Towards Practical Tabled Abduction
Usable in Decision Making

Ari SAPTAWIJAYA ! and Luis Moniz PEREIRA

Centro de Inteligéncia Artificial (CENTRIA)
Departamento de Informdtica, Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Email: ar.saptawijaya@ campus.fct.unl.pt, Imp @fct.unl.pt

Abstract. Abduction as reasoning paradigm has been much explored in Artificial
Intelligence, but not yet taken up by decision making as much as its potential war-
rants. Indeed, abduction permits the generation of hypothetical knowledge based
scenarios, about which one can then equate decisions. One reason for this state
of affairs is that abduction is difficult to implement efficaciously, even by experts,
which entails that abductive systems are not readily available for decision making.
Our concept of tabled abduction mitigates this, in the abductive logic programming
system TABDUAL.

The contribution of this paper is three-fold: (1) We discuss some TABDUAL im-
provements towards its more practical use, particularly in decision making, (2) We
show that declarative debugging can be viewed as abduction in logic programming,
thus showing another potential of abduction for decision making, and (3) We de-
scribe how TABDUAL can be applied in decision making and examine its benefit.

Keywords. tabled abduction, abductive logic programming, declarative debugging,
decision making.

1. Introduction

Reasoning by abduction is a well-known method in Al, studied at length in computa-
tional logic, and logic programming in particular, for quite a while [1-4]. In logic pro-
gramming, it offers a formalism that, combined with other reasoning methods, affords
us a declarative way to express and solve a variety of problems in a diversity of areas,
e.g. in decision-making, diagnosis, planning, belief revision, and hypothetical reasoning
(cf. [5-9]). Though many Prolog systems have matured enough to become of much prac-
tical use, abduction is not yet offered in them as a staple reasoning method, on account
of the special and additional complexities involved. We have strived to change this state
of affairs.

Finding hypothetical assumptions (i.e. abductive solutions) that lend support to a de-
sired goal, or finding best (even satisficing) possible abductive explanations for observed
evidence, can be very costly. Now, it can be the case that abductive solutions found in
one context can then be appropriated in a different context and reused at little extra cost.

! Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

In the absence of abduction, goal solution reuse in logic programming systems is by now
a rather staple feature, which resorts to a tabling mechanism for effectiveness. However,
abductive solution reuse in not readily amenable to tabling, exactly because solutions go
together with an abduction context. It raises new problems on how to reuse them in dis-
tinct but compatible contexts, while catering to all varieties of loops in logic programs,
complicated now by abduction.

The concept and realization of tabled abduction implementation for abductive nor-
mal logic programs was introduced recently to address this problem [10], which will be
reviewed in Section 2. It is realized via a program transformation and implemented in a
prototype, TABDUAL, using XSB-Prolog. The transformation makes use of the theory of
the dual transformation [1], which allows to efficiently handle the problem of abduction
under negative goals, by introducing the dual positive counterparts for them. Abduction
is then performed on the transformed program without the need of a meta-interpreter.

We explore here TABDUAL’s potential in decision making. First, we introduce a
new TABDUAL construct for the purpose, adding to its features. It helps decision mak-
ing on the basis of available hypothetical scenarios and permits modular mixes of ab-
ductive and non-abductive program parts. These and other improvements towards its
more practical use are discussed in Section 3. Second, we revisit declarative debugging,
a tool of interest to decision making, in Section 4, previously characterized as belief re-
vision [11, 12], and show that it can be viewed as (tabled) abduction. Third, we describe
how TABDUAL can be applied in decision making and examine its benefit, illustrating
it with an example from medical diagnosis, in Section 5.

2. Tabled Abduction

First we recap some background definitions in logic programs. We then discuss how
abduction can be accomplished in logic programs and recapitulate tabled abduction.

A logic rule has the form H < By,...,By,not By1,...,not B,, where n > m >
0 and H,B; with 1 < i < n are atoms. In a rule, H is called the head of the rule and
By,...,By,not Byi1,...,no0t B, its body. We employ ‘not’ to denote default negation.
The atom B; and its default negation not B; are named positive and negative literals,
respectively. When n = 0, we say the rule is a fact and render it simply as H. The atoms
true and false are, by definition, respectively true and false in every interpretation. A rule
in the form of a denial, i.e. with empty head, or equivalently with false as head, is an
integrity constraint (IC). A logic program (LP) is a set of logic rules, where non-ground
rules (i.e. rules containing variables) stand for all their ground instances. In this work we
focus on normal logic programs, i.e. those whose heads of rules are positive literals or
empty. As usual, we write p/n to denote predicate p with arity n.

2.1. Abduction in Logic Programs

In summary, abduction, or inference to the best explanation (a common designation of
one of its uses in the philosophy of science [13, 14]), is a reasoning method, of interest
to scenario building in decision making [15, 16], whereby one chooses those hypotheses
that would, if true, best explain the observed evidence — while meeting any attending
ICs — or that would satisfy some query. In LPs, abductive hypotheses (or abducibles) are

named literals of the program which have no rules, and whose truth value is not initially
assumed. Abducibles may have arguments, but they must be ground on the occasion
of their abduction. An abductive normal logic program is a normal logic program that
allows for abducibles, or their negations, to appear in the body of rules. Note that the
negation ‘not a’ of an abducible a does not refer to its default negation, as abducibles
have no rules, but instead to the explicitly assumed hypothetical negation of a.

The truth value of abucibles may be independently assumed true or false, via either
their positive or negated form, as the case may be, in order to produce an abductive
solution to a query, that is a consistent set of assumed hypotheses that support it. An
abductive solution to a query is a consistent set of abducible instances or their negations
that, when substituted by their assigned truth value everywhere in the program P, affords
us with a model of P (for the specific semantics used on P), which satisfies both the query
and the ICs — a so-called abductive model.

Abduction in LPs can naturally be accomplished by a top-down query-oriented pro-
cedure to find an (abductive) solution to a query (by need, i.e. as abducibles are encoun-
tered), where the abducibles in the solution are leaves in its procedural query-rooted call-
graph, i.e. the graph recursively engendered by the procedure calls from literals in bodies
of rules to heads of rules, and thence to the literals in the rule’s body.

2.2. Tabled Abduction in TABDUAL

The concept of tabled abduction is illustrated and summarized in the following examples.
Consider an abductive logic program, taken from [10]:

Example 1. Program P;: q < a. s<b,q. t<s,q.

where a and b are abducibles. Suppose three queries: g, s, and ¢, are individually
launched, in that order. The first query, g, is satisfied simply by taking [a] as the abduc-
tive solution for ¢, and tabling it. Executing the second query, s, amounts to satisfying
the two subgoals in its body, i.e. abducing b followed by invoking g. Since g has pre-
viously been invoked, we can benefit from reusing its solution, instead of recomputing,
given that the solution was tabled. That is, query s can be solved by extending the current
ongoing abductive context [b] of subgoal ¢ with the already tabled abductive solution [a]
of g, yielding [a, b]. The final query ¢ can be solved similarly. Invoking the first subgoal
s results in the priorly registered abductive solution [a,b], which becomes the current
abductive context of the second subgoal g. Since [a,b] subsumes the previously obtained
abductive solution [a] of ¢, we can then safely take [a,b] as the abductive solution to
query ¢. This example shows how [a], as the abductive solution of the first query ¢, can be
reused from an abductive context of g (i.. [b] in the second query, s) to another context
(i.e. [a,b] in the third query, 7). In practice the body of rule ¢ may contain a huge number
of subgoals, causing potentially expensive recomputation of its abductive solutions and
thus such unnecessary recomputation should be avoided.

Tabled abduction is realized in a prototype, TABDUAL, which involves a program
transformation of abductive logic programs. Abduction can then be enacted on the trans-
formed program directly, without the need of a meta-interpreter. Example 1 already in-
dicates two key ingredients of the transformation:

1. Abductive context, which relays the ongoing abductive solution from one sub-
goal to subsequent subgoals, as well as from the head to the body of a rule, via

input and output contexts, where abducibles can be envisaged as the terminals of
parsing.

2. Tabled predicates, which table the abductive solutions for predicates defined in
the input program.

Example 2. The rule t < s,q from Example 1 is transformed into two rules:
ta(E) < s([1,T),q(T,E). t(I,0) < tu(E), produce(O,1E).

Predicate 7,,(E) is the tabled predicate which tables the abductive solution of ¢ in its
argument E. Its definition, in the left rule, follows from the original definition of ¢. Two
extra arguments, that serve as input and output contexts, are added to the subgoals s and
t in the rule’s body. The left rule expresses that the tabled abductive solution E of .,
is obtained by relaying the ongoing abductive solution in context 7 from subgoal s to
subgoal ¢ in the body, given the empty input abductive context of s (because there is no
abducible in the body of the original rule of #). The rule on the right expresses that the
output abductive solution O of ¢ is obtained from the the solution entry E of #,, and the
given input context / of 7, via TABDUAL system predicate produce(O,I,E), that checks
consistency. The other rules in Example 1 are transformed following the same idea.

An abducible is transformed into a rule that inserts it into the abductive context. For
instance, the abducible a from Example 1 is transformed into: a(I,0) <« insert(a,I,0),
where insert(a,I,0) is a TABDUAL system predicate which inserts a into the input con-
text I, resulting in the output context O, while also checking consistency. The negation
not a of the abducible a is transformed similarly, except that it is renamed into nof_a in
the head (as we consider normal logic programs): not_a(I,0) + insert(not a,I,0).

The TABDUAL program transformation employs the dual transformation [1],
which makes negative goals ‘positive’, thus permitting to avoid the computation of all
abductive solutions, and then negating them, under the otherwise regular negative goals.
Instead, we are able to obtain one abductive solution at a time, as when we treat abduc-
tion under positive goals. The dual transformation defines for each atom A and its set of
rules R in a program P, a set of dual rules whose head not_A is true if and only if A is false
by R in the employed semantics of P. Note that, instead of having a negative goal not A
as the rules’ head, we use its corresponding ‘positive’ one, not _A. Example 3 illustrates
only the main idea of how the dual transformation is employed in TABDUAL and omits
many details, e.g. checking loops in the input program, all of which are referred in [10].

Example 3. Suppose program P, contains two rules of p/1 (along with ¢/1 and r/2):
p(1) < a(l). p(X) = q(Y),r(X,Y).

where a/1 is abducible. The TABDUAL transformation will create a set of dual rules for
p/1 which falsify p/1 with respect to its two above rules, i.e. by falsifying both the first
rule and the second rule, expressed by predicate p*! /3 and p*? /3, respectively:

not_p(X,1,0) « p*(X,1,T),p*(X,T,0).

In TABDUAL, the above rule is known as the first layer of the dual transformation. The
second layer contains the definitions of p*! /3 and p*?/3.

For p*] /3, the first rule of p is falsified when either its argument is not equal to 1 or,
if equal to 1, its body is falsified (i.e. the negation of a(1) is abduced), so we have:

plx, LN «—x#1. p'(1,1,0) < not_a(1).

In the first rule of p*! /3, the content of the context / is simply relayed from the input to
the output context. The abduction of not a(1), i.e. by invoking the subgoal not_a(1) in
the body of the second rule, is achieved via the rule of not_a/1.

For p*2/3, the second rule of p is falsified when either its argument does not unify
with X, or its body is falsified (by negating one subgoal at a time). Since variable X must
be unified by any term, the first alternative can be dropped. Thus, we have:

p2(X,1,0) «not_q(Y,1,0). p*(X,1,0) « q(Y,1,T),not _r(X,Y,T,0).

In the second rule of p*2/3, besides negating the second subgoal r, the preceeding posi-
tive subgoal g is kept, since it may help instantiate variable ¥ when the second subgoal
not_r is subsequently invoked. The abductive context in the body is relayed as usual.

Finally, TABDUAL transforms integrity constraints like any other rules, and top-
goal queries are always launched by also satisfying integrity constraints. This transfor-
mation is illustrated, in Section 5, using an example from medical diagnosis.

3. Improvements on TABDUAL

TABDUAL has still much room for improvement. We extend here its features, by in-
troducing a new system predicate that is relevant for decision making. We also mention
other general improvements, which advance TABDUAL towards its more practical use.

3.1. Picking up Abducible-based Actions

In decision making under hypothetical reasoning, given an observation, one is typically
confronted with several possible scenarios. These scenarios are characterized by the ex-
planatory abducibles, and decisions are made on their basis. We illustrate it with a simple
example.

Example 4. Suppose that an agent observes some smoke and its action decision with
regard to this situation depends on the cause of the smoke. In case it is triggered by fire,
the agent reacts by calling firefighters. But if it is explained by the presence of tear gas,
then the agent better seeks police protection.

Top-goal queries for decision making can be enacted by means of a new TABDUAL
system predicate do(Act,Abds, Obs). It explains the given observation Obs by the abduc-
tive solution Abds, and subsequently picks the action Act based on the given definition
of decide/2 in the agent’s belief.

The situation can be modeled in TABDUAL as follows:

smoke < fire. smoke < tear_gas.

beginProlog.

decide(call_firefighters, Abds) <+— member(fire, Abds).
decide(police_protection,Abds) <— member(tear_gas,Abds).
endProlog.

where fire and tear_gas are abducibles. Note that beginProlog and endProlog are
TABDUAL’s identifiers to distinguish non-abducitve program part from the abductive
one. All rules between these two identifiers are considered usual Prolog programs and
are not subject to the TABDUAL transformation.

For Example 4, we have the top-goal query do(Act,Abds,smoke), which gives us
two scenarios and guides us with actions to take: Act = call_firefighters for Abds =
[fire] and Act = police_protection for Abds = [tear_gas].

3.2. Recalling Other Improvements

Besides predicate do/3, TABDUAL is also equipped with some other improvements
mentioned below. These improvements, which support TABDUAL better for its practical
use, are detailed elsewhere [17]:

e TABDUAL provides a system predicate to access the ongoing abductive solu-
tions. This feature is useful and important for manipulating abductive solutions
dynamically, e.g. to prefer some explanations, or eliminate so-called nogood com-
binations (those known to violate constraints). Like predicate do/3, it also permits
modular mixes of abductive and non-abductive program parts.

e Predicates comprised of facts are transformed much simpler, i.e. they do not fol-
low the general TABDUAL transformation applied for rules as explained in Sec-
tion 2.2. The reason is that facts do not induce any abduction, and such simpler
transformation helps deal with abductive logic programs having large factual data,
which is often the case in many real world problems.

e Dual rules are constructed by need, thus avoiding a complete dual transformation
for every defined atom in the program in advance during the transformation phase.
The latter approach, though conceptually correct, is unpractical, as real-world
problems typically consist of a huge number of rules, and the transformation may
take ages and hinder abduction to take place. The transformed program still con-
tains the same first layer of the dual transformation, but its second layer is defined
by a rule, which will be interpreted by the TABDUAL system on-the-fly, during
abduction, to produce the concrete definitions of the second layer. Extra compu-
tation load that may occur during the abduction phase, due to the by-need con-
struction of dual rules, can be reduced by tabling the already constructed generic
dual rules. Therefore, when such dual rules are later needed, they are available
for reuse and thus their recomputation can be avoided.

4. Declarative Debugging as Abduction: a Preparatory Tool for Decision Making

When decision making rests upon knowledge that is expressed declaratively (e.g. in logic
programs), declarative debugging becomes an important tool to ease the debugging of
errors that may infiltrate the knowledge representation, in preparation for and mainte-
nance of correct decision making. Declarative debugging of normal logic programs has
been characterized before as belief revision [11, 12]. We revisit in this section two cases
of declarative debugging, those of incorrect solutions and of missing solutions, and show
that they can be viewed and implemented as abduction.
We start by considering the debugging of definite logic programs.

Example 5. Take a buggy program P [11]:

a(l). a(X) < b(X),c(Y,Y).
b2). bB3). (1,X). ¢(2,2).

Incorrect Solutions Suppose that a(3) is an incorrect solution. To debug its cause,
the program is first changed using the simple transformation introduced in [12], i.e. by
adding default literal not incorrect(i,[Xi,...,X,]) to the body of each i-th rule of Py, to
defeasibly assume their correctness by default, where n is the rule’s arity and X;s, for
1 <i <n, its head arguments. This yields program P;:
a(1l) < not incorrect(1,[1]). a(X) < b(X),c(Y,Y),not incorrect(2,[X]).
b(2) < not incorrect(3,[2]). b(3) < not incorrect(4,[3]).
¢(1,X) < not incorrect (5,[1,X]). ¢(2,2) « not incorrect(6,[2,2]).

In terms of abduction, one can envisage incorrect /2 as an abducible. To express, while
debugging, that a(3) is an incorrect solution, we add to P; an IC: <+ a(3). We run
TABDUAL on P;, which returns three solutions as the possible sufficient causes of the
incorrect solution:

[incorrect(2,[3])], [incorrect(4,[3])], [incorrect(5,[1,1]),incorrect (6, [2,2])].

Missing Solutions Suppose a(5) should be a solution of Py, which is missing. To find
this bug, P, is transformed [11], by adding for each predicate p/n the rule:

p(X1,...,Xy) < missing(p(X1,...,Xn)).
For Py, it is transformed into PZ(that contains all rules from Py plus three new rules:
a(X) < missing(a(X)). b(X) + missing(b(X)). ¢(X,Y) < missing(c(X,Y)).

Similarly as before, missing/1 can be viewed as an abducible. But now, to express that
we miss a(5) as a solution, we add to P} an IC: <— not a(5). TABDUAL returns the three
abductive solutions on P’ as the causes of missing solution a(5) in Py:

[missing(a(5))], [missing(b(5))], [missing(b(5)), missing(c(X,X))].

Differently from [11, 12] where minimal solutions are targeted, TABDUAL also returns
non-minimal solution [missing(b(5)), missing(c(X,X))]. In this case, TABDUAL allows
one to choose those solutions that are sufficient so far, or interesting enough, and to con-
tinue searching for more solutions if needed, just like Prolog does. Finding minimal ab-
ductive solutions is not always desired — here bugs may well not be minimal. And in gen-
eral, minimality can be deferred to a later step and paid for only if needed. Examination
of side-effects is often more important than minimality [15].

Finally, in case of debugging normal logic programs, the two above debugging trans-
formations are adroitly summed into one, as illustrated in Example 6. TABDUAL takes
care of further transforming the default not’s into positive atoms by dualizing them, to
make the program a definite one.

Example 6. Consider program Ps:

a < not b. a<—c. b.

We obtain P5 by applying the two transformations:
a < not b,not incorrect(1). a < c,not incorrect(2). b < not incorrect(3).
a <+ missing(a). b + missing(D). ¢ < missing(c).
Suppose we want to explain the causes of missing solution a, then we add to P§ an IC:
< not a. Running TABDUAL on PZ, we obtain three abductive solutions:

[incorrect(3)], [missing(a)], [missing(c)]

which correctly enunciate the three possible causes of the problem.

5. Evaluating TABDUAL in Decision Making: a Medical Case

Next, we show how TABDUAL is applied to medical diagnosis, adapted from [18].

Example 7. A patient shows up at the dentist with signs of pain upon teeth percussion
but without tooth mobility. The expected causes for the observed signs are periapical
lesion, horizontal fracture, and vertical fracture of the root and/or crown.

An abductive logic program representing a partial medical knowledge base of the
practitioner is as follows:

percussion_pain <— periapical_lesion
percussion_pain <— fracture

radiolucency < periapical lesion

fracture < horizontal _fracture
elliptic_fracture_trace < horizontal _fracture
tooth_mobility < horizontal _fracture

fracture < vertical _fracture
decompression_pain <— vertical _fracture

< not percussion_pain
< tooth_mobility

where periapical lesion, horizontal _fracture, and vertical _fracture are abducibles.
The integrity constraints indicate that the practitioner must conclude percussion_pain but
not tooth_mobility since these are the symptoms of the patient that requires explanation.

Suppose that during examination, the practitioner suspects that there is a frac-
ture. This corresponds to query fracture with its corresponding transformed top-goal:
fracture(I,T),not_false(T,0). Notice that abductive context 7, which is the ongoing
abductive solution to fracture is relayed to not_false in order to satisfy integrity con-
straints. Recall that integrity constraints are transformed like any other rules (cf. Sec-
tion 2.2). In particular, predicate not_false/2 is defined, by the dual transformation, as
follows:

not_false(I,0) < false*'(1,T), false**(T,0).

false*!(1,0) + percussion_pain(I,0).
false**(1,0) < not tooth_mobility(I,0).

The first subgoal fracture gives two abductive solutions: T = [horizontal _fracture|
and T = [vertical_fracture]. The second subgoal not_false, constrains these two solu-
tions further:

e It eliminates [horizontal _fracture], due to rule false*?/2. The latter rule, which
eventually abduces not horizontal_fracture, makes the first abductive solution
inconsistent.

e With respect to [vertical_fracture], the integrity constraint results in two fi-
nal abductive solutions: O = [periapical_lesion,vertical _fracture] and O =
[vertical_fracture]. Notice that, in the derivation of false*! to eventually obtain
O = |vertical _fracture], TABDUAL allows reusing the tabled abductive solution
from the subgoal fracture, thus showing the benefit of tabled abduction in this
problem.

We have also evaluated TABDUAL in terms of performance and scalability, where
we consider four distinct TABDUAL variants (of the same underlying implementation),
obtained by separately factoring out its important features. We particularly examined two
benchmarks: the well-known N-queens problem, where abduction is used to find safe
board configurations of N queens, and an example of declarative debugging. The eval-
uation of the first benchmark aims at evaluating the scalability of TABDUAL, concen-
trating on tabling of nogoods of subproblems, i.e. tabling conflictual configurations of
queens (essentially, tabling the ongoing abductive solutions). The result is promising, that
TABDUAL indeed benefits from tabling ongoing abductive solutions: as constraints be-
come more complex, its performance consistently surpasses that of its non-tabling coun-
terpart. The second benchmark focuses on the relative worth of the dual transformation
by need in TABDUAL, with respect to both the transformation and the abduction time.
Though the dual transformation by need requires more time during abduction, which is
to be expected due to the on-the-fly dual rules construction, it saves the transformation
time significantly and thus the total time as a whole. The evaluation details can be found
in [19].

6. Conclusion and Future Work

We have improved TABDUAL, adding a novel feature by introducing a new system pred-
icate to facilitate decision making, apart from other improvements. We believe that these
improvements will gear up TABDUAL better for practical applications, namely in deci-
sion making. We also illustrated that declarative debugging, a tool of interest to perfect-
ing knowledge-based decision making, can be viewed as abduction, and hence readily
implemented in an abduction system like TABDUAL. Finally, we applied TABDUAL to
medical diagnosis and showed how it can benefit from tabled abduction. An issue that
we have touched upon in the TABDUAL'’s evaluation, reported elsewhere [19], is tabling
nogoods of subproblems, and how it may improve performance, with good scalability
with problem complexity. As for the future, we look forward to applying TABDUAL,
integrating it with other logic programming features (such as updating and uncertainty),
to moral decision making, where we have already made a start [20,21].

Acknowledgements Ari Saptawijaya acknowledges the support of FCT-Portugal, grant
SFRH/BD/72795/2010.

References

(1]

(2]
(3]

[4]
[3]

(6]

(71

[8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

J. J. Alferes, L. M. Pereira, and T. Swift, “Abduction in well-founded semantics and generalized stable
models via tabled dual programs,” Theory and Practice of Logic Programming, vol. 4, no. 4, pp. 383—
428, 2004.

T. Eiter, G. Gottlob, and N. Leone, “Abduction from logic programs: semantics and complexity,” Theo-
retical Computer Science, vol. 189, no. 1-2, pp. 129-177, 1997.

A. Kakas, R. Kowalski, and F. Toni, “The role of abduction in logic programming,” in Handbook of
Logic in Artificial Intelligence and Logic Programming (D. Gabbay, C. Hogger, and J. Robinson, eds.),
vol. 5, Oxford U. P., 1998.

M. Denecker and A. C. Kakas, “Abduction in logic programming,” in Computational Logic: Logic Pro-
gramming and Beyond, Springer Verlag, 2002.

A. C. Kakas and A. Michael, “An abductive-based scheduler for air-crew assignment,” J. of Applied
Artificial Intelligence, vol. 15, no. 1-3, pp. 333-360, 2001.

J. F. Castro and L. M. Pereira, “Abductive validation of a power-grid expert system diagnoser,” in Procs.
17th Intl. Conf. on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems
(IEA-AIE’04), vol. 3029 of LNAI, pp. 838-847, Springer, 2004.

J. Gartner, T. Swift, A. Tien, C. V. Damdsio, and L. M. Pereira, “Psychiatric diagnosis from the viewpoint
of computational logic,” in Procs. 1st Intl. Conf. on Computational Logic (CL 2000), vol. 1861 of LNAI,
pp. 1362-1376, Springer, 2000.

R. Kowalski and F. Sadri, “Abductive logic programming agents with destructive databases,” Annals of
Mathematics and Artificial Intelligence, vol. 62, no. 1, pp. 129-158, 2011.

R. Kowalski, Computational Logic and Human Thinking: How to be Artificially Intelligent. Cambridge
U.P,2011.

L. M. Pereira and A. Saptawijaya, “Abductive logic programming with tabled abduction,” in Procs. 7th
Intl. Conf. on Software Engineering Advances (ICSEA), pp. 548-556, ThinkMind, 2012.

L. M. Pereira, C. V. Damasio, and J. J. Alferes, “Debugging by diagnosing assumptions,” in Automatic
Algorithmic Debugging, vol. 749 of LNCS, pp. 58-74, Springer, 1993.

L. M. Pereira, C. V. Damésio, and J. J. Alferes, “Diagnosis and debugging as contradiction removal in
logic programs,” in Progress in Artificial Intelligence, vol. 727 of LNAI, Springer, 1993.

J. R. Josephson and S. G. Josephson, Abductive Inference: Computation, Philosophy, Technology. Cam-
bridge U. P., 1995.

P. Lipton, Inference to the Best Explanation. Routledge, 2001.

L. M. Pereira and A. M. Pinto, “Side-effect inspection for decision making,” in Procs. Ist KES Intl.

Symposium on Intelligent Decision Technologies (KES-IDT’09), vol. 199 of Springer Studies in Compu-
tational Intelligence, pp. 139-150, 2009.

B. Brogaard, “A Peircean Theory of Decision,” Synthese, vol. 118, no. 3, pp. 383—401, 1999.

A. Saptawijaya and L. M. Pereira, “Implementing tabled abduction in logic programs.” Submitted to
Doctoral Symposium on Artificial Intelligence (SDIA), Available at http://centria.di.fct.unl.

pt/~1lmp/publications/online-papers/implementing_tabdual.pdf, 2013.

L. M. Pereira, P. Dell’Acqua, A. M. Pinto, and G. Lopes, “Inspecting and preferring abductive models,”
in The Handbook on Reasoning-Based Intelligent Systems (K. Nakamatsu and L. C. Jain, eds.), pp. 243—
274, World Scientific Publishers, 2013.

A. Saptawijaya and L. M. Pereira, “Towards practical tabled abduction in logic programs.” Submitted
to 16th Portuguese Conference on Artificial Intelligence (EPIA), Available at http://centria.di.

fct.unl.pt/~1lmp/publications/online-papers/abduction_tabling.pdf, 2013.

L. M. Pereira and A. Saptawijaya, “Modelling Morality with Prospective Logic,” in Machine Ethics
(M. Anderson and S. L. Anderson, eds.), pp. 398—421, Cambridge U. P., 2011.

T. A. Han, A. Saptawijaya, and L. M. Pereira, “Moral reasoning under uncertainty,” in Procs. of The
18th Intl. Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-18), vol. 7180
of LNCS, pp. 212-227, Springer, 2012.

