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Abstract. Abduction has been on the back burner in logic programming, as ab-
duction can be too difficult to implement, and costly to perform, in particular if
abductive solutions are not tabled. On the other hand, current Prolog systems,
with their tabling mechanisms, are mature enough to facilitate the introduction of
tabling abductive solutions (tabled abduction) into them.
Our contributions are as follows: (1) We conceptualize tabled abduction for ab-
ductive normal logic programs, permitting abductive solutions to be reused, from
one abductive context to another. The approach relies on a transformation into
tabled logic programs that makes use of the dual transformation, and enables ef-
ficiently handling the problem of abduction under negative goals, by introducing
dual positive counterparts for them. (2) We realize tabled abduction in TABDUAL,
a system implemented in XSB Prolog, allowing dualization by-need only. (3) We
refine the dual transformation in the context of TABDUAL to permit executing
programs with variables and non-ground queries. (4) We foster pragmatic ap-
proaches in TABDUAL to cater to all varieties of loops in normal logic programs,
now complicated by abduction. (5) We evaluate TABDUAL in practice by exam-
ining five variants, according to various evaluation objectives. (6) We detail how
TABDUAL can be applied to declarative debugging and decision making. (7) Fi-
nally, we refer to related work, and discuss TABDUAL’s correctness, complexity,
and features that could migrate to the engine level, in Logic Programming sys-
tems wanting to encompass tabled abduction.

Keywords: abductive logic programming, tabled abduction, dual transforma-
tion, XSB Prolog, applications of abduction.

1 Introduction

Abduction has been well studied in the field of computational logic, and logic program-
ming in particular, for a few decades by now [4,9,12,14,18,20,39]. Abduction in logic
programs offers a formalism to declaratively express problems in a variety of areas,
e.g. in diagnosis, planning, scheduling, reasoning of rational agents, decision making,
knowledge assimilation, natural language understanding, security protocols verifica-
tion, and systems biology [1, 5, 13, 15, 21–23, 28, 32]. On the other hand, many Prolog
systems have become mature and practical, and thus it makes sense to facilitate the use
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of abduction into such systems, be it two-valued abduction (as adopted in this work) or
three-valued, e.g. [7].

In abduction, finding some best explanations (i.e. adequate abductive solutions) to
the observed evidence, or finding assumptions that can justify a goal, can be very costly.
It is often the case that abductive solutions found within one context are also relevant
in a different context, and can be reused with little cost. In logic programming, ab-
sent of abduction, goal solution reuse is commonly addressed by employing a tabling
mechanism. Therefore, tabling appears to be conceptually suitable for abduction, so as
to reuse abductive solutions. In practice, abductive solutions reuse is not immediately
amenable to tabling, because such solutions go together with an abductive context.

In [31], we preliminarily explore the idea of how to benefit from tabling mecha-
nisms in order to reuse priorly obtained abductive solutions, from one abductive context
to another. Tabling abductive solutions (tabled abduction) with its prototype TABDUAL,
implemented in XSB Prolog [41], consists of a program transformation from abduc-
tive normal logic programs into tabled logic programs, plus a library of system pred-
icates. It requires no meta-interpreter, but generates a self-sufficient program trans-
form, on which abduction is subsequently enacted. TABDUAL is available at http:
//sourceforge.net/projects/tabdual.

We simplify the specification of tabled abduction in TABDUAL by introducing the
core transformation, in Section 3, which abstracts away from implementation details
of its subsequent refinements and more complex constructs, such as loops (i.e. positive
loops and loops over negation) in abductive normal logic programs. That is, the core
TABDUAL transformation focuses on an innovative re-uptake of prior abductive solution
entries in tabled predicates, and the dual transformation [4], on which TABDUAL relies.
The dual transformation, initially employed in ABDUAL [4], allows to more efficiently
handle the problem of abduction under negative goals, by introducing their positive dual
counterparts.

Originally, the dual transformation in ABDUAL does not concern itself with pro-
grams having variables. In Section 4, the dual transformation is further refined in the
context of TABDUAL, to allow it dealing with such programs. More precisely, it is re-
fined to help ground (dualized) negative subgoals, and to deal with non-ground nega-
tive goals. Regarding the latter, we look just for abductive solutions of such non-ground
negative goals, and not for constraints on free variables of its calling arguments, i.e. no
constructive negation.

The tabling mechanism in XSB Prolog [41] supports the Well-Founded Semantics
(WFS) [43], which allows dealing with loops in the program and ensuring termination
of looping queries. TABDUAL is implemented in XSB, and it employs XSB’s tabling as
much as possible to deal with loops. Nevertheless, tabled abduction introduces a com-
plication concerning some varieties of loops. In Section 5, we adapt the core TABDUAL
transformation, resorting to a pragmatic approach, to cater to all varieties of loops in
normal logic programs, which are now complicated by abduction.

Keeping in mind TABDUAL as a practical tabled abduction system, under the WFS
with abduction [4], several pragmatic aspects have been examined from the implemen-
tation viewpoint [34]. First, because TABDUAL allows for modular mixes between ab-
ductive and non-abductive program parts, one can benefit in the latter part by enacting



a simpler translation of predicates in the program comprised just of facts. This sim-
pler treatment distinguishes the transformation between rules in general and predicates
defined extensionally by facts alone. It particularly helps avoid superfluous transfor-
mation of facts, which would hinder the use of large factual data. Second, we address
the issue of potentially heavy transformation load due to producing the complete dual
rules (i.e. all dual rules regardless of their need), if these are constructed in advance
by the transformation. Such a heavy dual transformation makes it a bottleneck of the
whole abduction process. A natural solution is instead to perform the dual transforma-
tion by-need, i.e. dual rules for a predicate are only created as their need is felt dur-
ing abduction. We detail two approaches to realizing the dual transformation by-need:
creating and tabling all dual rules for a predicate on the first invocation of its nega-
tion, or, in contrast, lazily generating and storing (instead of tabling) its dual rules in a
trie, as new alternatives are required. The former approach leads to an eager dual rules
tabling (albeit by-need) transformation (under local table scheduling strategy), whereas
the latter permits a by-need driven lazy one (in lieu of batched table scheduling). Third,
TABDUAL provides a system predicate that permits accessing ongoing abductive solu-
tions. This is a useful feature and extends TABDUAL’s flexibility, as it allows manip-
ulating abductive solutions dynamically, e.g. preferring or filtering ongoing abductive
solutions, e.g. checking them explicitly against nogoods at predefined program points.
These implementation aspects and others are examined in Section 6.

TABDUAL has been evaluated with various objectives, where five TABDUAL vari-
ants (of the same underlying implementation) are examined, by separately factoring out
TABDUAL’s most important distinguishing features [35]. In the first, we evaluate the
benefit of tabling abductive solutions, where we employ an example from declarative
debugging to debug incorrect solutions of logic programs, via a process now character-
ized as abduction [36], instead of as belief revision [26,27]. The other case of declarative
debugging, that of debugging missing solutions, is used next to evaluate the three dual
transformation variants: complete, eager by-need, and lazy by-need. We touch upon
tabling so-called nogoods of subproblems in the context of abduction (i.e. abductive so-
lution candidates that violate constraints), and show, in the third evaluation, that tabling
abductive solutions can be appropriate for tabling nogoods of subproblems. We also
evaluate TABDUAL in dealing with programs having loops, in the fourth evaluation,
where we also compare its results with ABDUAL, showing that TABDUAL provides
more correct and complete results. Finally, we describe how TABDUAL can be applied
in action decision making under hypothetical reasoning, and in a real medical diagnosis
case [36]. The evaluations and the applications of TABDUAL are detailed in Section 7
and Section 8, respectively.

We discuss the correctness and the complexity of TABDUAL, in Section 9, as well
as related work and other issues that may lead to future work. In particular, we discuss
which features of the TABDUAL transformation, currently deployed at the object lan-
guage level, could possibly migrate to the engine level of Prolog systems that support
tabling and, optionally, tries data structure, like XSB and others wanting to encompass
tabled abduction.



2 Preliminaries

We start by reviewing some background definitions in logic programs and notation we
use throughout this work.

A logic rule has the form H ← B1, . . . , Bm, not Bm+1, . . . , not Bn, where n ≥
m ≥ 0 and H,Bi with 1 ≤ i ≤ n are atoms. In a rule, H is called the head of the
rule and B1, . . . , Bm, not Bm+1, . . . , not Bn its body. We use ‘not’ to denote default
negation. The atom Bi and its default negation not Bi are named positive and negative
literals, respectively. When n = 0, we say the rule is a fact and render it simply as
H . The atoms true and false are, by definition, respectively true and false in every
interpretation. A rule in the form of a denial, i.e. with empty head, or equivalently
with false as head, is an integrity constraint (IC). A logic program (LP) is a set of
logic rules, where non-ground rules (i.e. rules containing variables) stand for all their
ground instances. We focus on normal logic programs, i.e. those whose heads of rules
are positive literals or empty. As usual, we write p/n to denote predicate p with arity n.

Abduction (inference to the best explanation – a common designation in the philos-
ophy of science [19,24]), is a reasoning method, whereby one chooses those hypotheses
that would, if true, best explain the observed evidence (satisfy some query), while meet-
ing any attending ICs. In LPs, abductive hypotheses (abducibles) are named positive or
negative literals of the program, which have no rules, and whose truth value is not ini-
tially assumed. Abducibles may have arguments, but for simplicity they must be ground
when abduced. An abductive normal logic program is a normal logic program that al-
lows abducibles appearing in the body of rules. Note that abducible ‘not a’ does not
refer to the default negation of abducible a, as abducibles have no rules, but instead
to the explicitly assumed hypothetical negation of a. The truth value of abucibles may
be independently assumed true or false, via either their positive or negated form, as
the case may be, to produce an abductive solution to a query, i.e. a consistent set of
assumed hypotheses that support it. An abductive solution to a query is a consistent set
of abducible instances that, when substituted by their assigned truth value everywhere
in the program P , affords us with a model of P (for the specific semantics used on P ),
which satisfies both the query and the ICs – a so-called abductive model.

Abduction in LPs can naturally be accomplished by a top-down query-oriented
procedure to find an (abductive) solution to a query (by-need, i.e. as abducibles are
encountered), where the abducibles in the solution are leaves in its procedural query-
rooted call-graph, i.e. the graph recursively engendered by the procedure calls from
literals in bodies of rules to heads of rules, and thence to the literals in the rule’s body.
This top-down computation is possible only when the underlying semantics is relevant,
i.e. avoids having to computing a whole model (to guarantee its existence) in order
to find an answer to a query: it suffices to use only the rules relevant to the query –
those in its procedural call-graph – to find its truth value. The Well-Founded Semantics
(WFS) [43] enjoys the relevance property, and thus it allows abduction to be performed
by need, induced by the top-down query-oriented procedure, solely for finding the rel-
evant abducibles and their truth value, whereas the values of abducibles not mentioned
in the abductive solution are indifferent to the query, assuming the ICs are satisfied.
Our prototype of tabled abduction TABDUAL, is based on the WFS with abduction [4],
and implemented in XSB Prolog. Note that though WFS is three-valued, the abduction



mechanism in TABDUAL enforces, by design, two-valued abductive solutions; that is,
needed abducibles are assumed either true or false, so as not to contribute with unde-
finedness towards the query.

3 Tabled Abduction in TABDUAL

We start by giving the motivation for the need of tabled abduction, and subsequently
show how tabled abduction is conceptualized and realized in the TABDUAL transforma-
tion.

3.1 Motivation

Example 1. Consider an abductive logic program P0, with a and b abducibles:
q ← a. s← b, q. t← s, q.

Suppose three queries: q, s, and t, are individually launched, in that order. The first
query, q, is satisfied simply by taking [a] as the abductive solution for q, and tabling it.
Executing the second query, s, amounts to satisfying the two subgoals in its body, i.e.
abducing b followed by invoking q. Since q has previously been invoked, we can benefit
from reusing its solution, instead of recomputing, given that the solution was tabled.
That is, query s can be solved by extending the current ongoing abductive context [b]
of subgoal q with the already tabled abductive solution [a] of q, yielding [a, b]. The
final query t can be solved similarly. Invoking the first subgoal s results in the priorly
registered abductive solution [a, b], which becomes the current abductive context of the
second subgoal q. Since [a, b] subsumes the previously obtained (and tabled) abductive
solution [a] of q, we can then safely take [a, b] as the abductive solution to query t. This
example shows how [a], as the abductive solution of the first query q, can be reused
from one abductive context of q (i.e. [b] in the second query, s) to its other context (i.e.
[a, b] in the third query, t). In practice the body of rule q may contain a huge number
of subgoals, causing potentially expensive recomputation of its abductive solutions and
thus such unnecessary recomputation should be avoided.

Tabled abduction in TABDUAL consists of a program transformation of abductive
normal logic programs into tabled logic programs. Abduction is then enacted on the
transformed program. Example 1 indicates two key ingredients of the transformation:

1. abductive context, which relays the ongoing abductive solution from one subgoal
to subsequent subgoals, as well as from the head to the body of a rule, via input and
output contexts, where abducibles can be envisaged as the terminals of parsing,

2. tabled predicates, which table the abductive solutions for predicates defined in the
input program, such that they can be reused from one abductive context to another.

3.2 The Core Transformation

We now discuss the core TABDUAL transformation, through a sequence of examples,
employing the idea of tabling and of reusing abductive solutions, and the dual transfor-
mation to deal with abduction under negative goals. The core transformation results in a
tabled definite logic program, thanks to the dual transformation. A formal specification
of the core transformation is detailed in Appendix A.



3.2.1 Tabling Abductive Solutions
We show in Example 2, how the idea described in Example 1 can be realized by the
program transformation. It illustrates how every rule in P0 is transformed, by introduc-
ing a corresponding tabled predicate with one extra argument for the abductive solution
entry, such that it can facilitate solution reuse from one abductive context to another.

Example 2. We show first how the rule t← s, q in P0 is transformed. It is transformed
into two rules:
tab(E2)← s([ ], E1), q(E1, E2). t(I,O)← tab(E), produce(O, I,E).

Predicate tab(E) is the tabled predicate which is introduced to table one abductive so-
lution for t in its argument E. Its definition, in the rule on the left, follows from the
original definition of t. Two extra arguments, that serve as input and output contexts,
are added to the subgoals s and q in the rule’s body. The left rule expresses that the
tabled abductive solution E of tab is obtained by relaying the ongoing abductive solu-
tion stored in context T from subgoal s to subgoal q in the body, given the empty input
abductive context of s (because there is no abducible by itself in the body of the original
rule of t). The rule on the right shows how the tabled abductive solution in E of tab can
be reused for a given (input) abductive context of t. This rules expresses that the output
abductive solution O of t is obtained from the solution entry E of tab and the given
input context I of t, via the TABDUAL system predicate produce(O, I,E). This system
predicate concerns itself with: whether E is already contained in I and, if not, whether
there are any abducibles from E, consistent with I , that can be added to produce O. If
E is inconsistent with I then the specific entry E cannot be reused with I , produce/3
fails and another entry E is sought. In other words, produce/3 should guarantee that it
produces a consistent output context O from I and E that encompasses both.

The other two rules in P1 are transformed following the same idea. The rule s← b, q
is transformed into:

sab(E)← q([b], E). s(I,O)← sab(E), produce(O, I,E).
where sab(E) is the predicate that tables, in E, the abductive solution of s. Notice
how b, the abducible appearing in the body of the original rule of s, becomes the input
abductive context of q. The same transformation is obtained, even if b comes after q in
the body of the rule s.

Finally, the rule q ← a is transformed into:
qab([a]). q(I,O)← qab(E), produce(O, I,E).

where the original rule of q, which is defined solely by the abducible a, is simply trans-
formed into the tabled fact qab/1.

Example 3. Consider the following program, which contains rules of non-nullary pred-
icate q/1 (also with variables) with a/1 abducible:

q(0). q(s(X))← a(X), q(X).

The transformation results in rules as follows:
qab(0, [ ]). qab(s(X), E)← q(X, [a(X)], E).

q(X, I,O)← qab(X,E), produce(O, I,E).
Notice that the single argument of q/1 is kept in the tabled predicate qab (as its first
argument), and one extra argument is added (as its second argument) for tabling its



abductive solution entry. The transformed rules qab/2 and q/3 are defined following
the same idea described in Example 2.

3.2.2 Abduction under Negative Goals

For abducing under negative goals, the program transformation employs the dual trans-
formation [4], which makes negative goals ‘positive’ literals, thus permitting to avoid
the computation of all abductive solutions of the positive goal argument, and then hav-
ing to negate their disjunction. The dual transformation enables us to obtain one abduc-
tive solution at a time, just as when we treat abduction under positive goals. The dual
transformation defines for each atom A and its set of rules R in a normal program P , a
set of dual rules whose head not A is true if and only ifA is false byR in the employed
semantics of P . Note that, instead of having a negative goal not A as the rules’ head,
we use its corresponding ‘positive’ literal, not A. Example 4 illustrates the main idea
of how the dual transformation is employed in the TABDUAL transformation.

Example 4. Consider program P2, where a is an abducible:
p← a. p← q, not r. r.

– With regard to p, the transformation will create a set of dual rules for pwhich falsify
p with respect to its two rules, i.e. by falsifying both the first rule and the second
rule, expressed below by predicate p∗1 and p∗2, respectively:

not p(T0, T2)← p∗1(T0, T1), p∗2(T1, T2).

In the TABDUAL transformation, this single rule is known as the first layer of the
dual transformation. Note the addition of the input and output abductive context
arguments, T0 and T2, in the head, and similarly in each subgoal of the rule’s body,
where intermediate context T1 relays the ongoing abductive solution from p∗1 to
p∗2.
The second layer contains the definitions of p∗1 and p∗2, where p∗1 and p∗2 are
defined by falsifying the body of p’s first rule and second rule, respectively.
• In case of p∗1: the first rule of p is falsified only by abducing the negation of a.

Therefore, we have:
p∗1(I,O)← not a(I,O).

Notice that the negation of a, i.e. not a, is abduced by invoking the subgoal
not a(I,O). This subgoal is defined via the transformation of abducibles, as
discussed below.

• In case of p∗2: the second rule of p is falsified by alternatively failing one
subgoal in its body at a time, i.e. by negating q or, instead, by negating not r.

p∗2(I,O)← not q(I,O). p∗2(I,O)← r(I,O).

– With regard to q, the dual transformation produces the fact
not q(I, I).

as its dual, because there is no rule for q in P2. Since it is a fact, the content of the
context I is simply relayed from the input to the output context, i.e. having no body,
the output context does not depend on the context of any other goals, but depends
only on its corresponding input context.



– With regard to r, since it is a fact, its dual contains
not r(T0, T1)← r∗1(T0, T1).

but with no definition of r∗1/2. It may equivalently be defined as:

not r( , )← fail

Example 4 shows that the dual rules of nullary predicates are simply defined by
falsifying the bodies of their corresponding positive rules. But a goal of non-nullary
predicates may also fail (or equivalently, its negation succeeds), when its arguments
disagree with the arguments of its rules. For instance, if we have just a fact q(1), then
goal q(0) will fail (or equivalently, goal not q(0) succeeds). That is, besides falsifying
the body of a rule, a dual of a non-nullary predicate can additionally be defined by
disunifying its arguments and the arguments of its corresponding positive rule, as in
Example 5.

Example 5. Consider program P5:

q(0). q(s(X))← a(X).

where a/1 is an abducible. Let us examine the dual transformation of non-nullary pred-
icate q/1.

1. not q(X,T0, T2)← q∗1(X,T0, T1), q∗2(X,T1, T2).
2. q∗1(X, I, I) ← X \= 0.
3. q∗2(X, I, I) ← X \= s( ).
4. q∗2(s(X), I, O) ← not a(X, I,O).

Line 1 shows the first layer of the dual rules for predicate q/1, which is defined as usual,
i.e. q/1 is falsified by falsifying both its first and second rules. Lines 2-4 show how the
second layer of the dual rules can be refined for non-nullary predicates:

– In case of q∗1, the first rule of q/1, which is fact q(0), is falsified by disunifying
q∗1’s argument X with 0 (line 2). Note that, this is the only way to falsify q(0),
since it has no body.

– In case of q∗2, the second rule of q/1 is falsified by disunifying q∗2’s argument X
with the term s( ) (line 3), or alternatively, by instead keeping the head unification
and falsifying its body, i.e. by abducing the negation of a/1 (line 4).

3.2.3 Transforming Abducibles
In Example 4, p∗1(I,O) is defined by abducing not a, achieved by invoking subgoal
not a(I,O). Abduction in TABDUAL is realized by transforming each abducible atom
(and its negation) into a rule, which updates the abductive context with the abducible
atom (or its negation, respectively). Say, abducible a of Example 4 translates to:

a(I,O)← insert(a, I, O).
where insert(A, I,O) is a TABDUAL system predicate that inserts abducible A into
input context I , resulting in output context O. It keeps the consistency of the context,
failing if inserting A results in an inconsistent one. Abducible not a is transformed
similarly, where not a is renamed into not a in the head:

not a(I,O)← insert(not a, I, O).



3.2.4 Transforming Queries

A query to a program, consequently, should be transformed too:

– A positive goal G is simply augmented with the two extra arguments for the input
and output abductive contexts.

– A negative goal not G is made ‘positive’, not G, and added the two extra input and
output context arguments.

Moreover, a query should additionally ensure that all ICs are satisfied. When there
is no IC defined in a program, then, following the dual transformation, fact

not false(I, I).
is added. Otherwise, ICs, which are rules with false in their heads, are transformed just
like any other rules; the transformed rules with the heads false(E) and false(I,O) may
be omitted. Finally, a query should always be conjoined with not false/2 to ensure that
all integrity constraints are satisfied.

Example 6. Query
?- not p.

is first transformed into not p(I,O). Then, to satisfy all ICs, it is conjoined with not false/2,
resulting in complete top goal:

?- not p([ ], T ), not false(T,O).
where O is an abductive solution to the query, given initially an empty input context.
Note, how the abductive solution for not p is further constrained by passing it to the
subsequent subgoal not false for confirmation, via the intermediate context T .

4 Refining the Dual Transformation

Next, we refine the dual transformation in TABDUAL to touch better upon abduction
in programs with variables. The refinement allows further grounding of the dualized
negative subgoals in the dual transformation, and to deal correctly with non-ground
negative goals.

4.1 Grounding Negated Subgoals

Example 7. Consider program P6, with a/1 abducible:

q(1). r(X)← a(X). ← q(X), r(X).



The core TABDUAL transformation results in (notice that the last rule in P6 is an IC):

1. qab(1, [ ]).
2. q(X, I,O) ← qab(X,E), produce(O, I,E).
3. not q(X, I,O) ← q∗1(X, I,O).
4. q∗1(X, I, I) ← X \= 1.

5. rab(X, [a(X)]).
6. r(X, I,O) ← rab(X,E), produce(O, I,E).
7. not r(X, I,O) ← r∗1(X, I,O).
8. r∗1(X, I, I) ← X \= .
9. r∗1(X, I,O) ← not a(X, I,O).

10. not false(I,O) ← false∗1(I,O).
11. false∗1(I,O) ← not q(X, I,O).
12. false∗1(I,O) ← not r(X, I,O).

Consider query q(1), which is transformed into:

?- q(1, [ ], T ), not false(T,O).

Invoking the first subgoal, q(1, [ ], T ), results in T = [ ]. Invoking subsequently the
second subgoal, not false([ ], O), results in the abductive solution of the given query:
O = [not a(X)], obtained via rules 10, 12, 7, and 9. Note that rule 11, an alternative
to false∗1, fails due to uninstantiated X in its subgoal not q(X, I,O), which leads to
failing rules 3 and 4. For the same reason, rule 8, an alternative to r∗1, also fails.

Instead of having [not a(1)] as the abductive solution to the query q(1), we have the
incorrect non-ground abductive solution [not a(X)]. It does not meet our requirement,
in Section 2, that abducibles must be ground on the occasion of their abduction. The
problem can be remedied by instantiating X , in rule 12, thereby eventually grounding
the abducible not a(X) when it is abduced, i.e. the argument X of subgoal not a/3, in
rule 9, becomes instantiated. Introducing the positive subgoal q(X), originating from
the positive rule, before the negated subgoal not r(X, I,O) in the body of rule 12,
helps instantiate X in this case.

This brings us to the first refinement of the dual transformation: in addition to plac-
ing a negated literal, say not p, in the body of the second layer dual rule, all positive
literals that precede literal p, in the body of the corresponding original positive rule, are
also kept in the body of the dual rule. Rule 12 can thus be refined as follows (all other
rules remain the same):

12. false∗1(I,O)← q(X, I, T ), not r(X,T,O).

Notice that, differently from before, the rule is now defined by introducing all positive
literals that appear before r in the original rule; in this case we introduce q/3 before
not r/3. As the result, the argument X in not r/3 is instantiated to 1, due to the in-
vocation of q/3, just like the case in the original rule. It eventually helps ground the
the negated abducible not a(X), when it is abduced, and the correct abductive solution



[not a(1)] to query q(1) is returned. Moreover, this refinement also allows us to deal
with non-ground positive goals. For instance, query q(X) gives the correct abductive
solution as well, i.e. [(not a(1)] for X = 1.

There are some points to remark on regarding this refinement. First, the semantics
of dual rules does not change because the conditions for failure of their positive coun-
terpart rules are that one literal must fail, even if the others succeed. The cases where
the others do not succeed are handled in the other alternatives of dual rules. Second, this
refinement may benefit from the TABDUAL’s tabled predicate, e.g. qab for predicate q,
as it helps avoid redundant derivations of the newly introduced positive literals in dual
rules. Finally, knowledge of shared variables in the body and whether they are local
or not, may help refine the transformation further, to avoid introducing positive literals
that are not contributing to further grounding.

4.2 On Non-ground Negative Goals

Example 8. Consider program P7, with a/1 abducible:

p(1)← a(1). p(2)← a(2).

Query p(X) to program P7 succeeds under TABDUAL, giving two abductive solutions:
[a(1)] and [a(2)] for X = 1 and X = 2, respectively. But query not p(X) does not de-
liver the expected solution. Instead of returning the abductive solution [not a(1), not a(2)]
for any instantiation of X , it returns [not a(1)] for a particular X = 1. In order to find
the culprit, we first look into the definition of not p/3:

1. not p(X, I,O)← p∗1(X, I, T ), p∗2(X,T,O).
2. p∗1(X, I, I) ← X \= 1.
3. p∗1(1, I, O) ← not a(1, I, O).
4. p∗2(X, I, I) ← X \= 2.
5. p∗2(2, I, O) ← not a(2, I, O).

Recall that query not p(X) is transformed into:

?- not p(X, [ ], N), not false(N,O).

When the goal not p(X, [ ], N) is launched, it first invokes p∗1(X, [ ], T ). It succeeds
by the second rule of p∗1, in line 3 (the first rule, in line 2, fails it), with variable
X is instantiated to 1 and T to [not a(1)]. The second subgoal of not p(X, [ ], N) is
subsequently invoked with the same instantiation ofX and T , i.e. p∗2(1, [not a(1)], O),
and it succeeds by the first rule of p∗2, in line 4, and results in N = [not a(1)]. Since
there is no IC in P6, the abductive solution [not a(1)] is just relayed from N to O, due
to the fact not false(I, I) in the transformed program (cf. Section 3.2.4), thus returning
the abductive solution [not a(1)] with X = 1 for the given query.

The culprit is that both subgoals of not p/3, i.e. p∗1/3 and p∗2/3, share the argu-
ment X of p/1. This should not be the case, as p∗1/3 and p∗2/3 are derived from two
different rules of p/1, hence failing p should be achieved by invoking p∗1 and p∗2 with
an independent argument X . In other words, different variants of the calling argument



X should be used in p∗1/3 and p∗2/3, which leads us to the second refinement of the
dual transformation, as shown for rule not p/3 (line 1) below:

1. not p(X,T0, T2)← copy term([X], [X1]), p∗1(X1, T0, T1),
copy term([X], [X2]), p∗2(X2, T1, T2).

where the Prolog built-in predicate copy term/2 provides a variant of the list of argu-
ments; in this example, we simply have only one argument, i.e. [X].

With this refinement, p∗1/3 and p∗2/3 are invoked using variant independent calling
arguments:X1 andX2, respectively. Now, the same query first invokes p∗1(X1, [ ], T1),
which results in X1 = 1 and T1 = [not a(1)] (by the second rule of p∗1), and subse-
quently invokes p∗2(X2, [not a(1)], T2), resulting inX2 = 2 and T2 = [not a(1), not a(2)]
(by the second rule of p∗2). It eventually ends up with the expected abductive solution:
[not a(1), not a(2)] for any instantiation of X , i.e. X remains unbound. Indeed, the re-
finement ensures, as this example shows, that p(X) fails for every X , and its negation,
not p(X), hence succeeds. The dual rules produced for the negation are tailored to be,
by definition, an ‘if and only if’ with regard to their corresponding positive rules. If we
added the fact p(Y ) to P7, then the same query not p(X) would not succeed because
now we have the first layer dual rule:

not p(X,T0, T3)← copy term([X], [X1]), p∗1(X1, T0, T1),
copy term([X], [X2]), p∗2(X2, T1, T2),
copy term([X], [X3]), p∗3(X3, T2, T3).

and an additional second layer dual rule p∗3(X, , ) ← X 6= that always fails; its
abductive contexts are thus irrelevant.

5 Programs with Loops in TABDUAL

The tabling mechanism in XSB supports the Well-Founded Semantics, therefore it al-
lows dealing with loops in the program, ensuring termination of looping queries. In
TABDUAL, XSB’s tabling mechanism is employed as much as possible to deal with
loops. Nevertheless, the presence of tabled abduction requires some varieties of loops
to be handled carefully in the transformation, as we detail here. Additional examples,
besides the ones below, are to be found in Appendix C.

5.1 Direct Positive Loops

Example 9. Consider program P8 which involves a direct positive loop between predi-
cates:

p← q. q ← p.

The tabling mechanism in XSB would detect direct positive loops and fail predicates
involved in such loops. The TABDUAL transformation may simply benefit from it. For
P8, query p fails, due to the direct positive loop between tabled predicates pab and qab:

pab(E)← q([ ], E). p(I,O)← pab(E), produce(O, I,E).



qab(E)← p([ ], E). q(I,O)← qab(E), produce(O, I,E).
On the other hand, query not p should succeed with the abductive solution: [ ]. But,

instead of succeeding, this query will loop indefinitely! Recall that the call to query
not p, after the transformation, becomes not p([ ], T ), not false(T,O). The indefinite
loop occurs in not p([ ], T ) because of the mutual dependency between not p and not q
through p∗1 and q∗1:

not p(I,O)← p∗1(I,O). p∗1(I,O)← not q(I,O).
not q(I,O)← q∗1(I,O). q∗1(I,O)← not p(I,O).

The dependency creates a positive loop on negative non-tabled predicates, and such
loops should succeed, precisely because the corresponding source program’s loop is a
direct one on positive literals, which hence must fail. We now turn to how to deal with
such loops in TABDUAL.

5.2 Positive Loops in (Dualized) Negation

Indeed, since any source program’s direct positive loops must fail, the loops between
their corresponding transformed negations, i.e. positive loops in dualized negation (in-
troduced via the dual transformation), must succeed [4]. For instance, whereas r ← r
fails query r, perforce not r ← not r succeeds query not r.

We detect positive loops in (dualized) negation, PLoN for short, by tracking the
ancestors of negative subgoals, whenever they are called from other negative subgoals.
In the transformation, a list of ancestors, dubbed the close-world-assumption (CWA) list
is maintained. It contains only negative literals and serves as another extra argument in
the first and second layers of dual rules. Indeed, this ancestor list implements the co-
unfounded set of literals, defined in Definition 3.5 of [4], in order to deal with PLoN.

The refined TABDUAL transformation, with PLoN detection, of P8 results in the fol-
lowing first and second layers of dual rules (other transformed rules remain the same):

1. not p(I, I, C) ← member(not p, C), !.
2. not p(I,O,C)← p∗1(I,O,C).
3. p∗1(I,O,C) ← not q(I,O, [not p | C]).

4. not q(I, I, C) ← member(not q, C), !.
5. not q(I,O,C) ← q∗1(I,O,C).
6. q∗1(I,O,C) ← not p(I,O, [not q | C]).

The CWA list C is only updated in the second layer of dual rules (cf. rules p∗1 and
q∗1 in line 3 and 6, respectively), i.e. by adding the negative literal corresponding to
the dual rule into list C. For example, in case of p∗1 (line 3), not p is added into the
CWA list C. Note that, since the CWA list is intended to detect PLoN, the list is reset
in positive subgoals occurring in the body of a dual rule. This guarantees that there are
no interposing positive calls between the negative calls and their ancestor, which would
break such loops.

The updated CWA list C is then used to detect PLoN via an additional rule of not p
(line 1, and similarly in line 4, for not q). The idea is to test, whether we are returning
to the same call of not p, which is simply realized by a membership testing. If that is



the case, the output context is set equal to the input context, and PLoN is anticipated by
immediately succeeding not p with the extra cut to prevent the call to the next not p
rule (which would otherwise lead to looping).

With this refinement, query not p is now transformed into:
?- not p([ ], T, [ ]), not false(T,O).

i.e. it is initially called with an empty CWA list.

5.3 Negative Loops over Negation

The other type of loops that XSB’s tabling mechanism already properly deals with, is
the negative loops over negation (NLoN).

Example 10. Consider program P9:

p← q. q ← not p.

In XSB, the tabling mechanism makes p and q (also their default negations) undefined.
But under TABDUAL, query p (also q) will fail, instead of being undefined. It fails,
because the tabled predicate p ab is involved in a direct positive loop as shown in the
transformation below:

p(I,O) ← pab(E), produce(O, I,E).
pab(E) ← q([ ], E).
q(I,O) ← qab(E), produce(O, I,E).
qab(E) ← not p([ ], E).

not p(I,O)← p∗1(I,O).
p∗1(I,O) ← not q(I,O).
not q(I,O) ← q∗1(I,O).
q∗1(I,O) ← p(I,O).

More precisely, whereas in the original program P9, q is defined by the negative subgoal
not p, in the resulting transformation q is defined by the positive subgoal not p via the
tabled predicate qab.

One way to resolve the problem is to wrap the positive subgoal not p in the body
of the rule qab with the tabled negation predicate (tnot/1 in XSB) twice: on the one
hand it preserves the semantics of the rule (keeping the truth value by applying tnot
twice), and on the other hand introducing tnot creates NLoN (instead of direct positive
loops). The definition of qab is thus refined as follows (other transformed rules remain
the same):

1. qab(E) ← not ptu([ ], E).

2. not ptu(I, I) ← call tv(tnot over(not p(I)), undefined).
3. not ptu(I,O)← call tv(tnot over(not p(I)), true), p∗1(I,O).

4. not p(I) ← p∗1(I, ).



Here, tnot over(not p(I)) is the double-wrapping of not p with tnot. It is realized via
the intermediate tabled predicate over/1, defined as:

over(G)← tnot(G).
The double-wrapping is called through a new auxiliary predicate not ptu/2. The XSB
system predicate call tv/2 calls the double-wrapping and is used to distinguish the two
cases (lines 2 and 3): whether NLoN exists or not. In the former case, the returned truth
value is undefined; therefore not ptu itself is undefined and its input context is simply
relayed to the output context. In the latter case, where the returned truth value is true,
the output context O of not ptu is obtained from the input context I as usual, i.e. by
invoking p∗1(I,O).

Notice that, instead of using the existing not p(I,O) in the double-wrapping, we
use an auxiliary predicate not p(I) to avoid floundering in the call to over/1, due to
the uninstantiated output context O. For this reason, the newly introduced not p/1 is
thus free from the output context, but otherwise defined exactly as not p/2.

6 Implementation Aspects of TABDUAL

Thus far, we have conceptualized tabled abduction using a program transformation, and
refined it to touch better upon programs with variables and with varieties of loops. We
discuss here several aspects pertaining to the implementation of the TABDUAL transfor-
mation, which are introduced to foster its more practical use.

6.1 Abductive and Non-abductive Program Parts

We start by specifying TABDUAL’s input programs and its basic constructs. The input
program of TABDUAL, as shown in Example 11, may consist of two parts: abductive
and non-abductive parts. Abducibles need to be declared, in the abductive part, using
predicate abds/1, whose sole argument is the list of abducibles and their arities. The
non-abductive part is distinguished from the abductive part by the beginProlog and
endProlog identifiers. Any program between these identifiers will not be transformed,
i.e. it is treated as a usual Prolog program. Access to the program in the non-abductive
part is established using the TABDUAL system predicate prolog/1. It executes Prolog
calls to goals in its argument. These goals are not transformed and may be defined in
the non-abductive part, or alternatively, defined by Prolog’s built-in predicates.

Example 11. An example of input programs of TABDUAL:

abds([a/1]).
s(X) ← prolog(atom(X)), a(X).
s(X) ← prolog(nat(X)), a(X).

beginProlog.
nat(0).
nat(s(X)) ← nat(X).

endProlog.



6.2 Transforming Predicates with Facts Only

TABDUAL transforms predicates that comprise of just facts as any other rules in the pro-
gram (cf. fact q(1) and its transformed rules, in Example 7). This is clearly superfluous
as facts do not induce any abduction, and the transformation would be unnecessarily
heavy for programs with large factual data, which is often the case in many real world
problems.

A predicate, say q/1, comprised of just facts, can be much more simply transformed.
The transformed rules qab/2 and q/3 can be substituted by a single rule:

q(X, I, I)← q(X).
and their negations, rather than using dual rules, can be transformed to a single rule:

not q(X, I, I)← not q(X).
independently of the number of facts q/1 are there in the program. Note that the input
and output context arguments are added in the head, and the input context is just passed
intact to the output context. Both rules simply execute the fact calls.

Facts of predicate q/1 can thus be defined in the non-abductive part of the input
program. For instance, if a program contains facts q(1), q(2), and q(3), they are listed
as:

beginProlog. q(1). q(2). q(3). endProlog.
Though this new transformation for facts seems trivial, it considerably improves the

performance, in particular if we deal with abductive logic programs having large factual
data. In this case, not just the whole TABDUAL transformation time and space can be
reduced, but also the abduction time itself.

6.3 Dual Transformation by-Need

TABDUAL conceptually performs a complete dual transformation, i.e. it produces all
(first and second layer) dual rules, in advance and as an integral part of the transforma-
tion, for every defined atom in an input program. This should be avoided in practice,
as potentially large sets of dual rules are created in the transformation, though only a
few of them might be invoked during abduction. As real world problems typically con-
sist of a huge number of rules, such a complete dual transformation may suffer from
a heavy computational load, and therefore hinders the subsequent abduction phase to
take place, not to mention the compile time, and space requirements, of the large thus
produced transformed program.

One solution to this problem is to compute dual rules by-need. That is, dual rules are
created during abduction, based on the need of the on-going invoked goals. The trans-
formed program still contains the single first layer rule of the dual transformation, but
its second layer is defined using a newly introduced TABDUAL system predicate, which
will be interpreted by the TABDUAL system on-the-fly, during abduction, to produce the
concrete rule definitions of the second layer.

Example 12. Recall Example 4. The dual transformation by-need contains the same
first layer: not p(T0, T2)← p∗1(T0, T1), p∗2(T1, T2). But the second now contains, for
each i ∈ {1, 2}:

p∗i(I,O)← dual(i, p, I, O).



Predicate dual/4 is a TABDUAL system predicate, which is introduced to facilitate the
dual transformation by-need:

– It constructs generic dual rules, i.e. dual rules without any context attached to them,
by-need, from the i-th rule of p/1, during abduction,

– It instantiates the generic dual rules with the provided arguments and input context,
and

– It subsequently invokes the instantiated dual rules.

Constructing dual rules on-the-fly clearly introduces some extra cost during abduc-
tion. Such extra cost can be reduced by memoizing the already constructed generic dual
rules. Therefore, when such dual rules are later needed, they are available for reuse
and their recomputation avoided. We examine two approaches for memoizing generic
dual rules. They influence how generic dual rules are constructed and provide distinct
definitions of the system predicate dual/4.

6.3.1 Tabling Generic Dual Rules
The straightforward choice for memoizing generic dual rules is to use tabling. The
system predicate dual/4 is defined as follows (abstracting away irrelevant details):

dual(N,P, I,O)← dual rule(N,P,Dual), call dual(P, I,O,Dual).

where dual rule/3 is a tabled predicate that constructs a generic dual rule Dual from
the N -th rule of atom P , and call dual/4 instantiates Dual with the provided argu-
ments of P and the input context I . It also invokes the instantiated dual rule to produce
the abductive solution in O.

Though predicate dual/4 helps realize the construction of dual rules by-need, i.e.
only when a particular p∗i is invoked, this approach results in the eager construction
of all dual rules for the i-th rule of predicate p, because of tabling (assuming XSB’s
local table scheduling is in place, rather than its alternative, in general less efficient,
batched scheduling). For instance, in Example 4, when p∗2(I,O) is invoked, which
subsequently invokes dual rule(2, p,Dual), all two alternatives of dual rules from the
second rule of p, i.e. p∗2(I,O) ← not q(I,O) and p∗2(I,O) ← r(I,O) are con-
structed before call dual/4 is invoked for each of them. This is a bit against the spirit
of a full by-need dual transformation, where only one alternative dual rule is constructed
at a time, just before it is invoked. That is, generic dual rules could be constructed lazily.

As mentioned earlier, the reason behind this eager by-need construction is the local
table scheduling strategy, that is employed by default in XSB. This scheduling strategy
may not return any answers out of a strongly connected component (SCC) in the subgoal
dependency graph, until that SCC is completely evaluated [41].

Alternatively, batched scheduling is also implemented in XSB. It allows returning
answers outside of a maximal SCC as they are derived: in terms of the dual rules con-
struction by-need, this means dual rule/3 would construct only one generic dual rule at
a time before it is instantiated and invoked. Since the choice between the two scheduling
strategies can only be made for the whole XSB installation, and is not (as yet) predicate
switchable, we pursue another approach to implement lazy dual rule construction.



6.3.2 Storing Generic Dual Rules in a Trie

XSB offers a mechanism for facts to be directly stored and manipulated in tries. It
provides predicates for inserting terms into a trie, unifying a term with terms in a
trie, and other trie manipulation predicates, both in the low-level and high-level API.
Generic dual rules can be represented as facts; thus once they are constructed, they
can be memoized in a trie and later (a copy) retrieved and reused. A fact of the form
d(N,P,Dual, Pos) is used to represent a generic dual rule Dual from the N -th rule
of P with the additional tracking information Pos, which informs the position of the
literal used in constructing each dual rule. In the current TABDUAL implementation, we
opt for the low-level API trie manipulation predicates, as they can be faster than the
higher-level API.

Using this approach, the system predicate dual/4 is defined as follows (abstracting
away irrelevant details):

1. dual(N,P, I,O) ← trie property(T, alias(dual)), dual(T,N, P, I,O).

2. dual(T,N, P, I,O)← trie interned(d(N,P,Dual, ), T ),
call dual(P, I,O,Dual).

3. dual(T,N, P, I,O)← current pos(T,N, P, Pos),
dualize(Pos,Dual,NextPos),
store dual(T,N, P,Dual,NextPos),
call dual(P, I,O,Dual).

Assuming that a trie T with alias dual has been created, predicate dual/4 (line 1) is
defined by an auxiliary predicate dual/5 with an access to the trie T , the access being
provided by the trie manipulation predicate trie property/2. Lines 2 and 3 give the
definition of dual/5. In the first definition (line 2), an attempt is made to reuse generic
dual rules, which are stored already as facts d/4 in trie T . This is accomplished by
unifying terms in T with d(N,P,Dual, ), one at a time through backtracking, via the
trie manipulation predicate trie interned/2. Predicate call dual/4 then does the job
as before. The second definition (line 3) constructs generic dual rules lazily. It finds,
via current pos/4, the current position Pos of the literal from the N -th rule of P ,
which can be obtained from the last argument of fact d(N,P,Dual, Pos) stored in
trie T . Using this Pos information, a new generic dual rule Dual is constructed by
means of dualize/3. The latter predicate additionally updates the position of the lit-
eral, NextPos, for the next dualization. The dual rule Dual, together with the track-
ing information, is then memoized as a fact d(N,P,Dual,NextPos) in trie T , via
store dual/5. Finally, the just constructed dual Dual is instantiated and invoked using
call dual/4.

Whereas the first approach constructs generic dual rules by-need eagerly, the second
one does it lazily. But this requires memoizing dual rules to be carried out explicitly,
and the help of additional tracking information to pick up on dual rule generation at
the point where it was last left. This approach affords us a simulation of batched table
scheduling for dual/5, within the default local table scheduling.



6.4 Accessing Ongoing Abductive Solutions

TABDUAL encapsulates the ongoing abductive solution in an abductive context, which
is relayed from one subgoal to another. In many problems, it is often the case that one
needs to access the ongoing abductive solution in order to manipulate it dynamically,
e.g. to filter abductive solutions using preferences, or eliminate so-called nogood combi-
nations (those known to violate constraints). But since it is encapsulated in an abductive
context, and such a context is only introduced in the transformed program, the only way
to accomplish it would be to modify directly the transformed program rather than the
original problem representation. This is inconvenient and clearly unpractical when we
deal with real world problems with a huge number of rules.

We overcome this issue by introducing the TABDUAL system predicate abdQ(P )
that allows to access the ongoing abductive solution and to manipulate it, while also
allowing to abduce further, using the rules of P . This system predicate is transformed
by unwrapping it and adding an extra argument to P (besides the usual input and output
context arguments) for the ongoing abductive solution.

Example 13. Consider a fragment of an input program:
q ← r, abdQ(s). s(X)← v(X).

Notice that, predicate s wrapped by abdQ/1 has no argument; more precisely, one less
argument than its definition, i.e. rule s on the right. The extra argument of rule s is
indeed dedicated for the ongoing abductive solution. The tabled predicate qab in the
transformed program is defined as follows:

qab(E)← r([ ], T ), s(T, T,E).

That is, s/3 now gets access to the ongoing abductive solution T from r/2, via its
additional first argument. It still has the usual input and output contexts, T and E,
respectively, in its second and third arguments. It indicates that, while manipulating
the ongoing abduction solution, abduction may take place in s. Rule s/1 transforms as
usual.

The predicate abdQ/1 permits modular mixes of abductive and non-abductive pro-
gram parts. For instance, the rule of s/1 in P3 may be defined by some predicates from
the non-abductive program part, e.g. the rule of s/1 can be defined instead as:

s(X)← prolog(preferred(X)), a(X).

where a/1 is an abducible and preferred(X) defines, in the non-abductive program part,
some preference rule on a given solution X .

6.5 Other Implementation Aspects

Various other aspects have also been considered in implementing TABDUAL:

– XSB’s built-in predicate numbervars/1 is used to help writing variables, e.g. ar-
guments of a predicate, in transformed programs. This is to avoid the problem of
mixing of variables writing due to stack expansion (or garbage collection), a bug
that occurs in most Prolog sytems [42]. This problem particularly arises when we
deal with rather big input programs.



– The list of abductive solutions is represented using two separate lists: the lists of
positive and negative parts. This enables faster consistency checking of abductive
solutions, in predicates insert/3 and produce/3. That is, to check consistency
with respect to a literal, only the list of literals with different polarity is inspected;
there is no need to traverse all literals. Moreover, both lists are ordered, in order to
improve efficiency.

– The second layer dual rules are defined by giving priority to abducibles. For in-
stance, given rule p ← q, a (where a is an abducible), the first rule for p∗1 will
be p∗1 ← not a, instead of p∗1 ← not q (even though, in the body of the cor-
responding positive rule, a comes later than q). In this way, it allows obtaining
abductive solutions to negative goals earlier: not a is returned first before not q is
invoked (the latter could involve a deep derivation before it succesfully abduces a
solution). Also, since the abducible will be required anyway, giving it priority may
constrain earlier any solutions. Of course, care has to be taken when we deal with
rules having variables, in particular concerning grounding issues (cf. Section 4.1).
Knowledge of shared variables in the body, and whether they are local or not, may
help in this case. Furthermore, the use of a domain predicate for abducibles may
come in handy.

– When a program contains NLoN, the dual rules of some predicates are also tabled.
These are the predicates that appear as negative subgoals in the bodies of rules.
Recall the definition of qab, in Section 5.3, where rules not ptu are introduced for
the negative goal not p that appears in the body of rule q. Predicate not ptu is in
turn defined by not p/1; the latter predicate is defined by invoking the dual rules of
p: in that example, p∗1/2 (line 4). By tabling p∗1/2, its recomputation, when it is
subsequently invoked as the last subgoal of the not ptu’s second rule (line 3), can
be avoided.

7 Evaluation of TABDUAL

We evaluate TABDUAL from various objectives. As tabling abductive solutions is the
main feature of TABDUAL, our first evaluation aims at evaluating its benefit, by employ-
ing TABDUAL in an example of declarative debugging. Second, we study the relative
worth of the dual transformation by-need, both eagerly and lazily, in comparison with
the one without it. Third, we touch upon the evaluation of tabling nogoods of subprob-
lems in abduction. Fourth, we evaluate TABDUAL in dealing with all varieties of loops
discussed in Section 5. Finally, we show how TABDUAL can be exploited in decision
making and systems biology.

For the purpose of the evaluation, we consider five distinct TABDUAL variants (of
the same underlying implementation), as shown in Table 1; they are characterized by
the features of evaluation interest. Notice that TABDUAL+lazy-tab is the sole variant
that does not exercise tabled abduction. It is accomplished by disabling, in the transfor-
mation, the table declarations of abductive predicates pab, for every predicate p.

Next, we detail and discuss the result of each evaluation. The experiments were
run under XSB-Prolog 3.3.7 on a 2.26 GHz Intel Core 2 Duo with 2 GB RAM. The
time indicated in all results refers to the CPU time (as an average of several runs) to
aggregate all abductive solutions, unless otherwise stated.



Table 1. Five TABDUAL Variants.

Variants Tabling Dual Transformationa Loops Handlingb

Abd. Solutions
TABDUAL-need 3 complete 7

TABDUAL+eager 3 by-need (eager) 7

TABDUAL+lazy 3 by-need (lazy) 7

TABDUAL+lazy-tab 7 by-need (lazy) 7

TABDUAL∞+lazy 3 by-need (lazy) 3

a All variants implement the refinements discussed in Section 4.
b It concerns all varieties of loops discussed in Section 5.

7.1 Evaluation of Tabling Abductive Solutions

The first evaluation aims at ascertaining the relative benefit of TABDUAL’s main feature,
i.e. tabling abductive solutions. We employ an example from declarative debugging (cf.
Section 8.1) as the benchmark for this evaluation. It takes the following program to
debug, where the size n > 1 of the program can easily be customized:

q0(0, 1). q0(X, 0).
q1(1). q1(X)← q0(X,X).
qn(n). qn(X)← qn−1(X).

In order to evaluate tabling abductive solutions, we consider the case of debugging
missing solutions. More precisely, TABDUAL is employed to debug the program for
its missing solutions, i.e. missing qm(1001), for various values of 100 ≤ m ≤ 1000,
which is expressed by adding ICs← not qm(1001) to the program. For this evaluation,
we focus on two variants: TABDUAL+lazy and TABDUAL+lazy-tab, i.e. comparing two
variants, with and without tabling abductive solutions.

Figure 1 shows the abduction time of both TABDUAL variants, where the size of the
program n = 1000, and different values of m in the IC:← not qm(1001), 100 ≤ m ≤
1000, are evaluated consecutively. The result reveals that, with some little cost of tabling
abductive solutions in earlier values of m (i.e. m ≤ 300), TABDUAL+lazy consistently
outperforms TABDUAL+lazy-tab in performance. Tabling pays off for subsequent values
of m in TABDUAL+lazy, as greater m may reuse tabled abductive solutions of smaller
m, due to the consecutive evaluation of ICs. Moreover, TABDUAL+lazy scales better
than TABDUAL+lazy-tab, i.e. as the values of m grows, its abduction time increases
slower than its counterpart. We may observe, that its abduction time tends to grow
linearly, whereas the latter variant exponentially.

7.2 Evaluation of The Dual Transformation Variants

For this evaluation, we resort to the same example of declarative debugging used in the
evaluation of tabling abductive solutions (cf. Section 7.1):

q0(0, 1). q0(X, 0).
q1(1). q1(X)← q0(X,X).
qn(n). qn(X)← qn−1(X).
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Fig. 1. The abduction time for debugging missing solutions qm(1001), for 100 ≤ m ≤ 1000,
and with the program size n = 1000.

But instead of debugging the program for missing solutions, we consider the case of
incorrect solutions. That is, we look for the causes of incorrect qm(0), for various values
of 100 ≤ m ≤ 1000, expressed by adding ICs← qm(0) to the program. Since our aim
is particularly to evaluate the relative worth of the dual transformation by-need, we fo-
cus on three variants: TABDUAL-need, TABDUAL+eager, and TABDUAL+lazy. We eval-
uate the benchmark for the program size n = 1000, i.e. debugging a program with 2002
rules. After applying the declarative debugging transformation (of incorrect solutions,
cf. Section 8.1), which results in an abductive logic program, we apply the TABDUAL
transformation. It takes 1.1636 seconds for the TABDUAL variants that employ the dual
transformation by-need (either eagerly or lazily), whereas TABDUAL-need takes 1.6737
seconds. TABDUAL+eager and TABDUAL+lazy clearly require less transformation time
than TABDUAL-need, since they do not produce complete dual rules in advance as the
latter variant does. Take an example q2, whose rules in the abductive program (as the
result of the declarative debugging transformation, cf. Section 8.1) are as follows:

q2(2) ← not incorrect(5, [2]).
q2(X)← not incorrect(6, [X]), q1(X).

The second layer dual rules produced, in advance, by TABDUAL-need are as follows
(apart from those dual rules that are defined by disunifying arguments):

q∗12 (2, I, O) ← incorrect(5, [2], I, O).
q∗22 (X, I,O)← incorrect(6, [X], I, O).
q∗22 (X, I,O)← not q1(X, I,O).



whereas TABDUAL+eager and TABDUAL+lazy only produce their skeleton, which en-
genders the dual transformation by-need during abduction (cf. Example 12):

q∗12 (2, I, O) ← dual(1, q2(2), I, O).
q∗22 (X, I,O)← dual(2, q2(X), I, O).

That is, apart from those dual rules which are defined by disunifying arguments,
TABDUAL-need creates 3002 second layer dual rules during the transformation, whereas
TABDUAL+eager and TABDUAL+lazy creates only 2002 second layer dual rules. And
during abduction, the latter two variants construct only, by need, 60% of the complete
second layer dual rules produced by the other variant: with respect to the ICs← qm(0),
for some m, there is no need to consider q∗12 (2, I, O) ← incorrect(5, [2], I, O), since
it fails and q∗12 /3 indeed succeeds by the other dual rule which disunifies arguments,
i.e. X 6= 2 (where X is instantiated by 0, due to the ICs).

Figure 2 shows how the dual transformation by-need influences the abduction time,
where different values of m in the IC: ← qm(0) are evaluated consecutively, 100 ≤
m ≤ 1000; in this way, greater m may reuse generic dual rules constructed earlier by
smaller m. We may observe that TABDUAL-need is faster than the two variants with the
dual transformation by-need. This is expected, due to the overhead incurred for comput-
ing dual rules on-the-fly, by need, during abduction. On the other hand, the overhead is
compensated for by the significantly less transformation time: the total (transformation
plus abduction) time of TABDUAL-need is 1.9289 seconds, whereas TABDUAL+eager
and TABDUAL+lazy are 1.5207 and 1.6203 seconds, respectively.
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Fig. 2. The abduction time for debugging incorrect solutions qm(0), for 100 ≤ m ≤ 1000, and
with the program size n = 1000.



In this scenario, where all abductive solutions are aggregated, TABDUAL+lazy is
slower than TABDUAL+eager; the culprit could be the extra maintenance of the tracking
information needed for the explicit memoization. It may as well explain that, as its
consequence, the time gap between TABDUAL+lazy and TABDUAL+eager is wider asm
grows, i.e. more dual rules are stored in the trie. Nevertheless, TABDUAL+lazy returns
the first abductive solution much faster than TABDUAL+eager, e.g. at m = 1000 the
lazy one needs 0.0003 seconds, whereas the eager one 0.0146 seconds. Aggregating all
solutions may not be a realistic scenario in abduction as one cannot wait indefinitely for
all solutions, whose number might even be infinite. Instead, one chooses a solution that
satisfices so far, and may continue searching for more, if needed. In that case, it seems
reasonable that the lazy dual rules computation may be competitive with the eager one.
Nevertheless, the two approaches may become options for TABDUAL customization.

7.3 Evaluation of Tabling Nogoods of Subproblems

The technique of recording nogoods of subproblems, i.e. inconsistent solutions of sub-
problems that cannot be extended to derive any solution of the given problem, has been
employed in diverse fields, such as truth maintenance systems [8, 11], constraint satis-
faction problems [40], SAT solvers [25], and recently in answer set solvers [16], to help
prune search space.

We employ TABDUAL and show that tabling abductive solutions can be appropriate
for tabling nogoods of subproblems. For this purpose, we consider the well-known N -
queens problem, where abduction is used to find safe board configurations ofN queens.
The problem is represented in TABDUAL as follows:

q(0, N).
q(M,N)←M > 0, q(M − 1, N), d(Y ), pos(M,Y ), abdQ(not conflict).

conflict(BoardConf)← prolog(conflictual(BoardConf)).

and the query is q(N,N) for N queens. Here, pos/2 is the abducible representing the
position of a queen, and d/1 is a column generator predicate, available as facts d(i) for
1 ≤ i ≤ N . Predicate conflictual/1 is defined in a non-abductive program module, to
check whether the ongoing board configuration BoardConf of queens is conflictual.
By scaling up the problem, i.e. increasing the value of N , we aim at evaluating the
scalability of TABDUAL, concentrating on tabling nogoods of subproblems (essentially,
tabling nogoods for use by ongoing abductive solutions); in this case, it means tabling
conflictual configurations of queens.

Since this benchmark is used to evaluate the benefit of tabling nogoods of subprob-
lems (as abductive solutions), and not the benefit of the dual by-need improvement,
we focus only on two TABDUAL variants: one with tabling feature, represented by
TABDUAL+lazy, and the other without it, i.e. TABDUAL+lazy-tab. The transformation
time of the problem representation is similar for both variants, i.e. around 0.003 sec-
onds. Figure 3 shows abduction time for N queens, 4 ≤ N ≤ 11. The reason that
TABDUAL+lazy performs worse than TABDUAL+lazy-tab is that the conflict constraints



in the N -queens problem are quite simple, i.e. consist of only column and diagonal
checking. It turns out that tabling such simple conflicts does not pay off, that the cost
of tabling overreaches the cost of Prolog recomputation. But what if we increase the
complexity of the constraints, e.g. adding more queen’s attributes (colors, shapes, etc.)
to further constrain its safe positioning?

4 5 6 7 8 9 10 11
Number of Queens (N)

0

5

10

15

20

Ti
m

e 
(s

ec
.)

TABDUAL+lazy
TABDUAL+lazy-tab

Abduction Time N-queens

Fig. 3. The abduction time of different N queens.

Figure 4 shows abduction time for 11 queens with increasing complexity of the con-
flict constraints. To simulate different complexity, the conflict constraints are repeated
m number of times, where m varies from 1 to 400. It shows that TABDUAL+lazy’s per-
formance is remedied and, benefitting from tabling the ongoing conflict configurations,
it consistently surpasses the performance of TABDUAL+lazy-tab (with increasing im-
provement as m increases, up to 15% for m = 400). That is, it is scale consistent with
respect to the complexity of the constraints.

7.4 Evaluation of Programs with Loops

We also evaluate TABDUAL, in this case its variant TABDUAL∞+lazy with loops han-
dling, to assess the effectiveness of our approach on dealing with programs having loops
in the presence of tabled abduction, as detailed in Section 5. For that purpose, we em-
ploy a set of ground programs with various combination of loops, many of which cover
difficult known cases of such programs. The test-suite has previously been used in eval-
uating ABDUAL [4]. We provide a comparison of the results returned by both systems,
focusing particularly on those that differ.
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Consider the following six ground programs from the test-suite:

p0 ← q0. p3 ← q3. p4 ← q4.
p0 ← a. q3 ← not r3. q4 ← p4.
q0 ← p0. r3 ← p3. q4 ← not a, not b.
q0 ← b.

p8 ← not q8, a. p11 ← not q11, a.
q8 ← not p8. q11 ← p11, not a.
q8 ← b.

where a and b are abducibles. Table 2 lists the answers of the given queries to the
corresponding programs, returned by TABDUAL and ABDUAL.

Table 2. Comparison of results for programs with loops: TABDUAL vs. ABDUAL.

Queries TABDUAL ABDUAL

not p0 [not a, not b] [not a, not b], [not a]
p3 [ ] undefined [ ]

not p3 [ ] undefined [ ]
not p4 [a], [b] [a], [b], [a, b]
q8 [ ], [not a], [b] [not a], [b]

not q11 [a], [not a] [ ], [a], [not a]

TABDUAL provides more correct and complete results with respect to these pro-
grams, as detailed below:



– For query not p0, [not a, not b] should be the only solution, because not p0 suc-
ceeds by abducing not a and failing q0. To fail q0, not b has to be abduced and p0
has to fail. Here, there is a positive loop on negation between not p0 and not q0, so
the query succeeds and gives the solution [not a, not b] as the only solution.

– For queries p3 and not p3, unlike ABDUAL, TABDUAL returns undefined (and ab-
duces nothing) as expected, due to the negative loops over negation.

– Query not p4 shows that TABDUAL does less abduction than ABDUAL, by abducing
a or b only; not both.

– For query q8, TABDUAL has an additional solution [ ], i.e. nothing is abduced, mak-
ing particularly a false and consequently p8 false (or, not p8 true). Thus, query q8
is true (by its first rule) under this solution, which is missing in ABDUAL.

– For query not q11, the first solution is obtained by abducing a to fail q11. Another
way to fail q11 is to fail p11, which gives another solution, by abducing not a. These
are the only two abductive solutions which are returned by TABDUAL and follows
correctly the definition of abductive solutions. There is no direct positive loop in-
volving q11 in the program, hence not q11 will never succeed with [ ] abductive
solution, as returned by ABDUAL.

In addition to ground programs, we also evaluate TABDUAL on non-ground pro-
grams, i.e. programs having variables (with or without loops), which is not afforded by
ABDUAL. The latter system does not allow rules having variables, i.e. rules with vari-
ables in a program have first to be ground with respect to the Herbrand universe (like in
answer set programming systems). The complete test-suite and the evaluations results
are detailed in Appendix C.

8 Applications of TABDUAL

We explore some applications of abduction, where TABDUAL can particularly be ap-
plied. We revisit declarative debugging and show that it can be viewed as abduction;
an example of which is used in TABDUAL’s evaluations (cf. Appendix 7.1 and 7.2).
We also look into the application of TABDUAL in decision making under hypothetical
reasoning, and into a medical case.

8.1 Declarative Debugging as Abduction

Declarative debugging of normal logic programs has been characterized before as belief
revision [26, 27]. We recall the two cases of declarative debugging considered there,
those of incorrect solutions and of missing solutions, and show that they can be viewed
and implemented as abduction. We start by considering these two cases for definite
logic programs, and next for normal logic programs.

8.1.1 Debugging of Definite Logic Programs
Example 14. Take a buggy program P10 [26]:

a(1). a(X)← b(X), c(Y, Y ).
b(2). b(3). c(1, X). c(2, 2).



Incorrect Solutions Suppose that a(3) is an incorrect solution. To debug its cause,
the program is first changed using the simple transformation introduced in [27], i.e. by
adding default literal not incorrect(i, [X1, . . . , Xn]) to the body of each i-th rule of
P10, to defeasibly assume their correctness by default, where n is the rule’s arity and
Xis, for 1 ≤ i ≤ n, its head arguments. This yields program P ′10:

a(1)← not incorrect(1, [1]). a(X)← b(X), c(Y, Y ), not incorrect(2, [X]).
b(2)← not incorrect(3, [2]). b(3)← not incorrect(4, [3]).
c(1, X)← not incorrect(5, [1, X]). c(2, 2)← not incorrect(6, [2, 2]).

In terms of abduction, one can envisage incorrect/2 as an abducible. To express, while
debugging, that a(3) is an incorrect solution, we add to P ′10 an IC: ← a(3). We run
TABDUAL on P ′10, which returns three solutions as the possible sufficient causes of the
incorrect solution:

[incorrect(2, [3])], [incorrect(4, [3])], [incorrect(5, [1, 1]), incorrect(6, [2, 2])].

Missing Solutions Suppose a(5) should be a solution of P10, but is missing. To find
this bug, P10 is transformed [26] by adding to each predicate p/n a rule:

p(X1, . . . , Xn)← missing(p(X1, . . . , Xn)).

That is, P10 is transformed into P ′′10 that contains all rules from P4 plus three new rules:

a(X)← missing(a(X)). b(X)← missing(b(X)). c(X,Y )← missing(c(X,Y )).

Similarly to before,missing/1 can be viewed as an abducible. But now, to express that
we miss a(5) as a solution, we add to P ′′10 an IC: ← not a(5). TABDUAL returns the
three abductive solutions on P ′′10 as the causes of missing solution a(5) in P10:

[missing(a(5))], [missing(b(5))], [missing(b(5)),missing(c(X,X))].

Differently from [26,27], where minimal solutions are targeted, TABDUAL also returns
non-minimal solution [missing(b(5)),missing(c(X,X))]. Finding minimal abduc-
tive solutions is not always desired – here bugs may well not be minimal and, in this
case, TABDUAL allows one to identify and choose those bugs that satisfice so far, and
to continue searching for more solutions if needed.

8.1.2 Debugging of Normal Logic Programs
Finally, in case of debugging normal logic programs, the two above debugging trans-
formations are adroitly summed into one, as illustrated in Example 15. TABDUAL takes
care of further transforming the default not’s into positive atoms by dualizing them, to
make the program a definite one.

Example 15. Consider program P11:

a← not b. a← c. b.



We obtain P ∗11 by applying the two transformations:

a← not b, not incorrect(1). a← c, not incorrect(2). b← not incorrect(3).
a← missing(a). b← missing(b). c← missing(c).

Suppose we want to explain the causes of missing solution a, then we add to P ∗11 an IC:
← not a. Running TABDUAL on P ∗11, we obtain three abductive solutions:

[incorrect(3)], [missing(a)], [missing(c)]

which correctly enunciate the three possible causes of the problem.

This abductive approach to declarative debugging, by means of program dualiza-
tion, avoids the conceptual and practical complications of the belief revision procedure
specified and enacted in [26, 27].

8.2 Decision Making under Hypothetical Reasoning

In decision making under hypothetical reasoning, given an observation, one is typically
confronted with several possible scenarios. These scenarios are characterized by the
explanatory abducibles, and decisions are made on their basis. We illustrate with a basic
example.

Example 16. Suppose an agent observes some smoke and its action decision with re-
gard to this situation depends on the cause of the smoke. In case it is triggered by fire,
the agent reacts by calling firefighters. But if it is explained by the presence of tear gas,
then the agent better seeks police protection.

We extend TABDUAL with a system predicate to pick up actions based on avail-
able abductive solutions. That is, top-goal queries decision making can be enacted by
TABDUAL system predicate do(Act,Abds,Obs), defined as follows:

do(Act,Abds,Obs)← abd(Obs,Abds), decide(Act,Abds).

where abd(Obs,Abds) is another TABDUAL system predicate, which launches Obs
as a query and returns Abds as its abductive solution. Predicate decide(Act,Abds) is
defined in the agent’s beliefs, and picks up an actionAct based on the abductive solution
Abds.

Example 16 can be modeled in TABDUAL as follows:

smoke← fire. smoke← tear gas.
beginProlog.
decide(call firefighters,Abds)← member(fire,Abds).
decide(police protection,Abds)← member(tear gas,Abds).

endProlog.

where fire and tear gas are abducibles. Notice that decide/2 is defined in the non-
abductive program part (between beginProlog and endProlog identifiers, cf. 6).

We may now launch a top-goal query do(Act,Abds, smoke) to this program, which
provides us with two scenarios and guides us with actions to take:Act = call firefighters
for Abds = [fire] and Act = police protection for Abds = [tear gas].



8.3 Medical Diagnosis

Next, TABDUAL is applied to medical diagnosis, adapted from [28].

Example 17. A patient shows up at the dentist with signs of pain upon teeth percussion
but without tooth mobility. The expected causes for the observed signs are periapical
lesion, horizontal fracture, and vertical fracture of the root and/or crown.

An abductive logic program representing a partial medical knowledge base of the
practitioner is as follows:

percussion pain← periapical lesion
percussion pain← fracture

radiolucency ← periapical lesion

fracture← horizontal fracture
elliptic fracture trace← horizontal fracture
tooth mobility ← horizontal fracture

fracture← vertical fracture
decompression pain← vertical fracture

← not percussion pain
← tooth mobility

where periapical lesion, horizontal fracture, and vertical fracture are abducibles.
The integrity constraints indicate that the practitioner must conclude percussion pain
but not tooth mobility since these are the symptoms of the patient that requires expla-
nation.

Suppose that during examination, the practitioner suspects that there is a fracture.
This corresponds to query fracture with its corresponding transformed top-goal:

fracture(I, T ), not false(T,O).

Recall that integrity constraints are transformed like any other rules (cf. Section 3.2.4).
In particular, predicate not false/2 is defined, by the dual transformation, as follows:

not false(I,O)← false∗1(I, T ), false∗2(T,O).
false∗1(I,O)← percussion pain(I,O).
false∗2(I,O)← not tooth mobility(I,O).

The first subgoal fracture gives two abductive solutions: T = [horizontal fracture]
and T = [vertical fracture]. The second subgoal not false, constrains these two so-
lutions further:

– It eliminates T = [horizontal fracture], due to rule false∗2/2. This rule, which
eventually abduces not horizontal fracture, makes the abductive solution incon-
sistent.



– With respect to T = [vertical fracture], the integrity constraint results in two
final abductive solutions: O = [periapical lesion, vertical fracture] and O =
[vertical fracture].

Notice that in obtainingO = [vertical fracture], TABDUAL allows reusing the tabled
abductive solution of the first subgoal fracture. That is, in the derivation of false∗1,
percussion pain is invoked by false∗1, which subsequently (re-)invokes fracture.
This shows the benefit of tabled abduction in this problem.

9 Discussion

9.1 Correctness and Complexity

Correctness As the core TABDUAL transformation relies on the dual transformation,
introduced in ABDUAL [4], its correctness stems from that of ABDUAL, shown formally
there. It theoretically justifies, supports, and closely reflects the correctness of the core
TABDUAL transformation. The details introduced in the core transformation (e.g. ab-
ductive contexts, the auxiliary predicates produce/3 and insert/3), and its subsequent
refinements to deal with programs having loops, are just a concrete realization of the
more abstract theory of ABDUAL. Its implementation aspects are extra complexities and
refinements introduced for TABDUAL to achieve optimizations pertinent to the XSB
features, like tabling and tries. Nevertheless, there are some points worthy of note:

– Whereas ABDUAL is restricted to ground programs and queries, TABDUAL caters
to programs with variables and non-ground queries (cf. Example 5 and Section
4). Indeed, its non-groundness does not violate the groundness assumption in the
theory of ABDUAL, since one can move the head unifications of a rule to equalities
in its the body, before applying the core transformation. Recall Example 5, the two
rules of q/1 can be rewritten as:

q(X)← X = 0. q(X)← X = s(X ′), a(X ′).

Using the above rewritten rules, it now becomes obvious how q∗1 and q∗2 in Exam-
ple 5 are derived by the dual transformation. Mark that, because the dual transfor-
mation needs only fail one subgoal in the body at a time, the second definition of
q∗2, i.e. q∗2(s(X), I, O) ← not a(X, I,O) is obtained by assuming the equality
X = s(X ′) in the body, but alternatively failing a(X ′):1

q∗2(X, I,O)← X = s(X ′), not a(X ′, I, O).

which is equivalent to rule 4 in Example 5, treating back the equality X = s(X ′)
in the body as head unification modulo variable renaming. To sum up, applying
the above rewriting (before the core transformation) to rules with variables allows
to avoid defining a specific dual transformation for particularly dealing with such

1 Actually, the refinement of including all positive literals that precede the negated literal (cf.
Section 4.1) is just another instance of requiring one failed literal in the body and allowing to
assume other (preceding) positive literals to succeed.



rules. Inasmuch as head unifications of a rule are moved to equalities in its body,
one can think of the ground instances of all the rules, and stick to the dual transfor-
mation of ABDUAL with its groundness assumption.

– The loops handling in TABDUAL is just implementing what ABDUAL specifies
as unfounded and co-unfounded sets and their related operations. Additionally,
TABDUAL benefits from XSB tabled negation treatment by employing a double
tnot wrapping to deal with negative loops over negation (NLoN), as discussed in
Section 5.3.2 In other words, the TABDUAL refinements to deal with programs hav-
ing loops are theoretically underpinned by ABDUAL and readily implement loops
handling; thus they do not require any particular proof of correctness, resorting as
well to that of ABDUAL.

In Definition 3.1 of [4], a form of dual rules, i.e. folded dual form, is introduced.
Its need is more theoretical, to show the correctness and the complexity results of AB-
DUAL. It also deals with infinite ground programs: it avoids infinite dual rule bodies,
by swapping that infinite body possibility with a folded recurrent call, to the first body
literal, followed by a folded call to the remaining body literals, and so on, possibly
incurring in an infinite number of rules instead. Though the theory of ABDUAL un-
derpins TABDUAL, we need not be concerned with the folded dual form in TABDUAL,
as it deals only with real finite non-ground programs, whose rules stand for all their
ground instances. Indeed, the dual transformation in TABDUAL (cf. Definition 2 in A)
is logically equivalent to the folded dual form, but it is simpler.

Complexity In terms of complexity, the size of the program produced by the core
TABDUAL transformation is linear in the size of the input program, as shown in Theo-
rem 1 of Appendix B, which is similar to that of ABDUAL using the folded dual form
(cf. Lemma A.5 in [4]). It is known that the problem of query evaluation to abductive
frameworks is NP-complete, even for those frameworks in which entailment is based on
the WFS [12]. In [4], it is shown that the complexity of an ABDUAL query evaluation is
proportional to the maximal number of abducibles in any abductive subgoals, and to the
number of abducible atoms in the program. In particular, if the set of abducible atoms
and ICs are both empty, then the cost of query evaluation is polynomial. The complex-
ity of TABDUAL query evaluation should naturally be based on that of ABDUAL, since
TABDUAL also employs the dual transformation. One may observe that the table size,
used in tabling abductive solutions, would be proportional to the number of distinct
(positive) subgoals in the procedural call-graph, i.e. each first call of the subgoals in
a given query will table, as solution entries, the abductive solutions of the called sub-
goal. Besides tabling, the implementation aspects we mentioned in Section 6 may help
improve performance in practice.

9.2 Related Work

There have been a plethora of work on abduction in logic programming, cf. [10,20] for
a survey on this line of work. But, with the exception of ABDUAL [4], we are not aware

2 Dealing with NLoN is the only case where TABDUAL results in tabled normal logic programs,
as it involves tabled negation tnot in some transformed rules.



of any other efforts that have addressed the use of tabling in abduction for abductive
normal logic programs, which may be complicated with loops. Like ABDUAL, we use
the dual transformation and rely on the same theoretic underpinnings, but ABDUAL
does not allow variables in rules. The reader is referred to Section 5.2 of [4] on how the
dual transformation and its properties relate to other works.

Tabling has only been employed in ABDUAL limitedly, i.e. to table its meta-intepreter,
which in turn allows abduction to be performed (also in the presence of loops in a pro-
gram), but it does not address at all the issues raised by the desirable reuse of tabled
abductive solutions. TABDUAL generates a self-sufficient program transform, which
employs no meta-interpreter, even in the presence of loops in programs.

Our approach also differs from that of [2]. Therein, abducibles are coded as odd
loops, it is compatible with and uses constructive negation, and it involves manipulating
the residual program. It suffers from a number of problems, which it identifies, in its
Sections 5 and 6, and its approach was not pursued further.

TABDUAL does not concern itself with constructive negation, like NEGABDUAL [3]
and its follow-up [6]. NEGABDUAL uses abduction to provide constructive negation
plus abduction, by making the disunification predicate an abducible. Again, it does not
concern itself with the issues of tabled abductive solution reuse, which is the main
purpose of TABDUAL. However, because of its constructive negation ability, NEGAB-
DUAL can deal with problems that TABDUAL does not. Consider program P , with no
abducibles, just to illustrate the point of constructive negation induced by dualization:

p(X)← q(Y ). q(1).

In NEGABDUAL, the query not p(X) will return a qualified ‘yes’, because it is always
possible to solve the constraint Y 6= 1, as long as one assumes there are at least two
constants in the Herbrand Universe. However, distinct from NEGABDUAL, TABDUAL
answers ‘no’ to not p(X). It is correct, in the absence of conditional answers; the former
answer is afforded only by having constructive negation in place.

TABDUAL, being implemented in XSB, is underpinned by WFS, which enjoys the
relevance property, and thus it allows abduction to be performed by need only, induced
by the top-down query-oriented procedure, solely for finding the relevant abducibles
and their truth value, assuming the ICs are satisfied. This is not the case with the bottom-
up approaches for abduction, e.g. [38], where stable models for computing abductive
explanations, not necessarily related to an observation, are constructed. This disadvan-
tage of the bottom-up TMS approach is in fact later avoided by adding a top-down
procedure, as in [39]. TABDUAL also allows dealing with odd loops in programs be-
cause of its 3-valued program semantics, whilst retaining 2-valued abduction by-need
and the use of integrity constraints. This is not enjoyed by the bottom-up approach and
its 2-valued implementation.

The tabling technique, within the context of statistical abduction, is employed in
[37]. But it concerns itself with probabilistic logic programs, whereas TABDUAL con-
cerns abductive normal logic programs. Moreover, the tabling technique in [37] imposes
the so-called ‘acyclic support condition’, a constraint that does not allow loops in a pro-
gram, which pose no restrictions at all in TABDUAL. Tabling is also used recently in
PITA [33], for statistical abduction. Though PITA is also based on the Well-Founded



Semantics like TABDUAL, tabling (in particular its feature, answer subsumption) ap-
plies specifically to probabilistic logic programs, e.g. to compute the number of dif-
ferent explanations for a subgoal (in terms of Viterbi path), which is not our concern
in TABDUAL, and thus does not employ the dual transformation and other techniques
described here.

9.3 Migration into Engine Level

The specification design of TABDUAL and its implementation, by means of a transfor-
mation in XSB-Prolog, produces a transformed program that aims at being near the
potential uptake of certain operations by the underlying engine (and even other en-
gines). We sketch some ideas on how to migrate key constructs of TABDUAL into an
engine-level of Prolog systems that support tabling and, optionally, tries data structure,
like XSB.

– Tabling Abduction Entries.
This is the core feature of tabled abduction, which needs migration to the (tabling)
engine to be more fruitful. At the object language level, we table only the output
abductions entries and not the input abductive context to allow for reuse for one
context to others, because the input abduction table entries are not included. Reuse
and consistency are done at the language level, not inside the tabling level one.
A new tabling mechanism could instead cater to the two extra table entries, con-
cerning the input and output abducible sets, and provide the special lookup and
update mechanisms pertaining to these special sets-arguments. Moreover, the sets
would require an efficient store space recovery data structure representation consis-
tent with the operations on them.

– Hiding Data Structures.
The CWA list (and attending operations to detect positive loops in dualized nega-
tion - PLoN), which is being deployed at the language level, should migrate to
the engine level, even disappearing from the generated code. New operations are
needed concerning loop detection, in particular making PLoN succeed rather than
fail, as it happens with direct positive loops.
Similarly, the abductive context can be hidden from the object language and the
operations on them moved into the engine level, but with the proviso that these
could be inspected for debugging purposes. These signify that, avoiding the data
structures being kept, and the operations on them carried out currently at language
level, will much improve space and time efficiency.

– Lazy Dual Transformation.
Currently the lazy (by-need) dual transformation is implemented using a trie data
structure, allowing it to memoize generic dual rules which later can be retrieved
and reused. Recall that the choice of trie is made to avoid generating generic dual
rules eagerly, due to the default local table scheduling strategy of XSB.
Implementing the lazy dual transformation at the language level consists in many
operational details, which are realized by the trie manipulation predicates, e.g.
tracking the choices of literals made in the dualization, etc. These details simu-
late the batched-like table scheduling, i.e. to return a generic dual rule at a time



(rather than to compute them all) before it is invoked. They can be lowered to the
engine level, where we may still benefit from tabling (instead of using trie in the
language level). But this requires that XSB permits admixtures of table scheduling
strategies. That is, one would need to be able to use a batched table scheduling in
the middle of the regular (and default) local table scheduling of the current XSB
release.

9.4 Other Issues

Query Flexibility In transforming queries (cf. Section 3.2.4), the input context is set
to [ ] by default. But one may explicitly launch a transformed query by constraining
the input context, i.e. it is not necessarily [ ], but can be some given (non-empty) list of
abducibles. Moreover, the output context can be constrained too. This is the case when
one wants to verify that a given output context is indeed a desirable solution. This can
be generalized to verifying, at the end, that the output context satisfies some property,
e.g. it is a preferred one.

Optimizing Groundness We explained, in Section 4.1, a refinement to help ground
negated subgoals in dual rules, by having all positive subgoals preceding the one that
is negated due to the dualization. One may additionally keep the positive literals that
succeed the negated literal, if that may help ground more; this often depends on the
problem representation. It may be applicable to ICs better, as in the pragmatics of ICs
that a user writes, the order of subgoals might be irrelevant. For instance, the (second
layer) dual rules for false← q(X), r(X) may be defined as:

false∗1(I,O)← not q(X, I,O). false∗1(I,O)← q(X, I, T ), not r(X,T,O).

or better even, a symmetrical definition:

false∗1(I,O)← r(X, I, T ), not q(X,T,O). false∗1(I,O)← q(X, I, T ), not r(X,T,O).

which is also declaratively correct. Some complication may arise, e.g. if the literal is
an abducible which has variables, then it should be guaranteed that it is ground when
it is moved forward in the body of the rule. This can easily be done by invoking, if
necessary, a user supplied abducible’s domain predicate that grounds it. The invocation
of such domain predicate may be performed in the transformation of abducibles.

Refinement via Nogoods We have touched upon tabling nogoods of subproblems in
Section 7.3, where we employed a particular TABDUAL system predicate to access and
filter ongoing abductive solutions with respect to nogoods of subproblems. Indeed, ICs
may also be relevant opportunities for tabling nogoods. Tabling nogoods can be pro-
vided by the evaluation of ICs, since ICs are transformed like any other rules, i.e. no-
goods are tabled by predicate falseab. This is a new orthogonal refinement that caters
to the introduction and checking of nogoods within an abduction framework. The idea
is similar to abducing solutions, but here we are also abducing some non-subsolutions
and checking for compatibility. Such checking can be performed by the system predi-
cate produce/3. Alternatively, we can leave it to the users to specify explicitly specific
points where nogoods are to be generated and checked.



Quick-kill Option Another pertinent implementation aspect to tabled abduction is a
‘quick-kill’ in the first layer dual rule to immediately fail the rule, thereby avoiding
the need to invoke the potentially more elaborate second layer dual rules, which will
fail anyway. Indeed, conceptually an abductive solution of a negative subgoal not p is
construable as a set that negates the members of a hitting set for the abductive solutions
of p. If one of the abductive solutions of p is empty then no hitting set exists. So the idea
behind the ‘quick-kill’ is to permit to see whether goal ‘not p’ has no hitting set at all,
pertaining to the set of abductive solutions in pab. This is done by inspecting whether
p ab has an empty abductive solution entry. Taking Example 4, predicate not p can now
be defined as follows:

not p(I,O)← tnot(pab([ ])), p∗1(I, T ), p∗2(T,O).

i.e. by having the subgoal tnot(pab([ ])) before the second layer dual rules are invoked.
As a matter of fact, in TABDUAL, such hitting sets are generated incrementally, by
means of finding abductive solutions to the dual rules of p, without thus having to
wait for the explicitly availability of all abductive solutions for p. Nevertheless, the
‘quick-kill’ can be a readily available option, just in case there exists an empty abductive
solution for p. It may be serve as an optimization, as it simply detects if such an entry
is already in the table for p, rather than generating solutions for A trying to produce
the empty one. Its use surely depends on the problem. If a given query to the problem
consists of only negative subgoals, then this ‘quick-kill’ may instead be an overkill, as it
unnecessarily invokes the corresponding positive goals and tables their solutions, only
to check whether an empty abductive solution is obtained. In this case, one may simply
benefit from the second layer dual rules in answering the query, without the ‘quick-kill’
option.

10 Conclusion and Future Work

We have addressed the issue of tabling abductive solutions, in a way that they can be
reused from one abductive context to another. We do so by resorting to a program trans-
formation approach, resulting in a tabled abduction prototype, TABDUAL, implemented
in XSB Prolog. TABDUAL employs the dual transformation, which allows to more effi-
ciently handle the problem of abduction under negative goals. In TABDUAL, abducibles
are treated much like terminals in grammars, with an extra argument for input and an-
other for output abductive context accumulation. A few other original innovative and
pragmatic techniques are employed to handle program with variables and loops, as well
as to make TABDUAL more efficient and flexible. It has been evaluated with various
objectives in mind, by employing several variants of the same underlying implemen-
tation, in order to show the benefit of tabled abduction and to gauge its suitability for
likely applications. An issue that we have touched upon in the TABDUAL evaluation is
that of tabling nogoods of subproblems in the context of tabled abduction, and how it
may improve performance and scalability. The other evaluation result reveals that each
approach of the dual transformation by-need may be suitable for different situations, i.e.
both approaches, lazy or eager, are options for TABDUAL customization. TABDUAL still



has much room for improvement, which we discuss and detail in Section 9, including
migrating its features to the engine level of Prolog systems.

Abduction is by now a staple feature of hypothetical reasoning and non-monotonic
knowledge representation. It is already mature enough in its concept, deployment, ap-
plications, and proof-of-principle, to warrant becoming a run-of-the-mill ingredient in a
Logic Programming environment. We hope this work will lead, in particular, to an XSB
System that can provide its users with specifically tailored tabled abduction facilities.

Future work will consist in continued exploration of our applications of abduction,
which will provide feedback for system improvement. Another research line pertains
to the issue that, whenever discovering abductive solutions, i.e., explanations, for some
given primary observation, one may wish to check too whether some other given ad-
ditional secondary observations are true, being a logical consequence of the abductive
explanations found for the primary observation, i.e. side-effects of abduction [29]. In
other words, whether the secondary observations are plausible in the abductive context
of the primary one. We look forward to incorporating side-effects and integrating other
logic programming features, e.g. program updates and uncertainty, into TABDUAL.

It is part and parcel of our research plan to employ the integrated sytem for moral
reasoning; a field which has recently gained attention and a resurgence of interest from
AI community, and on which we work [17, 30].
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A Specification of the Core TABDUAL Transformation

Consider an abductive normal logic program P , where every integrity constraint in P
with empty head is rewritten as a rule with false as its head, i.e. as a denial. We write t̄ to
denote [t1, . . . , tn], n ≥ 0, and for predicate p/n, we write p(t̄) to denote p(t1, . . . , tn),3

and we write Hr and Br to denote the head and the body of rule r ∈ P , respectively.
Mark that abducibles do not have rules.

Motivation, informal description, and examples related to the following definitions
can be found in Section 3.2.3.

A.1 Program Transformation

Definition 1 (Transformation for Tabling Abductive Solutions). Let Ar ⊆ Br be
the set of abducibles (either positive or negative) in r ∈ P , and r′ be the rule, such that
Hr′ = Hr and Br′ = Br \ Ar.

1. For every rule r ∈ P with r′ the rule l(t̄)← L1, . . . , Lm, we define τ ′(r):

lab(t̄, Em)← α(L1), . . . , α(Lm).

where α is defined as:

α(Li) =

{
li(t̄i, Ei−1, Ei) , if Li = li(t̄i)
not li(t̄i, Ei−1, Ei) , if Li = not li(t̄i)

with 1 ≤ i ≤ m, Ei are fresh rule variables,4 and E0 = Ar.
2. For every predicate p/n defined in P , we define τ+(p):

p(X̄, I, O)← pab(X̄, E), produce(O, I,E).

where produce/3 is a TABDUAL system predicate.5

Example 18. Consider the following program P , where rules are named with ri and
a/1 is an abducible.

r1 : u(0, ).
r2 : u(s(X), Y )← a(X), v(X,Y, Z), not w(Z).
r3 : v(X,X, s(X)).

We have Ari and r′i, for 1 ≤ i ≤ 3, as follows:6

– Ar1 = [ ] and r′1 : u(0, ).
– Ar2 = [a(X)] and r′2 : u(s(X), Y )← v(X,Y, Z), not w(Z).

3 In particular, we write X̄ to denote [X1, . . . , Xn], p(X̄) to denote p(X1, . . . , Xn), and
p(X̄, Y, Z) to denote p(X1, . . . , Xn, Y, Z), where all variables are distinct.

4 Variables Ei serve as abductive contexts.
5 Predicate produce/3 is explained in Section 3.2.1.
6 We use Prolog list notation to represents sets.



– Ar3 = [ ] and r′3 : v(X,X, s(X)).

The transformation of Definition 1 results in:

τ ′(r1) : uab(0, , [ ]).
τ ′(r2) : uab(s(X), Y, E2) ← v(X,Y, Z, [a(X)], E1), not w(Z,E1, E2).
τ ′(r3) : vab(X,X, s(X), [ ]).
τ+(u) : u(X1, X2, I, O) ← uab(X1, X2, E), produce(O, I,E).
τ+(v) : v(X1, X2, X3, I, O) ← vab(X1, X2, X3, E), produce(O, I,E).

Notice that both arguments of u/2 are kept in the tabled predicate uab (as its first two
arguments), and one extra argument is added (as its third argument) for tabling its ab-
ductive solution entry. Similar reasoning also applies to v/3. We do not have τ+(w),
because there is no rule of w/1 in the program, i.e. w/1 is not defined in P .

Definition 2 (The Dual Transformation).

1. For every predicate p/n, with n ≥ 0, defined in P :

p(t̄1) ← L11, . . . , L1n1
.

...
p(t̄m)← Lm1, . . . , Lmnm

.

with ni ≥ 0, 1 ≤ i ≤ m:
(a) The first layer of the dual transformation is defined by τ−(p):

not p(X̄, T0, Tm)← p∗1(X̄, T0, T1), . . . , p∗m(X̄, Tm−1, Tm).

with Ti, 0 ≤ i ≤ m, are fresh rule variables.7

(b) The second layer of the dual transformation is defined by:
τ∗(p) =

⋃m
i=1 τ

∗i(p), and τ∗i(p) is the smallest set that contains the following
rules:

p∗i(X̄, I, I) ← X̄ 6= t̄i.
p∗i(t̄i, I, O)← σ(Li1, I, O).

...
p∗i(t̄i, I, O)← σ(Lini

, I, O).

where σ is defined as follows:

σ(Lij , I, O) =

{
lij(t̄ij , I, O) , if Lij = not lij(t̄ij)
not lij(t̄ij , I, O) , if Lij = lij(t̄ij)

Notice that, in case of p/0 (i.e. n = 0), rule p∗i(X̄, I, I) ← X̄ 6= t̄i is omitted,
since both X̄ and t̄i are [ ].8

7 Variables Ti serve as abductive contexts.
8 This means, when p/0 is defined as a fact in P , we have not p(T0, T1)← p∗1(T0, T1) in the

first layer, but there is no rule of p∗1/2 in the second layer. Equivalently, it may be defined as
not p( , )← fail. (cf. the dual rule of predicate r/0 in Example 4).



2. For every predicate r/n, n ≥ 0, in P , that has no definition, we define τ−(r):9

not r(X̄, I, I).

Example 19. Recall program P in Example 18. The transformation of Definition 2 re-
sults in:

τ−(u) : not u(X1, X2, T0, T2) ← u∗1(X1, X2, T0, T1), u∗2(X1, X2, T1, T2).
τ−(v) : not v(X1, X2, X3, T0, T1)← v∗1(X1, X2, X3, T0, T1).
τ−(w) : not w(X, I, I).

τ−(false) : not false(X, I, I).
τ∗(u) : u∗1(X1, X2, I, I) ← [X1, X2] 6= [0, ].

u∗2(X1, X2, I, I) ← [X1, X2] 6= [s(X), Y ].
u∗2(s(X), Y, I, O) ← not a(X, I,O).
u∗2(s(X), Y, I, O) ← not v(X,Y, Z, I,O).
u∗2(s(X), Y, I, O) ← w(Z, I,O).

τ∗(v) : v∗1(X1, X2, X3, I, I) ← [X1, X2, X3] 6= [X,X, s(X)].

Definition 3 (Transformation of Abducibles). Let AP be the set of abducible atoms
in P .
For every a(X̄) ∈ AP , we define τ◦(a(X̄)) as the smallest set that contains the rules:

a(X̄, I, O) ← insert(a(X̄), I, O).
not a(X̄, I, O)← insert(not a(X̄), I, O).

where insert/3 is a TABDUAL system predicate.10 Mark that, in the body of the second
rule, ‘not a’ is used instead of ‘not a’.

Example 20. Recall program P in Example 18. We have AP = {a(X)}. The transfor-
mation of Definition 3 results in:

τ◦(a(X)) : a(X, I,O) ← insert(a(X), I, O).
not a(X, I,O)← insert(not a(X), I, O).

Definition 4 (TABDUAL Program Transformation). Let P be an abductive normal
logic program, PP be the set of predicates in P , and AP be the set of abducible atoms
in P . Taking:

– τ ′(P ) = {τ ′(r) | r ∈ P}
– τ+(P ) = {τ+(p) | p ∈ PP and p is defined}
– τ−(P ) = {τ−(p) | p ∈ PP }
– τ∗(P ) = {τ∗(p) | p ∈ PP and p is defined}
– τ◦(P ) = {τ◦(a) | a ∈ AP }

The TABDUAL transformation τ transforms P into τ(P ), where τ(P ) is defined as:

τ(P ) = τ ′(P ) ∪ τ+(P ) ∪ τ−(P ) ∪ τ∗(P ) ∪ τ◦(P )

Example 21. The set of rules obtained in Example 18, 19, and 20 forms τ(P ) of pro-
gram P .

9 In particular, if there is no integrity constraint in P , we have τ−(false) : not false(I, I).
10 Predicate insert/3 is explained in Section 3.2.3.



A.2 Query Transformation

Definition 5 (Transformation of Queries). Let P be an abductive normal logic pro-
gram and QP be a query to P as follows:

?- G1, . . . , Gm.

TABDUAL transforms query QP into:

?- δ(G1), . . . , δ(Gm), not false(Tm, O).

where δ is defined as:

δ(Gi) =

{
gi(t̄i, Ti−1, Ti) , if Gi = gi(t̄i)
not gi(t̄i, Ti−1, Ti) , if Gi = not gi(t̄i)

T0 is a given initial abductive context (or [ ] by default), 1 ≤ i ≤ m, Ti, O are fresh
rule variables.11

Example 22. Recall program P in Example 18. Query:

?- u(0, s(0)), not u(s(0), 0).

is transformed by Definition 5 into:

?- u(0, s(0), [ ], T1), not u(s(0), 0, T1, T2), not false(T2, O).

11 Notice that O is the output abductive context, which returns the abductive solution(s) of the
query.



B Complexity of the Core TABDUAL Transformation

Definition 6. Let P be a finite logic program and Br be the body of rule r ∈ P .

– preds(P ) denotes the number of predicates in P .
– heads(P ) denotes the number of predicates defined (i.e. with rules) in P .
– rules(P ) denotes the number of rules in P .
– size(P |p) denotes the size of rules in P whose head is the predicate p.
– size(P ) denotes the size of P and is defined as

size(P ) = Σ
rules(P )
i=1 (1 + |Bri |)

where |Bri | denotes the number of body literals in ri.12

The following theorem shows that the size of the program produced by the core TABDUAL
transformation is linear in the size of the original program.

Theorem 1. Let P be an abductive normal logic program and AP be the set of ab-
ducible atoms in P . Then size(τ(P )) < 13.size(P ) + 4.|AP |.

Proof. Let pi be a predicate for which there are m > 0 rules in P with the total size
size(P |pi

), and c ≥ 0 be the number of abducibles in the body of a rule of pi.

– Since the abducibles in the body of a rule are moved from the body to abductive
context (cf. point (1) of Definition 1), we have the size of τ ′(P ) as size(τ ′(P )) =
size(P )− c.rules(P ).

– Since τ+(pi) for every defined pi ∈ P has three literals (cf. point (2) of Definition
1), we have the size of τ+(P ) as size(τ+(P )) = 3.heads(P ).

– For τ−, we have two cases, based on Definition 2:
1. By point 1(a), i.e. for pi defined in P , the size of τ−(pi) will be m+ 1. There-

fore, the size of the transformed program in P by τ− for all predicates defined
in P will be heads(P ).(m+ 1) = rules(P ) + heads(P ).

2. By point 2, the size of the transformed program in P by τ− for all predicates
that have no definition in P will be preds(P )− heads(P ).

Summing up the size from both cases, we have size(τ−(P )) = rules(P ) +
preds(P ).

– For τ∗, the total size of rules with heads of the form p∗i(t̄i, I, O), cf. point 1(b) of
Definition 2, will be 2.(size(P |pi)−m). Since the size of the other rule, i.e. the one
with the head p∗i(X̄, I, I), is two, the total size of τ∗(pi) is 2.(size(P |pi)−m)+2.
Therefore, the size of the transformed program in P by τ∗ for all predicates defined
in P will be size(τ∗(P )) = Σ

heads(P )
i=1 (2.(size(P |pi

)−m) + 2) = 2.size(P )−
2.rules(P ) + 2.heads(P ).

12 That is, the size of a rule r is defined as the total number of (head and body) literals in r.



– Finally for τ◦, since the size of rules for each abducible atom is four, we have
size(τ◦(P )) = 4.|AP |, where |AP | denotes the cardinality of AP .

Note that preds(P ) ≤ size(P ), as for heads(P ) and rules(P ).
Thus, size(τ(P )) = size(τ ′(P )) + size(τ+(P )) + size(τ−(P )) + size(τ∗(P )) +
size(τ◦(P )) < 13.size(P ) + 4.|AP |.



C Test-suite

The test-suite consists of two collections of programs: ground programs with loops,
and programs with variables (also containing loops). The TABDUAL variant used in
their evaluation is TABDUAL∞+lazy. In the evaluation of ground programs with loops,
a comparison with the ABDUAL meta-interpreter [4] is made. Both systems run on the
same platform under XSB version 3.3.7.

C.1 Programs with Loops

Collection of Programs Figure C.1 lists a collection of programs, expressly including
difficult cases, used to compare TABDUAL and ABDUAL. The collection is specific
to ground programs, since ABDUAL caters only to ground programs and queries. The
evaluation results are shown subsequently. These programs involve various loops: direct
positive loops, negative loops over negation, positive loops in (dualized) negation, and
some combinations amongst them. In this collection, a, b, and c are abducibles.

p0 ← q0. p1 ← not q1, r1. p2 ← q2.
p0 ← a. r1 ← not q1, p1. q2 ← r2.
q0 ← p0. q1 ← not p1. r2 ← p2.
q0 ← b.

p3 ← q3. p4 ← q4. p5 ← q5.
q3 ← not r3. q4 ← p4. q5 ← not r5.
r3 ← p3. q4 ← not a, not b. r5 ← not s5.

s5 ← p5.

p6 ← not q6. p7 ← not q7, r7, a. p8 ← not q8, a.
q6 ← r6. r7 ← not q7, p7, b. q8 ← not p8.
r6 ← s6. q7 ← not p7, not r7. q8 ← b.
s6 ← not p6.

p10 ← not q10, a. p11 ← not q11, a. p12 ← a, not q12.
q10 ← p10, a. q11 ← p11, not a. q12 ← not a, p12.

Fig. 5. Collection of Ground Programs with Loops

Evaluation Results Table C.1 compares the results returned by TABDUAL and ABD-
UAL for queries to the ground programs in Figure C.1.

C.2 Programs with Variables

Collection of Programs Figure C.2 lists programs with variables; many of them con-
tain loops as well. In this collection, a/1, b/1, and c/1 are abducibles.



Table 3. Comparison of results: TABDUAL vs. ABDUAL

Queries TABDUAL ABDUAL

p0 [a], [b] [a], [b]
not p0 [not a, not b] [not a, not b], [not a]
not p1 [ ] [ ]
q1 [ ] [ ]
p2 no no

not p2 [ ] [ ]
p3 [ ] undefined [ ]

not p3 [ ] undefined [ ]
p4 [not a, not b] [not a, not b]

not p4 [a], [b] [a], [b], [a, b]
p5 [ ] undefined no

not p5 [ ] undefined [ ]
p6 [ ] undefined [ ]

not p6 [ ] undefined no
p7 no no

not p7 [ ], [not a], [not b], [not a, not b] [ ], [not a], [not b], [not a, not b]
q8 [ ], [not a], [b] [not a], [b]

not p8 [ ], [not a], [b] [not a], [b]
p10 [a] undefined [a]

not p10 [not a], [a] undefined [a], [not a]
p11 [a] [a]

not p11 [not a] [not a]
not q11 [a], [not a] [ ], [a], [not a]
p12 [a] [a]

not p12 [not a] [not a]
not q12 [a], [not a] [ ], [a], [not a]

Evaluation Results Table C.2 presents the evaluation results returned by TABDUAL
and ABDUAL for queries to the ground programs in Figure C.2.



p0(X)← q0(X). p1(X)← not q1(X), r1(X). p2(X)← q2(X).
p0(1)← a(1). r1(X)← not q1(X), p1(X). q2(X)← r2(X).
q0(X)← p0(X). q1(X)← s1(X), not p1(X). r2(X)← p2(X).
q0(2)← a(2). s1(1).

p3(1)← q3(1). p4(X)← q4(X). p5(X)← q5(X).
q3(X)← not r3(X). q4(X)← p4(X). q5(X)← t5(X), not r5(X).
r3(X)← p3(X). q4(1)← not a(1), not a(2). r5(X)← t5(X), not s5(X).

s5(X)← p5(X).
t5(1).

p6(X)← t6(X), not q6(X). p7(X)← s7(X), not q7(X), r7(X). p8(X)← s8(X), not q8(X).
q6(X)← r6(X). r7(X)← t7(X), not q7(X), p7(X). q8(X)← not p8(X).
r6(X)← s6(X). q7(X)← not p7(X), not r7(X). q8(2)← a(2).
s6(X)← t6(X), not p6(X). s7(1)← a(1). s8(1)← a(1).
t6(1). t7(1)← b(1). s8(2)← a(2).

p10(X)← s10(X), not q10(X). p11(X)← s11(X), not q11(X). p13(X)← r13(X), not p13(X).
q10(X)← p10(X), a(X). q11(X)← p11(X), not a(X). p13(1)← a(1), b(1).
s10(1)← a(1). s11(1)← a(1). p13(2)← c(2).

r13(1)← a(1).
r13(2)← a(2).

Fig. 6. Collection of Programs with Variables



Table 4. Evaluation results of Programs with Variables

Queries Results by TABDUALa

p0(X) [a(1)] for X = 1; [a(2)] for X = 2
q0(X) [a(1)] for X = 1; [a(2)] for X = 2

not p0(X) [not a(1), not a(2)] for X =
not q0(X) [not a(1), not a(2)] for X =
q1(X) [ ] for X = 1

not q1(X) no
not p1(X) [ ] for X =
p2(X) no

not p2(X) [ ] for X =
p3(X) [ ] undefined for X = 1

not p3(X) [ ] undefined for X =
p4(X) [not a(1), not a(2)] for X = 1

not p4(X) [a(1)], [a(2)] for X =
p5(X) [ ] undefined for X = 1

not p5(X) [ ] undefined for X =
p6(X) [ ] undefined for X = 1

not p6(X) [ ] undefined for X =
p7(X) no

not p7(X) [a(1)], [not a(1)], [a(1), b(1)], [a(1), not b(1)] for X =
p8(X) [a(1)]undefined for X = 1

not p8(X) [a(1)], [a(2)], [a(1), a(2)], [not a(1), not a(2)] for X =
p10(X) [a(1)]undefined for X = 1

not p10(X) [a(1)] undefined, [not a(1)] for X =
p11(X) [a(1)] undefined for X = 1

not p11(X) [not a(1)] undefined for X =
q13(X) [a(1), not b(1)] for X = 1; [a(2), not c(2)] for X = 2

not q13(X) [a(1), b(1)], [a(2), c(2)], [not a(1), not a(2)] for X =
not p13(X) [not b(1), not c(2)], [not a(1), not c(2)] for X =

a Underscore ( ) denotes some variable, for instance in X = (i.e. X is left uninstantiated).


