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Abstract. We foster a novel implementation technique for logic program up-
dates, which exploits incremental tabling in logic programming – using XSB Pro-
log to that effect. Propagation of updates of fluents is controlled by initially keep-
ing any fluent updates pending in the database. And, on the initiative of queries,
making active just those updates up to the timestamp of an actual query, by per-
forming incremental assertions of the pending ones. These assertions, in turn, au-
tomatically trigger system-implemented incremental bottom-up tabling of other
fluents (or their negated complements), with respect to a predefined overall up-
per time limit, in order to avoid runaway iteration. The frame problem can then
be dealt with by inspecting a table for the latest time a fluent is known to be as-
suredly true, i.e., the latest time it is not supervened by its negated complement,
relative to the given query time. To do so, we adopt the dual program transfor-
mation for defining and helping propagate, also incrementally and bottom-up, the
negated complement of a fluent, in order to establish whether a fluent is still true
at some time point, or rather if its complement is. The use of incremental tabling
in this approach affords us a form of controlled, but automatic, system level truth-
maintenance, up to some actual query time. Consequently, propagation of update
side-effects need not employ top-down recursion or bottom-up iteration through
a logically defined frame axiom, but can be dealt with by the mechanics of the
underlying world. Our approach thus reconciles high-level top-down deliberative
reasoning about a query, with autonomous low-level bottom-up world reactivity
to ongoing updates, and it might be adopted elsewhere for reasoning in logic.

Keywords: logic program updates, updates propagation, incremental tabling,
dual program transformation, XSB Prolog.

1 Introduction

The tabled logic programming paradigm, i.e., logic programming (LP) with tabling
mechanisms, is supported by a number of Prolog systems, to different extent. Tabling
affords solutions reuse, rather than recomputing them, by keeping in tables subgoals and
their answers obtained by query evaluation. Incremental tabling, available in XSB Pro-
log [23], is an advanced recent tabling feature that ensures the consistency of answers in
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a table with all dynamic clauses on which the table depends. It does so by incrementally
maintaining the table, rather than by recomputing answers in the table from scratch to
keep it updated. The applications of incremental tabling in LP have been demonstrated
in pointer analyses of C programs in the context of incremental program analyses [18],
data flow analyses [19], static analyses [6], incremental validation of XML documents
and push down model checking [17]. This range of applications suggests that incre-
mental tabling lends itself to dynamic environments and evolving systems, including
notably logic program updates, as we proceed to show.

In [20], an approach to logic program updates, termed EVOLP/R, theoretically
based on Evolving Logic Programs (EVOLP) [1], is proposed. It simplifies EVOLP
by restricting updates to fluents only. Rule updates are nevertheless achieved by attach-
ing to each rule, in its body, a name fluent that uniquely identifies that rule (cf. [16]).
Updating such a rule name fluent, via its assertion or retraction, permits time-activation
or deactivation of the corresponding rule, respectively. Its implementation preliminar-
ily exploits incremental tabling, plus another tabling feature: answer subsumption [22].
Incremental tabling of fluents is employed to automatically maintain the consistency of
program states due to assertion and retraction of fluents, whether obtained as updated
facts or concluded by rules. On the other hand, answer subsumption of fluents allows to
address the frame problem, by automatically keeping track of the latest assertion or re-
traction of fluents with respect to a given query time. The combined use of incremental
tabling and answer subsumption is realized in the tabled predicate fluent(F,Ht,Qt):
given query time Qt, it looks for dynamic definitions of fluent F , and returns Ht, the
latest time fluent F is true. Predicate fluent/3 depends on dynamic fluent definitions
of F , and this dependency indicates that fluent/3 is tabled incrementally, to avoid
abolishing the table each time a Prolog assertion is made and then recomputing from
scratch. Moreover, since fluent/3 aims at returning only the latest time F is true (with
respect to a given Qt), fluent/3 can be tabled using answer subsumption on its second
argument. While answer subsumption is shown useful in this approach to avoid recurs-
ing through the frame axiom by allowing direct access to the latest time when a fluent
is true, it requires fluent/3 to have query time Qt as its argument. Consequently, it
may hinder reuse of tabled answers of fluent/3 by similar goals which differ only in
their query time. In truth, the state of a fluent in time depends solely on the changes
made to the world, and not on whether that world is being queried. For instance, sup-
pose fluent(a, 2, 4) is already tabled, and fluent a is inertially true till it is supervened
by its negated complement, say at time T = 7. When a new goal fluent(a,Ht, 5) is
posed, it cannot reuse the tabled answer fluent(a, 2, 4), as they differ in their query
time. Instead, fluent(a,Ht, 5) unnecessarily recomputes the same solution Ht = 2
(recall that fluent a is only retracted at T = 7), and subsequently tables fluent(a, 2, 5)
as a new answer. A similar situation occurs when fluent(a,Ht, 6) is queried, where
fluent(a, 2, 6) is eventually added into the table. This is clearly superfluous, as ex-
isting tabled answers could actually be reused and such redundancies avoided, if the
tabled answers are independent of query time. However, in XSB answer subsumption
on argument Ht cannot be made to ignore argument Qt, by its very design.

In this paper we address the aforementioned issue by fostering further incremen-
tal tabling, but leaving out the problematic use of the answer subsumption feature by



reconceptualizing the issue at hand. The main idea, which was not captured in [20], is
the perspective that knowledge updates (either self or world wrought changes) occur
whether or not they are queried, i.e., the former take place independently of the latter.
That is, when a fluent is true at Ht, its truth lingers on independently of query time: Qt
no longer becomes an argument of the tabled fluent predicate, i.e., we now have just
fluent(F,Ht). Being independent of query time Qt, fluent/2 consequently permits
better and more general reuse of its tabled answers than that of [20].

In the present approach, fluent updates are initially kept pending in the database, and
on the initiative of top-goal queries, i.e., by need only, incremental assertions make these
pending updates active (if not already so), but only those with timestamps up to an actual
query time. Such assertions automatically trigger system level incremental upwards
propagation and tabling of fluent updates. In order to delimit answers in the table, which
in some cases may lead to iterative non-termination, the propagation is bounded by a
predefined upper global time limit. Though foregoing answer subsumption, recursion
through the frame axiom can thus still be avoided, and a direct access to the latest
time a fluent is true is made possible via system table inspection predicates. Benefiting
from the automatic upwards propagation of fluent updates, the program transformation
in the present approach becomes simpler than our previous one, in [20]. Moreover, it
demonstrates how the dual program transformation, initially introduced in the context
of abduction [3], is employed for helping propagate the dual negation complement of
a fluent incrementally, to establish whether the fluent is still true at some time point or
rather if its complement is. Keeping both a fluent and its complement tabled will permit
in future to address paraconsistency and counterfactuals.

The paper is organized as follows. Section 2 recaps the EVOLP/R language, and
reviews the dual transformation and incremental tabling. We detail the implementation
technique in Section 3, discuss related work in Section 4, and conclude in Section 5.

2 Preliminaries

We begin by recapitulating the theoretical basis of our logic program updates.

2.1 The EVOLP/R Language

The syntax of EVOLP/R is simply adapted from that of EVOLP [1], by restricting
updates to fluents only. LetK be an arbitrary set of propositional variables and K̃ be the
extension of K, defined as K̃ = {A : A ∈ K} ∪ {∼A : A ∈ K}. Atoms A ∈ K and
∼A are called positive fluents and negative fluents, respectively. As in EVOLP, program
updates are enacted by having the reserved predicate assert/1 in the head of a rule.

Definition 1. Let K̃ be the extension of a setK of propositional variables. The EVOLP/R
language L is defined inductively as follows:

1. All propositional atoms in K̃ are propositional atoms in L.
2. If A is a propositional atom in L, then assert(A) is a propositional atom in L.
3. If A is a propositional atom in L, then ∼assert(A) is a propositional atom in L.
4. Nothing else is a propositional atom in L.



5. If A0 is a propositional atom in L and A1, . . . , An, with n ≥ 0, are literals in L
(i.e. a propositional atom A, or its default negation not A), then A0 ← A1, . . . , An

is a rule in L.
6. Nothing else is a rule in L.

An EVOLP/R program over a language L is a (possibly infinite) set of rules in L.

We extend the notion of positive and negative fluents in K̃ to propositional atoms
A and ∼A in L, respectively. They are said to be complement each other. When it is
clear from the context, we refer both of them as fluents. Retraction of fluent A (or ∼A),
making it false, is achieved by asserting its complement ∼A (or A, respectively). I.e.,
no reserved predicate for retraction is needed. Non-monotonicity of a fluent can thus be
admitted by asserting its complement, so as to let the latter supervene the former. Ob-
serve that the syntax permits embedded assertions of literals, e.g., assert(assert(a)),
∼assert(assert(a)); the latter being the complement of the former.

In [1], the semantics of EVOLP is given by a set of evolution stable models, each
of which is a sequence of interpretations or states. Each evolution stable model de-
scribes some possible self-evolution of one initial program after a given number of
evolution steps, where each self-evolution is represented by a sequence of generalized
logic programs (i.e. programs that allow default negation in their heads). By Definition
1, EVOLP/R programs are not generalized logic programs, but they nevertheless permit
negative fluents in the rules’ heads. Indeed, one may view negative fluents as explicit
negations, and due to the coherence principle [2], that states explicit negation entails
default negation, negative fluents obey the principle. Therefore, the two forms of rules’
heads, i.e. assert(not A) in EVOLP and assert(∼A) in EVOLP/R, can be treated
equivalently. This justification allows the semantics of EVOLP/R to be safely based on
that of EVOLP, as long as the paraconsistency of simultaneously having A and ∼A is
duly detected and user-defined handled, say with integrity constraints or preferences.

In EVOLP, the most recent rule instances are put in force, and the previous rule
instances are valid (by inertia) as far as possible, i.e., they are kept for as long as they
do not conflict with more recent ones. Though EVOLP/R restricts updates to fluents
only, rule updates (like in EVOLP) can nevertheless be achieved, via the mechanism
of rule name fluents, placed in rules’ bodies, allowing to turn rules on or off, through
assertions or retractions of their corresponding unique name fluents. That said, the re-
striction amounts to saying that all rules are to be known at the start, so that their rule
names can be manipulated. Conceivably however, new internally learnt or externally
given rules could be associated at such time with corresponding new names, and the
association recorded by an update.

We now review the semantics of EVOLP and adapt it for EVOLP/R, restricting
updates to fluents only. In the following definitions,

⊕
P , whereP = {Pi | 1 ≤ i ≤ n},

denotes a sequence of EVOLP/R programs P1⊕· · ·⊕Pn; each program corresponding
to a state s ∈ S.

Definition 2. Let
⊕
{Pi : i ∈ S} be an EVOLP/R program over language L, s ∈ S,

and M be a set of propositional atoms of L. Then:

Defaults(M) = {not A |6 ∃A← Body ∈ Pi(1 ≤ i ≤ s) : M |= Body}
Rejects(M) = {A← Body ∈ Pi | ∃ ∼A← Body′ ∈ Pj , i < j ≤ s ∧M |= Body′}



where ∼A denotes the fluent complement of A, and both Body and Body′ are conjunc-
tions of literals.

Definition 3. Let P =
⊕
{Pi : i ∈ S} be an EVOLP/R program over language L. A

set M of propositional atoms of L is a stable model of P at state s ∈ S iff:

M ′ = least
([⋃

i≤s
Pi −Rejects(M)

]
∪Defaults(M)

)
where M ′ = M∪{not A | A 6∈M}, and least(.) denotes the least model of the definite
program obtained from the argument program by replacing every default negated literal
not A by a new atom not A.

Definition 4. An evolution interpretation of length n of an EVOLP/R program P over
L is a finite sequence I = 〈I1, . . . , In〉 of sets of propositional atoms of L. The evo-
lution trace associated with an evolution interpretation I is the sequence of programs
〈P1, . . . , Pn〉 where P1 = P and Pi = {A | assert(A) ∈ Ii−1}, for 2 ≤ i ≤ n.

Definition 5. Let M = 〈I1, . . . , In〉 be an evolution interpretation of an EVOLP/R
program P and 〈P1, . . . , Pn〉 be its evolution trace. M is an evolution stable model of
P iff for every i (1 ≤ i ≤ n), Ii is a stable model of

⊕
{P1, . . . , Pi} at state i .

Like EVOLP, besides the self-evolution of a program, EVOLP/R also allows influ-
ence from the outside, either as an observation of fluents that are perceived at some state,
or assertion orders about fluents on the evolving program. Different from EVOLP, the
outside influence in EVOLP/R, referred as external updates, persist by inertia as long as
they do not conflict with the more recent values for them. Nevertheless, we may easily
define external updates that do not persist by inertia, called events in EVOLP, by defin-
ing for every atomic event E the rule: assert(∼E) ← E, i.e., if event E is imposed at
some state i, then it is no longer assumed from the next state, i.e., (i+ 1), onwards. In
other words, E holds momentarily at state i only.

Definition 6. Let Ei, for 1 ≤ i ≤ k, be a set of propositional atoms in L. An evolution
interpretation 〈I1, . . . , In〉, with evolution trace 〈P1, . . . , Pn〉, is an evolution stable
model of P given an external updates sequence 〈E1, . . . , Ek〉 iff for every i (1 ≤ i ≤ n),
Ii is a stable model at state i of (P1 ∪ E1)⊕ · · · ⊕ (Pi ∪ Ei).

The very idea of the paper is to show how an innovative use of tabling in LP, partic-
ularly of incremental tabling, may benefit program updates. Our implementation tech-
nique, as detailed Section 3, is realized on top of XSB Prolog, which is based on the
well-founded semantics (WFS) [25]. Note that in principle, semantics (with a fixpoint
definition) other than stable models can be employed in EVOLP/R. For example, it may
alternatively be based on WFS, cf. [4]. Currently, EVOLP/R considers only stratified
programs, i.e., programs with no loops over negation. The semantics of EVOLP/R for
such programs therefore consists of only one evolution stable model, which is also the
well-founded model. This is deliberately so, at this point, because we are concentrating
rather on the incremental tabling aspects and usage. Indeed, incremental tabling in the
current release of XSB Prolog also supports 3-valued WFS. Its use for non-stratified
programs in EVOLP/R, i.e., for updating conditional answers and for reasoning with
abduction, is a future line of work, as expressed in the Conclusion section.



2.2 The Dual Program Transformation

The dual program transformation is initially introduced in the context of abduction [3]
to abduce explanations under negative goals. It is summarized here and adapted to the
EVOLP/R language.

The dual program transformation defines for each atom A and its set of rules R in
an EVOLP/R program P , a set of dual rules whose head ∼A is true if and only if A is
false by R in the employed semantics of P . It relies on the following definition.

Definition 7. Let L be a literal in EVOLP/R (cf. Definition 1). The conjugate conj(L)
of L is defined as follows:

conj(L) =

{
A , if L = not A or L = ∼A
∼A , if L = A

Example 1 illustrates the main idea of the dual transformation in EVOLP/R.

Example 1. Consider the following program: a← ∼b. a← c, not d.
The dual transformation creates a set of dual rules for fluent a which falsify a with re-
spect to its two rules, i.e., by falsifying both the first rule and the second rule, expressed
below by predicate a∗1 and a∗2, respectively:

∼a← a∗1, a∗2.
This single rule is named as the first layer of the dual transformation. The second layer
contains the definitions of a∗1 and a∗2, where a∗1 and a∗2 are defined by falsifying
the body of a’s first rule and second rule, respectively; i.e., by taking the conjugate of
literals in the body. In case of a∗1, the only way the first rule of a can be falsified is by
taking the conjugate of ∼b. Therefore, we have:

a∗1 ← b.
In case of a∗2, the second rule of p is falsified by alternatively failing one subgoal in its
body at a time, i.e., by taking the conjugate of c or alternatively, that of not d.

a∗2 ← ∼c. a∗2 ← d.

Note that, if there is only one definition of a, then the first layer dual rule is defined as
∼a ← a∗1. In this case, it is preferable to simply unfold a∗1’s definitions in the first
layer. For instance, if a in Example 1 is defined only by the second rule, the dual rules
∼a can be directly defined as:

∼a← ∼c. ∼a← d.
Dual rules can be added to rules expressing falsity in their heads. This means the use
of the dual is what actually enables us to incrementally propagate falsity, as well as
truth. The reader is referred to [3] for theoretical details, and to [21] for our tabled
implementation. Note that use of the dual program transformation does not preclude
undefined fluents, and that incremental tabling is compatible with the WFS of XSB.

2.3 Incremental Tabling

Whenever a tabled predicate depends on dynamic predicates and the latter are updated
(with Prolog’s assert or retract predicates), these updates are not immediately reflected



in the table, i.e., the table becomes out of date. This problem is known as the view
maintenance problem in databases and the truth maintenance problem in artificial in-
telligence. In “classical” tabling, a typical solution to this problem is to rely on the
user to explicitly abolish the table whenever a dynamic predicate, on which the table
depends, is updated. As several updates may take place on a dynamic predicate, such
explicit table abolishment is rather inconvenient and also leads to inefficiency. To over-
come this problem, XSB allows maintaining particular tables incrementally, known as
incremental tabling, i.e., the answers in these tables are ensured to be consistent with
all dynamic facts and rules upon which they depend. In XSB, this requires both tabled
predicates and the dynamic predicates they depend on to be declared as incremental.
For example, if the tabled predicate r/2 depends on the dynamic predicate s/2, then
they are declared as :- table r/2 as incremental and :- dynamic s/2
as incremental, respectively. To update the table of r/2 incrementally by a sin-
gle change to s/2, a call such as incr assert(s(a, 3)) or incr retract(s(a, 3)) can be
issued, in which case the table of r/2 and other tables that depend on r/2 and s/2 are
updated after such a call. Bulk changes are also supported. The reader is referred to [24]
for the further options, examples, and details of incremental tabling.

3 Query-driven Updates Propagation with Incremental Tabling

Since changes by incremental assertions or retractions in incremental tabling update the
tables that depend on them, and only those sought – possibly in a chain of dependencies
between tabled predicates – this feature can be exploited for automatically propagating
the appropriate fluent updates. The use of the frame axiom, with its recursive nature,
is thereby avoided. The “world” manages its own consequences, so to speak, and the
system provides its history only to the extent needed by queries.

3.1 The Idea

We start with a very simple example to illustrate the basic idea.

Example 2. Consider program P : b← a. c← b.
Given the sequence of external updates 〈E1, E2, E3〉, where E1 = {a}, E2 = ∅, and
E3 = {∼a}, the evolution of P in EVOLP/R (cf. definitions in Section 2) is as follows:
P1 = P with I1 = {a, b, c}, P2 = ∅ with I2 = {a, b, c}, and P3 = ∅ with I3 = ∅.

Observe that a is an external fluent update at state i = 1, which propagates to up-
dates of fluents b (by the first rule) and c (by the second rule), making the three fluents
true at state i = 1. Incremental tabling itself realizes such propagations. A tabled predi-
cate, say fluent(F, T ), to record incremental updates of fluent F at state (or time) T is
introduced. That is, it depends directly on fluent literals (treated as dynamic incremental
predicates), whether extensional or intensional. The external update of fluent a at i = 1
is therefore accomplished by an incremental assertion, via incr assert/1 system predi-
cate, i.e., incr assert(a(1)) to say that fluent a is incrementally asserted at i = 1. Such
an incremental assertion results in having entry fluent(a, 1) in the table. Furthermore,



due to the dependencies of the three fluents, as defined by the two rules in P , the incre-
mental assertion of a propagates to fluents b and c, leading to tabling fluent(b, 1) and
fluent(c, 1). We thus have fluent(a, 1), fluent(b, 1), and fluent(c, 1), confirming
that the three fluents are true at i = 1 (cf. I1).

As there is no update in state i = 2, the truths of the three fluents persist by inertia
at i = 2. From the tabling viewpoint, the previous entries fluent(a, 1), fluent(b, 1),
and fluent(c, 1) linger in the table, and a simple check can be performed to verify that
the truths of these fluents are not supervened by their complements at i = 2. That is,
whether there are no fluent(∼a, 2), fluent(∼b, 2), and fluent(∼c, 2) entries in the
table, which is indeed the case, and consequently confirms that the three fluents (a, b,
and c) are inertially true at i = 2 (cf. I2).

A subsequent update of fluent ∼a at i = 3 via incr assert(∼a(3)) results in tabling
fluent(∼a, 3). That means, we still have all previous tabled entries, viz., fluent(a, 1),
fluent(b, 1), and fluent(c, 1), plus now fluent(∼a, 3), and a simple state comparison
(fluent a at i = 1 is supervened by its complement ∼a at a later state i = 3) concludes
that fluent a is no longer true. Different from before, there is no propagation to fluents
∼b nor ∼c by this incremental assertion, i.e., no fluent(∼b, 3) and fluent(∼c, 3) in the
table. Indeed, there are no corresponding rules in P for ∼b and ∼c; thus failing to con-
clude that both fluents are also false at i = 3 (cf. I3). We adopt the dual transformation
(cf. Section 2.2) to provide rules for ∼b and ∼c from definitions of b and c:

∼b← ∼a. ∼c← ∼b.
The introduced dual rules now allow the propagations from ∼a to ∼b and then to ∼c,

resulting in having fluent(∼b, 3) and fluent(∼c, 3) in the table. By having the latter
two entries in the table, using the same previous reasoning, it can be concluded that
fluents b and c are also false at i = 3, confirming I3.

The automatic system level updates propagation, by means of incremental tabling,
is driven by a query at a particular state, known as a query time. Such a query trig-
gers incremental assertions up to the given query time. Indeed, any updates have been
kept pending, and only those up to the query time are made actual, if not already
so. This mechanism affords us a form of controlled but automatic system level truth-
maintenance, up to the given query time. It can be viewed as reconciling a high-level
top-down deliberative reasoning (about a query) with low-level bottom-up world reac-
tivity to updates; the latter is relegated to the system enacted incremental tabling feature.

3.2 Implementation

The idea is implemented by a compiled program transformation plus a library of re-
served predicates.

Transformation The transformation adds information and rules to program clauses:

1. Timestamp that corresponds to state and serves as the only extra argument of fluents.
It denotes the time when a fluent is true (known as holds time in [20]). Compared
to [20], there is no longer the need to carry the query time as an extra argument of
fluents. Conceptually, the state of a fluent in time depends solely on the changes
made to the world, and is independent of whether that world is being queried.



2. Rule name as a special fluent $rule(p/n, idi), which identifies a rule of predicate
p with arity n by its unique name identity idi, and is introduced in its body, for
checking that the rule is still active.

3. Dual rules that are obtained using the dual transformation for each atom with defi-
nitions in the input program.

The transformation technique is illustrated by Example 3, with the extra informa-
tion and rules figuring in the transform ($r and as in the sequel stand for predicates
$rule and assert, respectively). In EVOLP/R, the initial timestamp is set at 1, when a
program is inserted. Fluent predicates can be defined as facts (extensional) or by rules
(intensional) or both. In Example 3, both fluents b and as(∼a) are defined intension-
ally. For such rule regulated intensional fluent instances, unique rule name fluents, i.e.,
$r(b/0, id1) and $r(as(∼a/0), id1) for the first and the second rules, respectively, are
introduced. They are extensional fluent instances, and like any other extensional fluent
instances, such a rule name fluent is translated (cf. line 1) by adding an extra argument
(the third one) that corresponds to its holds time; in this case, each rule name fluent is
true at the initial time 1, i.e., the time when its corresponding rule is inserted.

Line 2 shows the translation of rule b ← a of the input program. The single extra
argument in its head is its holds time, H . Call to the goal a in the body is translated into
calls to the reserved predicate fluent/2 (defined later), that provides their holds time.
The subgoal calls fluent($r(b/0, id1), Hr) and fluent(a,Ha) reflect the propagation
of the unique rule name fluent $r(b/0, id1) and fluent a, respectively, from the body
to the head (i.e., fluent b). The holds time H of fluent b in the head is thus determined
by which inertial fluent in its body holds latest, via the latest/2 reserved predicate
(detailed later), assuring that no fluents in the body were subsequently supervened by
their complements at some time before H . Note the inclusion of the unique rule name
fluent (i.e., the call fluent($r(b/0, id1), Hr)) in the body, whose purpose is to switch
the corresponding rule on or off.

The other rule of the input program, viz., as(∼a) ← b, transforms into two rules:
the transform in line 5 is similar to that of rule b ← a, whereas the one in line 8 is
derived as the effect of asserting ∼a. That is, the truth of ∼a is determined solely by the
propagation of fluent as(∼a), indicated by the call fluent(as(∼a), Has). The holds
time H of ∼a is thus determined by Has + 1 (rather than Has, because ∼a is actually
asserted one time step after the time at which as(∼a) holds). This transform (line 8) is
simpler compared to the one in [20] (cf. line 7 of Example 1 in [20]), because no extra
reasoning with respect to query time is needed here (due to independence of the trans-
form from query time). Such a simpler transformation consequently corresponds to less
computation time: indeed, the extra reasoning with respect to query time Qt, in [20],
requires recursively generating timestamps T < Qt, and checking via backtracking
whether assert(∼a) holds at T .

Finally, lines 3 and 4 show the dual rules for b. Line 3 expresses how the conjugate
∼$r(b/0, id1) of rule name fluent $r(b/0, id1) propagates to fluent ∼b, whereas line
4 expresses the other alternative: how the conjugate ∼a of a propagates to fluent ∼b.
Observe that the dual rules are directly defined by unfolding b∗1, because b in the input
program has only one definition (cf. the last paragraph of Section 2.2). With similar
reasoning, lines 6 and 7 define the dual rules for as(∼a). Recall that dual rules are



defined for each atom with definitions in the input program. Therefore, rules in the
transform derived from another rule with assert/1 in the head, e.g., rule ∼a/1 in line
8 with no definition in the input program, do not have dual rules. From the semantics
viewpoint, once ∼a is asserted, its truth remains intact by inertia till superseded, even if
assert(∼a) is retracted at a later time.

Since every fluent occurring in the program is subject to updates, all fluents and
their complements should be declared as dynamic and incremental (due to incremen-
tal tabling), e.g., :- dynamic a/1,‘∼a’/1 as incremental (the same for
fluents b, as(∼a), $r(b/0, id1, 1), $r(as(∼a/0), id1, 1), as well as their complements).

Example 3. Program: b← a. as(∼a)← b. transforms into:

1. $r(b/0, id1, 1). $r(as(∼a/0), id1, 1).
2. b(H) ← fluent($r(b/0, id1), Hr), f luent(a,Ha),

latest([($r(b/0, id1), Hr), (a,Ha)], H).
3. ∼b(H) ← fluent(∼$r(b/0, id1), H).
4. ∼b(H) ← fluent(∼a,H).
5. as(∼a,H) ← fluent($r(as(∼a/0), id1), Hr), f luent(b,Hb),

latest([($r(as(∼a/0), id1), Hr), (b,Hb)], H).
6. ∼as(∼a,H) ← fluent(∼$r(as(∼a/0), id1), H).
7. ∼as(∼a,H) ← fluent(∼b,H).
8. ∼a(H) ← fluent(as(∼a), Has), H is Has + 1.

Example 4 focuses on the transformation of a rule with a default negation in its
body. Apart from the usual rule name fluent in the body, the goal not a with default
negation translates into a call to reserved predicate fluent not/2 (defined later), i.e.,
fluent not(a,Ha); cf. line 2. Lines 3 and 4 are the dual rules for fluent b.

Example 4. Program: b← not a. transforms into:

1. $r(b/0, id1, 1).
2. b(H) ← fluent($r(b/0, id1), Hr), f luent not(a,Ha),

latest([($r(b/0, id1), Hr), (a,Ha)], H).
3. ∼b(H) ← fluent(∼$r(b/0, id1), H).
4. ∼b(H) ← fluent(a,H).

Reserved Predicates Predicate fluent/2 used in the transformation is a tabled one,
as described in Section 3.1. It depends on fluent definitions of F (which are dynamic
incremental), and this dependency indicates that fluent/2 is tabled incrementally. It is
declared as :- table fluent/2 as incremental, and defined as follows:

fluent(F, T )← upper time(Lim), extend(F, [T ], F ′), call(F ′), T ≤ Lim.

where extend(F,Args, F ′) extends the arguments of fluent F with those in list Args
to obtain F ′. The definition requires a predefined upper time limit Lim, which is used
to delimit updates propagation, i.e., to delimit answers in the fluent/2 table. The mo-
tivation for such an upper time limit was explained before, plus illustrated in the sequel.



For updates propagation to take place, initial calls fluent(F, ), for every fluent
F , have to be made in order to initially create the table. Once created, the table is
incrementally updated after every incr assert/1 call by propagating updates on which
it depends. Updates propagation are controlled in two innovative ways:

1. Activating pending updates till some query time.
In Section 3.1 we mentioned that updates propagation by incremental tabling is
query-driven, within some query time of interest. This means we can use the given
query time to control updates propagation by keeping the sequence of updates pend-
ing, say in the database, and then making active, through incremental assertions,
only those with the states up to the actual query time (if they have not yet been so
made already by queries of a later time stamp). For so doing, we may introduce a
dynamic predicate pending(F, T ) to indicate that update of fluent F at state T is
still pending, and use Prolog assert/1 predicate, i.e., assert(pending(F, T )) to
assert such a pending fluent update into the Prolog database. Activating pending
updates (up to the given query time Qt), as shown by the code below, can thus
be done by calling all pending(F, T ) facts with T ≤ Qt from the database and
actually asserting them incrementally using the system incr assert/1 predicate:

activate pending(Qt)← pending(F, T ), T ≤ Qt, extend(F, [T ], F ′),
incr assert(F ′), retract(pending(F, T )), fail.

activate pending( ).

Note that a quasi forward-chaining approach [24] of incremental update through the
use of incr assert/1 is employed, as opposed to the use of incr assert inval/1
system predicate of eager and lazy incremental update approaches [24]. Never-
theless, since pending updates are only made active on the initiative of top-goal
queries, only those with timestamps up to an actual query time are actually as-
serted, i.e., by need only. Lazy evaluation by itself would not suffice to delimit
actual updates to query time ceilings, and hence the need for pending updates.

2. Limiting updates propagation to a predefined upper time limit.
Activating pending updates up to some query time does not guarantee termination
of updates propagation, as Example 5 illustrates.

Example 5. Consider program P : as(∼a)← a. as(a)← ∼a.
Given an external update 〈E1〉, where E1 = {a}, the evolution of P in EVOLP/R
is as follows: P1 = P with I1 = {a, assert(∼a)}, P2 = {∼a} with I2 =
{∼a, assert(a)}, P3 = {a} with I3 = {a, assert(∼a)}, P4 = {∼a} with I4 =
{∼a, assert(a)}, . . . etc. (the evolution continues indefinitely)

In this example the external update of a at state i = 1 leads to non-terminating
propagation. From the incremental tabling viewpoint, it indicates that a predefined
upper time limit is required to limit updates propagation, thereby avoiding infinite
number of answers in the fluent/2 table. This requirement is realistic, as our view
into the future may be bounded by some time horizon, comparable to bounded ra-
tionality. For this purpose, a dynamic predicate upper time(Lim) is introduced
to indicate the predefined upper time limit Lim, and used in the above fluent/2



definition to time-delimit their tabled answers. In the case of Example 5, by set-
ting, e.g., upper time(4), the fluent/2 table contains a finite number of answers:
fluent(a, 1), fluent(∼a, 2), fluent(a, 3), and fluent(∼a, 4).

We have seen predicate latest([(F1, H1), . . . , (Fn, Hn)], H) in the transformation,
which appears in the body of a rule transform, say of fluent F . This reserved predicate
is responsible for obtaining the latest holds time H of F amongst fluents F1, . . . , Fn in
the body, while also assuring that none of them were subsequently supervened by their
complements at some time up to H . It is defined as:

latest(Fs,H)← greatest(Fs,H), not supervened(Fs,H).

where greatest(Fs,H) extracts from list Fs, of (Fi, Hi) pairs with 1 ≤ i ≤ n, the
greatest holds time H among the Hi’s, and predicate not supervened(Fs,H) subse-
quently checks, by means of table inspection, that there is no fluent complement F ′i
(with holds time H ′i) of Fi in Fs, such that Hi < H ′i ≤ H .

Recall now Example 4. There, reserved predicate fluent not/2 is introduced. Its
definition is given below:

(1) fluent not(F, T )← compl(F, F ′), f luent(F ′, H).
(2) fluent not(F, T )← nonvar(T ), !, fail.
(3) fluent not( , 0).

where compl(F, F ′) obtains the fluent complement F ′ from F . Rule (1) captures the
coherence principle [2], that states explicit negation entails default negation; in our case,
negative fluents are treated as explicit negations, therefore they obey the principle. Rules
(2) and (3) are the standard definition of default negation. Note that rule (3) artificially
sets the timestamp to T = 0 for all fluents; for none are by then (before the “Big Bang”
of the starting program update, which initially starts at T = 1) known to be true.

Given that an upper time limit has been set, and that the initial calls fluent(F, )
for every fluent F have been made, and that some pending updates may be available,
the EVOLP/R system is ready for a top-goal query. The top-goal query holds(F,Qt)
verifies whether fluent F is true at query time Qt within the bounded time horizon
(otherwise it is undefined). It does so by first activating pending updates up to Qt and
then inspecting fluent/2 table to answer the query:

(1) holds( , Qt) ← upper time(Lim), (Qt > Lim ; Qt ≤ 0), !, undefined.
(2) holds(not F,Qt)← !, not holds(F,Qt).
(3) holds(F,Qt) ← activate pending(Qt), compl(F, F ′), inspect(F,H,Qt),

(H 6= 0→ (inspect(F ′, H ′, Qt), H ≥ H ′) ; fail).

where inspect(F,H,Qt) inspects the fluent/2 table and looks for entries of fluent F
with the highest timestamp H ≤ Qt. XSB provides various table inspection predicates,
e.g., get returns for call/2 may be used. If there is no such fluent F in the table,
H = 0 is returned, making holds(F,Qt) fail, due to the last conditional subgoal in the
body. Otherwise, this conditional goal exercises the table inspection of its complement
fluent F ′ to obtain its highest timestamp H ′, and succeeds only if H ≥ H ′, i.e., checks



that fluent F is not supervened at a later time by its complement F ′. Note that this
allows for paraconsistency (case H = H ′), to be dealt by the user as desired, e.g., by
integrity constraints or preferences, but this matter is beyond the scope of the paper.

Example 6. Recall Example 3, which is loaded initially at time 1. Suppose that the
upper time limit is set to upper limit(5), and calls fluent(F, ) and fluent(F ′, ),
where F ′ is the complement of F , have been made for every fluent F in the transform,
i.e., F = {a, b, as(∼a), $r(b/0, id1, 1), $r(as(∼a/0), id1, 1)}. Note that, because rule
name fluents are already inserted (as fluent facts) in the program (cf. line 1 of Ex-
ample 3), these fluent/2 calls result in having entries fluent($r(b/0, id1), 1) and
fluent($r(as(∼a/0), id1), 1) in the table. Now, assume further that two pending ex-
ternal updates are available, viz., pending(a, 1) and pending(b, 4), that correspond to
external updates of fluent a at i = 1 and fluent b at i = 4, respectively. In other words,
〈E1, E2, E3, E4〉 is the external updates sequence with E1 = {a}, E2 = E3 = ∅,
and E4 = {b}. The following queries show that their answers conform to the evolution
model of the program given the above external updates sequence:

1. When holds(b, 1) is queried, it first activates pending updates up to Qt = 1,
via subgoal activate pending(1), thereby incrementally asserting a(1) only, and
keeping pending(b, 4) still intact. The incremental assertion of a(1) results in hav-
ing fluent(a, 1) in the table, and henceforth propagates to update fluents b (by
rule 2), as(∼a) (by rule 5), ∼a (by rule 8), ∼b (by rule 4), and ∼as(∼a) (by rule
7). These make fluent(b, 1), fluent(as(∼a), 1), fluent(∼a, 2), fluent(∼b, 2),
and fluent(∼as(∼a), 2) added into the table. When subgoal inspect(b,H, 1) of
holds(b, 1) is called, it returns H = 1, and since H 6= 0, call inspect(∼b,H ′, 1)
is subsequently made, in which case H ′ = 0 is returned (no fluent(∼b,H ′) with
H ′ ≤ 1 in the table). This eventually makes holds(b, 1) succeed, because condition
H ≥ H ′ in the definition of holds/2 is satisfied.

2. A similar reasoning applies when holds(b, 2) is queried, but now no more pending
updates up to Qt = 2 are available. The subgoal calls inspect(b,H, 2) returns H =
1 and inspect(∼b,H ′, 2) returns H ′ = 2, in which case the condition H ≥ H ′ is
unsatisfied, and therefore holds(a, 2) fails, i.e., fluent a does not hold at state i = 2.

3. It is easy to confirm, that query holds(b, 3) still fails. Indeed, it persists by inertia.
4. Finally, when holds(b, 4) is queried, the only pending update pending(b, 4) is

made active by incrementally asserting b(4) and tabling fluent(b, 4). This prop-
agates to adding several entries into the table: fluent(as(∼a), 4), fluent(∼a, 5),
fluent(∼b, 5), and fluent(∼as(∼a), 5). Therefore, subgoal call inspect(b,H, 4)
now returns H = 4, call inspect(∼b,H ′, 2) still returns H ′ = 2, and H ≥ H ′ is
satisfied, making holds(b, 4) succeed.

5. With the current entries in the fluent/2 table, one may verify that holds(b, 5) fails.

4 Related Work

Many Prolog systems are nowadays adopting tabling, though none has gone as far as
XSB Prolog, namely in allowing tabling over default negation, and providing together
answer subsumption, incremental tabling, and threads with shared tables. Consequently,



there are also limited applications of these features, particularly of incremental tabling.
Known applications are in pointer analyses of C programs in the context of incremental
program analyses [18], data flow analyses [19], static analyses [6], incremental valida-
tion of XML documents and push down model checking [17]. But we are not aware of
any work on employing incremental tabling for logic program updates as we do here.

Updates propagation has been well studied in the field of deductive databases,
e.g., [5, 7, 13]. Similar to what we do here, updates propagation in these works aims
at computing implicit changes of derived relations caused by explicit updates of ex-
tensional facts. Methods in updates propagation consist of bottom-up and top-down
approaches. In [5], both approaches are combined, sharing the same basic idea with
ours, i.e., to control bottom-up propagation with a top-down evaluation strategy. But
different from ours, it does not use any Prolog tabling features, particularly incremen-
tal tabling, but employs instead the Magic Sets approach. Others, like [13], employ a
purely top-down approach by querying the relevant portion of the database, whereas [7]
focuses on bottom-up methods of updates propagation.

Logic-based Production System (LPS) with abduction [11] is a distinct but some-
what similar and complementary approach to ours. It aims at defining a new logic-based
framework for knowledge representation and reasoning, relying on the fundamental role
of state transition systems in computing, and involving fluent updates by destructive as-
signment. It is implemented in LPA Prolog [14] but no details are given about that.
Their approach differs from ours in that it defines a new language and an operational
semantics, rather than taking an existing one, and implements it on a commercial sys-
tem (LPA Prolog) with no underlying tabling mechanisms. Moreover, in our work fluent
updates are not managed by destructive database assignments, but rather tabled, thereby
allowing to inspect their truths at a particular time, e.g., querying the past. Furthermore,
full knowledge about each fluent in each state is not presupposed, so that only those
fluents are updated for which changes are known about. Subsequent knowledge, say
about updates on the world by another agent, or by yet unmeasured world processes,
may change the picture of the world to a more complete one. In any case, the emer-
gence and propagation of changes prepare the way for the wider topic of teleo-reactive
systems [12, 15].

Regarding other related work, the use of incremental tabling in this paper is very
strongly related to the (also incremental, and also tabling-based) algorithms employed
in the compile-time analyses of logic programs (e.g., [10] and other connected papers).
It could be interesting to compare the algorithms in incremental analysis and our work
(which relies on the underlying incremental tabling algorithms of XSB), because some
techniques used in incremental analyses might be useful in the context of incremen-
tal tabling (and vice-versa). Incremental analyses also table answers (like answers of
fluent/2 in our work) and include algorithms to incrementally add, delete or mod-
ify a clause of a predicate. Furthermore, there exist several specific optimizations and
techniques used in these incremental analysis algorithms which may be beneficial in
the context of the tabling procedure proposed here, namely: (1) Being cautious about
changes in the database that only affect a small subset of it (called local change in
Section 5.1 of [10]); (2) Whereas we present in Example 5 a case in which propaga-
tion does not terminate, and solve such cases by delimiting propagation to a predefined



upper time limit, it may be opportune to consider operators similar to the widening op-
erator of abstract interpretation, which lose precision on the tabling (possibly leading to
answers being recomputed), but ensure termination.

Our approach to limit updates propagation, using a predefined time limit as a bound,
has the same overall purpose as XSB’s recent tabling feature: answer abstraction [8],
i.e., to guarantee termination in tabling by ensuring that only a finite number of answers
are generated by a query. In answer abstraction, this is achieved via a form of bounded
rationality, viz., radial restraint, and is realized by bounding the depth of an answer.

5 Conclusion

We have propounded in detail an implementation technique to logic program updates by
further exploiting incremental tabling in logic programming (available in XSB Prolog),
which enriches the applicability of the incremental tabling feature to dynamic envi-
ronments and evolving systems, and that might be adopted elsewhere for reasoning in
logic. The implementation technique proposed much refines our previous approach by
leaving out the answer subsumption feature that was heretofore employed to address
the frame problem. Instead, we rely fully on incremental tabling by separating knowl-
edge updates from queries on them; the former takes place independently from the
latter. Incremental tabling allows updates propagation, which is controlled by initially
keeping updates pending and making active only those with timestamp up to an actual
query time, on the initiative of queries. Possible non-terminating updates propagation
is avoided by setting a predefined upper time limit for queries, and the direct access to
the latest time a fluent is true is achieved by table inspection predicates. Moreover, we
adopt the dual transformation from abduction and adapt it for helping propagate also
the complement of fluents incrementally. In summary, our approach affords us a form
of controlled (i.e., query-driven) but automatic system level truth-maintenance (i.e., au-
tomatic updates propagation via incremental tabling), up to actual query time.

Our future work consists of integrating tabled abduction [21] with EVOLP/R, so as
to jointly afford abduction and updating in one integrated XSB system. We intend to
apply the system to abductive moral reasoning [9], with updating and argumentation,
as a sequel to our ongoing approach to using logic for reasoning.
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