programs considered in [36]),
and in a generic way for different notions of equivalence, which is
then instantiated with two different notions to account for different
classes of operators. Here, we only consider HT-equivalence, i.e.,
strong equivalence, as, in the literature, this is clearly the more rele-
vant of the two notions considered in [36] and in line with previously
presented material here and in [9].

We start by recalling these postulates10 with some minor adjust-
ments to our notation including the extension to the most general
class of extended logic programs considered here, but leaving the
restriction to forgetting only single atoms as is.

(F0) F satisfies (F0) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if
P ≡HT P

′, then f(P, {a}) ≡HT f(P ′, {a}).
(F1) F satisfies (F1) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if
P |=HT P

′, then f(P, {a}) |=HT f(P ′, {a}).
(F2) F satisfies (F2) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if a

does not appear in R, then f(P ∪ R, {a}) ≡HT f(P ′, {a}) ∪ R
for all R ∈ C.

(F2-) F satisfies (F2-) if, for each f ∈ F, P ∈ C, and a ∈ A: if
P |=HT r and a does not occur in r, then f(P, {a}) |=HT r for all
rules r expressible in C.

(F3) F satisfies (F3) if, for each f ∈ F, P ∈ C and a ∈ A: f(P, {a})
does not contain any atoms that are not in P .

(F4) F satisfies (F4) if, for each f ∈ F, P ∈ C and a ∈ A:
if f(P, {a}) |=HT r, then f({s}, {a}) |=HT r for some s ∈
CnA(P ).

(F5) F satisfies (F5) if, for each f ∈ F, P ∈ C and a ∈ A: if
f(P, {a}) |=HT A ← B ∪ ¬C ∪ ¬¬D , then P |=HT A ←
B ∪ ¬C ∪ {¬a} ∪ ¬¬D .

(F6) F satisfies (F6) if, for each f ∈ F, P ∈ C and a, b ∈ A:
f(f(P, {b}), {a}) ≡HT f(f(P, {a}), {b}).

These (formal) postulates represent the following: If two programs
are HT-equivalent, then forgetting about atom a from both preserves
HT-equivalence (F0); if a program is a HT-consequence of another
program, then forgetting about atom a from both preserves this HT-
consequence (F1); when forgetting about an atom a, it does not mat-
ter if we add a set of rules over the remaining language before or
after forgetting (F2); any consequence of the original program not
mentioning atom a is also a consequence of the result of forgetting
about a (F2-); the result of forgetting about an atom from a program
does only contain atoms occurring in the original program (F3); any
rule which is a consequence of the result of forgetting about an atom
from program P , is actually a consequence of the result of forget-
ting about that atom from a single rule among the HT-consequences
of P (F4); for any rule which is a HT-consequence of the result of
forgetting about an atom a from program P , this rule with its body
extended by not a is a HT-consequence of P itself (F5); and the or-
der is not relevant when sequentially forgetting two atoms (F6).

Note that CnA(P ) for (F4) is defined here necessarily over the
maximal class of programs considered in the class of operators, and

10 As mentioned before, we use the term postulate to follow [36] and ease
readability. Technically, they are treated as every other property.

that the kind of rules considered in (F5) is restricted according to the
maximal class of programs considered in a given class of operators.

First, we establish relations between these postulates and between
them and the properties discussed in Sec. 4.

Proposition 4 The following relations hold for all F:

1. (F1) implies (F0);
2. (F2) and (F1) imply (F2-);
3. (SE) implies (F0);
4. (W) and (PP) together imply (F1);
5. (SI) implies (F2);
6. (PP) implies (F2-);
7. (W) implies (F5).

The first two results have been shown in [36], the remainder are
novel. We can observe that postulates (F0), (F2), (F2-), and (F5)
are generalized by properties presented in [9], and (F1) by a pair of
these. This latter observation is also related to the result 5. of Prop. 1
and the fact that both (F1) and (SE) imply (F0).

We now proceed by presenting further intuitions for each of these
postulates and in particular we show which operators presented in
Sec. 5 satisfy which of the new postulates.

We start with (F0) which is a special case of (SE) because it only
considers forgetting one atom instead of a set. It shares with (SE)
the intuition that forgetting the same atom(s) should preserve strong
equivalence of programs.

Proposition 5 For postulate (F0) the following holds:

• FS , FW , FHT, FSM, FSas and FSE satisfy (F0);
• Fstrong , Fweak and Fsem do not satisfy (F0).

The fact that classes FS , FW , FHT, FSM, FSas and FSE satisfy (F0)
follows from Prop. 4 since they all satisfy (SE). In [36], Fstrong

and Fweak are shown to not satisfy (F0). For Fsem, the argument
given in [7] to show that Fsem does not satisfy (SE) also applies to
(F0). Hence, even though (F0) is weaker than (SE) the results for
all classes of operators coincide with those for (SE) (see [9]), thus,
in the bigger picture of existing properties of forgetting, (F0) seems
negligible.

For (F1), the idea is that forgetting the same atom(s) should pre-
serve HT-consequence between two programs. As already argued in
[36], this postulate can be considered a strengthening of (F0).

Proposition 6 For postulate (F1) the following holds:

• FS , FW , FHT and FSE satisfy (F1);
• Fstrong , Fweak, Fsem, FSM and FSas do not satisfy (F1).

The fact that FS and FW satisfy (F1) was proved in [36]. For FHT

and FSE , this result follows from Prop. 4 and the fact that FHT and
FSE satisfy both (W) and (PP).

For the negative results, Fstrong , Fweak and Fsem cannot sat-
isfy (F1) since they do not satisfy (F0). For FSM and FSas, con-
sider the following programs P = {a ← not p, p ← not a}
and P ′ = {a ← not p}. Then clearly P |=HT P ′, but since
f(P, p) ≡HT {a ← not not a} and f(P ′, p) ≡HT {a ←} for any
f ∈ FSM ∪ FSas we have that f(P, p) 6|=HT f(P ′, p).

Thus, (F1) is not only distinct per se, but in fact, compared to
the results on properties satisfied by known classes of operators, it
provides a unique set of classes of operators of forgetting for which
it is satisfied (cf. Fig. 1). This means that it would be worth including
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this postulate in the set of properties considered in the full study of
properties of forgetting operators.

As argued in [36], it should not matter whether we add the new
rules before or after forgetting, as long as these rules do not refer the
the forgotten atom(s). Similar to (F0), postulate (F2) is a special case
of one of the properties considered in Sec. 4.

Proposition 7 For postulate (F2) the following holds:

• Fstrong , Fweak, FW , FHT and FSas satisfy (F2);
• FS , Fsem, FSM and FSE do not satisfy (F2).

It was proved in [36] that FW satisfies (F2). The classes Fstrong ,
Fweak, FHT and FSas do satisfy (F2), since they satisfy (SI) and
given Prop. 4. Regarding the negative results, it was proved in [36]
that FS and Fsem do not satisfy (F2). For FSM and FSE , the coun-
terexample given in [9] for (SI) also applies for (F2). Thus, all results
coincide with those of (SI), hence, (F2) also seems negligible.

In [36], (F2-) was introduced as a weakening of (F2). As our new
result shows in Prop. 4, it rather is a special case of the already con-
sidered property (PP).

Proposition 8 For postulate (F2-) the following holds:

• Fweak, FS , FW , FHT, FSM, FSas and FSE satisfy (F2-);
• Fstrong and Fsem do not satisfy (F2-).

The positive results follow from Prop. 4 and the fact that all such
operators satisfy (PP). Regarding the two negative results, the coun-
terexamples given in [32] for (PP) also apply for (F2-). Thus, all re-
sults coincide with those of (PP), hence, similar to (F2), (F2-) seems
negligible as well in the broader picture of properties being satisfied
by classes of forgetting operators.

In [36], two further variations of (F2) are considered. One, called
(F2’), is discarded right away as being insufficient to solve the in-
compatibility between FS and (F2). The other, called (F2*) restricts
the program R to a single rule, only for the sake of FS satisfying this
restricted version of (F2). But in our view, permitting only the addi-
tion of single rules is of little value, which is why we have omitted
this variant from our considerations.

The intuition of (F3) is that forgetting is intended to simplify the
language of a program by removing unnecessary or unwanted atoms.
This is reasonable since otherwise, if atoms not occurring in a pro-
gram were allowed to appear in the result of forgetting, then a trivial
solution for the result of forgetting would be to simply rename the
atoms to be forgotten using such extra atoms. Given our definition of
(classes of) forgetting operators, this postulate is trivially satisfied.

Proposition 9 All classes of operators Fstrong , Fweak, Fsem, FS ,
FW , FHT, FSM, FSas and FSE satisfy (F3).

Hence, (F3), though a very reasonable postulate as such, is of little
value for discriminating differences and commonalities between dif-
ferent classes of forgetting operators, so it can be neglected as well.

The postulate (F4) states that every rule which is a HT-
consequence of the result of forgetting about atom a from P is a
HT-consequence of the result of forgetting about a from a single rule
which is itself a HT-consequence of P .

Proposition 10 For postulate (F4) the following holds:

• Fstrong , Fweak, FS , FW , FHT, and FSE satisfy (F4);
• Fsem, FSM and FSas do not satisfy (F4).

The positive result for FS , FW and FSE was shown in [36]. For FHT,
this follows directly from the alternative definition of HT-forgetting
in [32]. For Fstrong and Fweak, the result follows from the fact that
this postulate is already shown to hold for a stronger notion of equiv-
alence in [36], and since the additional derivation rules distinguish-
ing this notion of equivalence and HT-equivalence do not affect the
result.

The negative result for FSas and FSM can be shown with a coun-
terexample based on program P = {a ← p, p ← not not p}. For
any operator in either class of forgetting operators, the result of for-
getting about p from P is strongly equivalent to a ← not not a.
However neither this nor any other rule over {a}, which has this
rule as a HT-consequence, appears in CnA(P ). In the case of Fsem,
the negative result follows from the rather relaxed definition of the
class and the fact that for satisfying (F4) any operator in Fsem has to
satisfy it: we can easily define an operator that is still in Fsem, but
returns an arbitrary program, then (F4) clearly does not hold.

Thus, similar to (F1), this postulate turns out to be of interest as
no previously studied property exists which is satisfied for precisely
the same set of classes of forgetting operators.

The intuition of (F5), as presented in [36], is that any rule which
is a HT-consequence of the result of forgetting must be a HT-
consequence of the program itself in the situations where the atom
to be forgotten is not known.

Proposition 11 For postulate (F5) the following holds:

• Fstrong , Fweak, FS , FW , FHT and FSE satisfy (F5);
• Fsem, FSM and FSas do not satisfy (F5).

The positive result for FS , FW and FSE was shown in [36]. A sim-
ilar argument can be used for Fweak. For Fstrong and FHT, the re-
sult follows from Prop. 4 and the fact that these classes satisfy (W).
The negative result for Fsem was shown in [36]. For FSM and FSas,
consider the program P = {a ← p, p ← not not p}. Then, for
f ∈ FSM or f ∈ FSas, we have that f(P, {p}) ≡HT {a← not not a}.
Therefore, f(P, {p}) |=HT a ← not not a, but it is not the case that
P |=HT a← not not a, not p.

Thus, surprisingly, even though the postulate is implied by an ex-
isting property, the set of classes of forgetting operators does not co-
incide with that of the stronger property, which makes (F5) also a
property of interest in the context of distinguishing existing classes
of forgetting operators.

Finally, (F6) allows that the order in which two atoms are forgotten
does not matter.

Proposition 12 For postulate (F6) the following holds:

• Fstrong , Fweak, Fsem, FS , FW , FHT, FSM and FSE satisfy (F6);
• FSas does not satisfy (F6).

The positive result for each operator was proved in the same pa-
per where such operator was defined (cf. Sec. 5). The negative re-
sult for FSas follows from the fact that FSas satisfies (SP), an im-
portant property which is argued to capture the essence of forget-
ting in ASP, but which unfortunately in certain cases does not al-
low forgetting while satisfying this property [10]. Take the program
P = {p ← not not p; a ← p; b ← not p}. Forgetting about b from
P first is strongly equivalent to removing the third rule, and subse-
quently forgetting about p is strongly equivalent to {a← not not a}.
However, forgetting about p from P first while satisfying (SP) is sim-
ply not allowed. Hence, the order of forgetting matters for FSas. This
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postulate is succinct and there is no property considered in [9] which
is satisfied by all classes but FSas. On the other hand, the problem of
the failure of FSas seems tightly connected to the fact that this class
is the only one which satisfies (SP), i.e., (SP) seems to be incom-
patible with (F6) and therefore this postulate is most likely of less
interest concerning the distinction of classes of forgetting operators.

7 Conclusions
We have studied eight postulates of forgetting in ASP, as introduced
in [36], to fill a gap in a recent comprehensive guide on properties
and classes of operators for forgetting in ASP and relations between
these [9].

It turns out that four of them are actually directly implied by previ-
ously considered single properties and for three among these, the sets
of classes of forgetting operators which satisfy the stronger and the
weaker property do precisely coincide. This suggests that these three,
(F0), (F2), and (F2-) can safely be ignored. Postulate (F3) is as such
different, but always satisfied by definition of forgetting operators, so
we can safely ignore this one as well. Postulate (F6) is also different,
and not always satisfied, but it seems that this is solely tied to the
incompatibility with an already existing important property, (SP). So
this postulate is of interest, but it probably will not contribute much
to further distinguishing classes of operators.

The remaining three properties, (F1), (F4), and (F5), are in fact
distinct (even though (F5) is implied by an existing property), and no
other already existing property is satisfied by precisely the same set
of classes of forgetting operators in each of these cases. This means
that these three are worth being considered for inclusion in the set of
relevant properties as they would provide further distinguishing crite-
ria for existing classes of operators. This would most certainly be of
help to further clarify the relation between properties (SE), (W), and
(PP) considered before and provide further means to actually create
precise characterizations of many classes of forgetting operators, an
open issue in [9].
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