
Abductive Logic Programming with Tabled Abduction

Luı́s Moniz Pereira∗, Ari Saptawijaya ∗†
∗Centro de Inteligência Artificial (CENTRIA)

DI/FCT Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Email: lmp@fct.unl.pt, ar.saptawijaya@campus.fct.unl.pt
†Fakultas Ilmu Komputer Universitas Indonesia

Kampus UI Depok 16424, Indonesia

Abstract—In abductive logic programming, abductive solu-
tions are typically computed without attending to the abductive
context. These abductive solutions can actually be reused in
a different abductive context. In this paper, we employ a
tabling mechanism and propose a tabled abduction mechanism,
that consists of a transformation from abductive normal logic
programs into tabled dual programs, by tabling abductive
solution entries and without requiring any meta-interpreter.
Recomputation of abductive solutions for a different context,
but consistent with them, can then be avoided, by reusing the
tabled abductive solution entries. Though our implementation
is in XSB-Prolog, its concepts may be imported to other
systems, not necessarily Logic Programming ones.

Keywords-tabled abduction; abduction transformation; well-
founded semantics; XSB-Prolog.

I. INTRODUCTION

Abductive logic programming offers a formalism to
declaratively express and solve problems in a variety of
areas, e.g., decision-making, diagnosis, planning, belief re-
vision and hypothetical reasoning (cf. [1]–[4]). On the other
hand, the tabling mechanism, now supported by a variety of
Prolog systems, ensures termination and optimal complexity
for query evaluation to a large class of logic programs, viz.
under the Well-Founded Semantics [5].

We explore the idea of how to benefit from the tabling
mechanism in order to reuse priorly obtained abductive
solutions in a given new abductive context. For so doing,
we propose a tabled abduction system, dubbed TABDUAL,
which includes a transformation (itself a logic program) from
abductive normal logic programs into tabled dual programs,
that allows query evaluation without resorting to a meta-
interpreter. The transformation makes use of the formal dual
transformation defined in [6], and implements an innovative
and pragmatic re-uptake of prior abductive solution entries
in tabled predicates. More precisely, we contribute on the
following aspects:

• We cater for various critical issues in the program trans-
formation, illustrated in successive prototypical exam-
ples. They incrementally show how the transformation
evolves from the basic core idea into its current actual
state, by gradually dealing with the unavoidable issues

arising, viz. introducing tabled predicates, dealing with
direct positive loops as well as positive and negative
loops over negation, handling programs with variables
and also non-ground queries.

• We have developed a prototype for TABDUAL based
on its specification [7]. It has been tested with bench-
mark core examples pertaining to each of the above
mentioned issues, under the latest version of XSB
(version 3.3.6).

• We discuss some ideas on how to migrate core features
of TABDUAL into the underlying engine-level of Pro-
log systems wanting to encompass tabled abduction.

The paper is structured as follows. Section 2 reviews
basic logic programming and abductive logic programming
notions. The motivation and the key concept of tabled
abduction, along with its implementation, and related work
are then discussed, in Section 3. The ideas on how to migrate
key ingredients of TABDUAL into an engine-level of Prolog
systems are discussed in Section 4, and we conclude in
Section 5.

II. ABDUCTIVE LOGIC PROGRAMMING

We briefly review in this section the abductive logic
programming formalism, which has been well studied for
a few decades by now [8]–[13]. We start with basic logic
programming background. A logic rule has the form

H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

where n ≥ m ≥ 0 and H,Bi with 1 ≤ i ≤ n are atoms.
H and B1, . . . , Bm, not Bm+1, . . . , not Bn are the head and
the body of the rule, respectively. Any variables occurring
in a rule are universally quantified. We use ‘not’ to denote
default negation. The atom Bi and its default negation
not Bi are named positive and negative literals, respectively.
When n = 0, we say the rule is a fact and write it simply as
H . The atoms true and false are, by definition, respectively
true and false in every interpretation. A rule in the form of
a denial with the empty head, or equivalently with false in
the head, is called an integrity constraint (IC) or denial. A
normal logic program is a set of such logic rules, where non-
ground rules (i.e., rules containing variables) stand for all



their ground instances. A program may represent an infinite
set of rules, when it contains at least one function symbol.
For example, consider the following program with two rules:

nat(0). nat(s(X))← nat(X).

The second rule stands for an infinite number of its ground
instances (as we have one function symbol s and a constant
0), namely:

nat(s(0)) ← nat(0).
nat(s(s(0))) ← nat(s(0)).
nat(s(s(s(0)))) ← nat(s(s(0))).
. . . etc.

Logic program theoretical semantics are usually defined
by reference to all the ground instances of a program’s
rules. This set of instances may be infinite even when
the set of rules (with variables) is finite, as exemplified
above. Rule bodies however must, by definition, be finite.
In programming practice, necessarily finite programs only,
albeit with variables, are employed. Consequently, note
that in the construction of the dual program, discussed in
Section III, we ensure that its rules’ bodies are still finite,
because our transformation applies to possibly non-ground
but nevertheless finite programs.

Abduction, or inference to the best explanation (a com-
mon designation in the philosophy of science), is a reasoning
method whereby one chooses those hypotheses that would,
if true, best explain observed evidence.

An abductive logic program is a normal logic program
that allows for abducibles (i.e., positive literals with no rules
in the program), or their default negations, to appear in
the body of rules. Abducibles stand for hypotheses, whose
truth value is not assumed initially. Queries to the program
represent the evidence we would like to explain, by resorting
to a given set of permitted abducibles. Abducibles in rules’
bodies may have arguments, but must be a ground instance
on the occasion of their abduction. Note that the negation
‘not A’ of an abducible A does not refer to its default
negation, but instead to the explicitly assumed negation of A.
The truth value of abucibles may be independently assumed
true or false, either in their positive or negated form, as the
case may be, in order to produce an abductive solution to a
query, by means of a consistent set of assumed hypotheses.

An abductive solution to a query is thus a consistent set of
abducible instances or their negations that, when substituted
by their assigned value true everywhere in the program P ,
affords us with a model of P (for the specific semantics
used on P ), which satisfies both the query and the ICs
– a so-called abductive model. Because explicit negation
entails default negation, the substitution above is warranted.
Often, an abductive solution S for goal G in program P
is defined as a set of abducibles consistent with P such
that P ∪ S |= G in the semantics employed. The above
definition of abductive solutions is consistent with this one,

but avoids the complication of introducing the positive and
the negative abducibles of a solution as facts. Instead, they
are replace by true wherein the program. Note that though
the semantics may be other than two-valued, the abductive
solutions themselves are enforced two-valued by definition.

When performing abductive reasoning, we typically wish
to find, by need only, via top-down computation, the abduc-
tive solutions to a query. This top-down computation, dubbed
backward chaining, is possible only when the underlying
semantics is relevant, a property enjoyed by the Well-
Founded Semantics (WFS) [5]. That is, it guarantees that
it is enough to use only the rules relevant to the query
(those in its procedural call-graph) to find its truth value,
thus it avoids computing a whole model in order to find an
answer to a query. In order to satisfy the ICs too, we conjoin
each query with ‘not false’. Mark that when a semantics
enjoys relevancy, the values of abducibles not mentioned in
the abductive solution are indifferent to the solution. We
use WFS in the implementation of our prototype tabled
abduction system, TABDUAL, described in Section III-E.

III. TABLED ABDUCTION

We begin with issues that motivate the need for tabled
abduction, and subsequently propose a novel abduction
system, termed TABDUAL, that involves a transformation
of an abductive logic program into another program with
tabled abductive solutions.

A. Motivation and Related Work

An abductive solution to a problem is typically formed
from the abductive solutions of its subproblems. Consider
the following abductive logic program.

q ← a. r ← b, q. p← r, q.

where a and b are abducibles. Suppose three queries: q, r
and p, are launched, in that order. Query q simply gives [a]
as the abductive solution. The next query, r, is typically
solved by abducing b and followed by invoking q. But
since q has previously been invoked, query r can in fact
be solved by reusing the previously obtained abductive
solution [a] of q and extending it with the newly abduced
abducible b; yielding [b, a] as the abductive solution to
r. One may also view that solving query r amounts to
extending the ongoing current abductive context [b] when
q is invoked, with the priorly discovered and registered in a
table, abductive solution [a] of q, resulting in [b, a]. Using
similar reasoning, the final query p can be solved by reusing
the abductive solutions of r and q. More precisely, we can
view that the abductive solution [b, a] of r in the body of
p becomes the current abductive context of q and since it
subsumes the previously obtained abductive solution [a] of q
we can safely have [b, a] as the abductive solution to query
p.



The above example illustrates how abductive solutions
can actually be reused in a new abductive context, avoiding
unnecessary recomputation of abductive solutions to sub-
problems, and thereby gaining in efficiency (imagine if the
definition of the first rule q is scaled up by another huge
program). One may observe that the table size would be
proportional to the number of distinct (positive) goals in the
procedural call-graph, i.e., each first call of the goals in a
given query will table, as the solution entry, the abductive
solutions of the called goal.

Reusing solutions in logic programming, without abduc-
tion, is commonly performed using the tabling mechanism.
It therefore allows dealing with loops in the program,
ensuring termination of looping queries. Surprisingly, to
the best of our knowledge, no work has addressed how
reusing abductive solutions, as we hinted above, can be
realized using the tabling mechanism. Tabling has only been
employed limitedly, i.e., to table a meta-intepreter, which
in turn allows abduction to be performed in the presence
of loops in a program, but with no analysis of abductive
solution subsumption at all (cf. ABDUAL [6], [14]).

Our current work pushes the benefit of the tabling mech-
anism to abduction, by employing it to table abductive
solution entries (effectively achieved by tabling language-
level predicates carrying these entries) for their later reuse
in new abductive contexts, by abductive subsumption.

Our approach differs from that of [15]. Therein, ab-
ducibles are coded as odd loops, it is compatible with and
uses constructive negation, and involves manipulating the
residual program. It suffers from a number of problems,
which it identifies, in its Sections 5 and 6, and its approach
was not pursued further.

Like ABDUAL [6], we use the dual transformation and
rely on the same theoretic underpinnings, but the ABDUAL
code caters only for ground programs and queries. It also
requires a meta-interpreter which makes tabled abduction
awkward because it is enacted only at the level of tabled
meta-interpreter predicates, and does not cater for abductive
subsumption. In short, it affords no particular treatment for
the tabling of abduction. Moreover, by design of omission,
it does not address at all the issues raised by the desirable
reuse of tabled solutions. We employ no meta-interpreter, but
generate a self-sufficient program transform. Hence, it avoids
meta-interpretation and, moreover, explicitly addresses the
concerns of making better use of tabling for abduction,
so that known abductive solutions may be appropriated
by subsequent abductive goals. We do so not just in core
conception, but also adumbrating optimizations and quick-
kill trickery.

Our tabled abduction implementation, termed TABDUAL,
also allows dealing with programs containing loops, and
thus extending the usual tabling mechanisms. We have con-
ducted an experiment to compare TABDUAL with the meta-
interpreter ABDUAL [14] using our test suite of programs

abds([a/0,b/0,c/0]).

p0 <- q0. p3 <- q3. p4 <- q4.
p0 <- a. q3 <- not r3. q4 <- p4.
q0 <- p0. r3 <- p3. q4 <- not a,not b.
q0 <- b.

p8 <- not q8, a. p11 <- not q11, a.
q8 <- not p8. q11 <- p11,not a.
q8 <- b.

Figure 1. Some programs with loops from the test suite. Predicate abds
lists the abducibles with their corresponding arity.

Table I
COMPARISON OF RESULTS: TABDUAL VS. ABDUAL FOR FIGURE 1

Queries TABDUAL ABDUAL
not p0 [not a, not b] [not a, not b], [not a]

p3 [] undefined []
not p3 [] undefined []
not p4 [a], [b] [a], [b], [a,b]

q8 [] undefined, [not a], [b] [not a], [b]
not q11 [a], [not a] [], [a], [not a]

with various kinds of loops. Some distinguishing results,
with respect to the programs given in Figure 1, are shown
in Table I; the complete result is available in [7]. TABDUAL
provides more correct and complete results within the test
suite, given that our scope of programs and queries is more
general than ABDUAL’s:

• For query not p0, [not a, not b] should be the only
solution, because not p0 succeeds by abducing not a
and failing q0. To fail q0, not b has to be abduced and
p0 has to fail. Here, there is a positive loop on negation
between not p0 and not q0, so the query succeeds and
gives the solution [not a, not b] as the only solution.

• For queries p3 and not p3, unlike ABDUAL,
TABDUAL returns undefined (and abduces nothing) as
expected, due to the negative loops over negation.

• Query not p4 shows that TABDUAL does less abduc-
tion than ABDUAL, by abducing a or b only; not both.

• For query q8, TABDUAL has an additional answer: []
undefined (i.e., undefined by abducing nothing), due
to the negative loop over negation between q8 and p8.
Similar reasoning equally applies to query not p8. This
additional answer is missing by ABDUAL.

• For query not q11, the first solution is obtained by
abducing a to fail q11. Another way to fail q11 is
to fail p11, which gives another solution, by abducing
not a. These are the only two abductive solutions which
are returned by TABDUAL and follows correctly the
definition of abductive solutions. There is no direct
positive loop involving q11 in the program, hence
not q11 will never succeed with [] abductive solution,
as returned by ABDUAL.

We have not yet compared efficiency, but it seems apparent
that TABDUAL is an improvement over ABDUAL.



TABDUAL does not concern itself with constructive nega-
tion, like the NegABDUAL system [16] and its follow-up
[17]. NegABDUAL uses abduction to provide constructive
negation plus abduction, by making the disunification pred-
icate ‘\=/2’ an abducible. Again, it does not concern itself
with the issues of tabled solutions reuse, which is the main
purpose of TABDUAL.

NegABDUAL transforms programs and uses minimal
meta-interpretation. Its transformations are intricate, espe-
cially on account of its constructive negation design goal,
which is no concern of TABDUAL. In the past, we have
used it extensively; but, for now, we have not yet compared
it to TABDUAL. It will surely be heavier and not benefit
from our abductive solutions tabling. However, because of
its constructive negation ability, NegABDUAL can deal with
problems that TABDUAL does not, and intends not, pre-
cisely because it aims at being lighter and more adaptable.
Consider program P , with no abducibles, just to illustrate
the point of constructive negation induced by dualization:

p(X)← q(Y ). q(1).

In NegABDUAL, the query not p(X) will return a qualified
‘yes’, because it is always possible to solve the constraint
Y \=1, as long as one assumes there are at least two
constants in the Herbrand Universe. Indeed, the local vari-
able Y in the dualizing transmutation of p(X) produces
a default negation. In TABDUAL implementation, there is
no floundering. However, distinct from NegABDUAL, our
TABDUAL answers ‘no’ to not p(X), which is correct, even
in the absence of a conditional answer afforded only by
having constructive negation in place.

To the best of our knowledge, no other work on using
tabling and dual programs for abduction exists, nor has the
problem of tabled abduction that we currently addressed
even been formulated by others.

We next introduce TABDUAL through a sequence of
prototypical examples, which illustrates how, for easier un-
derstanding, it incrementally evolves to cope with the major
issues of concern arising in tabled abduction. We begin with
the key transformation employing the very idea of tabling
and of reusing abductive solutions. We further successively
argue why and how more constructs should be added to the
transformation, to gradually deal with the issues involved, as
illustrated in ever more complex and demanding examples.

In TABDUAL, we introduce a so-called abductive context
(referred to “context” hereafter), as illustrated in the example
at the beginning of this section, for every predicate defined
by the transformation. The context indicates the ongoing ten-
tative abductive solution for any given tabled goal. It allows
to relay the abductive solution from the head to the body of a
rule and back, and from one subgoal to subsequent subgoals.
The context is effectively catered for and realized by adding
two extra arguments to every predicate, as defined by the
transformation: one for the input context and the other for

1. :- table p_ab/1, q_ab/1.
2. p_ab(E) :- q([a],E).
3. q_ab([b]). q_ab([c]).
4. p(I,O) :- p_ab(E),produce(O,I,E).
5. q(I,O) :- q_ab(E),produce(O,I,E).
6. p_st(I,O) :- p_st_1(I,O).
7. q_st(I,O) :- q_st_1(I,T),q_st_2(T,O).
8. p_st_1(I,O) :- not_a(I,O).
9. p_st_1(I,O) :- not_q(I,O).
10. q_st_1(I,O) :- not_b(I,O).
11. q_st_2(I,O) :- not_c(I,O).
12. not_p(I,O) :- tnot(p_ab([])),p_st(I,O).
13. not_q(I,O) :- tnot(q_ab([])),q_st(I,O).

Figure 2. Main rules obtained from the transformation of P1

the output context of any ongoing abductive solution for the
predicate. Abducibles are ‘parsed’ as terminals in an ongoing
derivation and tracked in these additional arguments.

We fix some notation. We use capital letters to denote
variables appearing in a program and write P/N to denote
that predicate P has arity N . In the examples, the set of
abducible atoms are declared in the predicate abds/1. In the
result of the transformation, we use :- to separate the head
and the body of a rule, instead of←. As the implementation
is done in XSB Prolog [18], [19], we borrow from it its
syntax, e.g., for the tabled negation tnot/1 and for the
compiler directive to declare tabled predicates.

B. Basic Idea

We start with the basic idea by means of the example
below. Consider ground program P1 below.

abds([a/0, b/0, c/0]). p← a, q. q ← b. q ← c.

The transformation produces, for every defined predicate in
P1 (p/0 and q/0), several sets of rules. The transformation
of P1 contains the main rules as shown in Figure 2.

The first set of rules defines the tabled predicates p ab/1
and q ab/1, declared in line 1. The tabled predicate essen-
tially tables the abductive solution entry, always assuming,
for facilitating reuse, empty input context. Since the input
context calls for tabled predicates are always empty, only one
extra argument (i.e., for solution entry context) is needed.
The p ab rule (line 2) is derived from the p rule of the
original program, where p is defined by the subgoals q and
by abducing a. The tabled entry E of p ab is passed from
the output context of q, i.e., the second argument of the
subgoal q. Since q rules in the original program are defined
solely by abducibles, they are transformed into facts q ab
with those abducibles as their abductive solution entries (line
3).

The second set of rules provides the definition of p/2
and q/2, now with the input and output contexts I and O
(lines 4-5). Predicate p/2, for example, reuses the abductive
solution entry E from tabled predicate p ab and then, using
it together with the input context I to produce its output con-
text O. Similar reasoning applies equally to predicate q/2.



The context updating is performed externally by predicate
produce/3. It concerns itself with: whether E is already
contained in I and whether there are any abducibles from
E, consistent with I , that can be added to produce O. If E
is inconsistent with I then the specific entry E cannot be
reused with I , produce fails and another entry E is sought.
In other words, produce/3 should guarantee that it produces
a consistent output context O from I and E, eliminating any
redundant abduction.

The third set of rules (lines 6-11) contains the dual
rules, p st/2 and q st/2, where p st is true iff p of the
original program is false [6]; similar reasoning also applies
to q st/2. Note that the st stands for ‘∗’, as in p∗, a notation
often used in abduction to denote the negation of p. The set
of dual rules is defined in two layers. The first layer (lines
6-7) captures the idea that, e.g., to make q st (line 7) true,
we need to (non-deterministically) fail each q rule: q st is
defined by q st 1 and q st 2 that correspond to both failing
the first and the second q rules, respectively. Note that the
abductive solution from subgoal q st 1 is relayed to the
subsequent subgoal q st 2 via the intermediate context T .
The second layer of q’s dual rules (lines 10-11) defines how
to fail each q rule, by alternatively and non-deterministically
failing one subgoal in q’s body at a time, i.e., by negating
just one literal in q’s body at a time, in order to avoid
excessive abduction. The negated literal is renamed into
its corresponding positive one, e.g., not a into not a, and
also equipped with the input and output contexts. The two-
layer dual definition for p (lines 6 and 8-9) follows similar
reasoning. The first layer p st (line 6) is simpler, because
in the original program p has only one rule.

The fourth set of rules consists of the negated rules
not p/2 and not q/2 (lines 12-13). These will be the
ones that generate abductive solutions for the such ‘pos-
itive’ literal, say not p. Indeed, every default literal is
replaced with its corresponding positive. In line 12, predicate
not p(I,O) is defined by two subgoals: tnot(p ab([])) and
p st(I,O). The first subgoal serves as an optimization, to
immediately fail not p without the need to launch the call to
the more elaborate p st rule that follows. The idea behind
the ‘quick-kill’ tnot(p ab([])) is to permit to see whether
goal ‘not p’ has no hitting set at all, pertaining to the set
of abductive solutions of p ab. This is done by inspecting
whether p ab has an empty abductive solution entry, i.e., p
can be satisfied without abducing anything, in which case
not p can immediately fail. Indeed, an abductive solution
of the negation of positive atom A is construable as a set
that negates the members of a hitting set for the abductive
solutions of A. If one of these latter sets is empty then no
hitting set exists. Our approach consists in generating such
hitting sets incrementally, by means of finding abductive
solutions to the dual rules of A, without thus having to wait
for the explicitly availability of all abductive solutions for
A. Nevertheless, a quick-kill option is readily available, just

in case there exists an empty abductive solution for A. An
optimization consists in simply detecting if such an entry is
already in the table for A, rather than generating solutions
for A trying to produce the empty one.

In addition to the rules shown in Fig 2, for each predicate
having no rule in the original program, a fact about its
negation is added. For example, since there is no IC defined
in P1, fact not false(I, I) is added. Note that the two
contexts are the same. Having no body, the output context
does not depend on the context of any other goals, but
depends only on its corresponding input context. When ICs
exist, they are transformed exactly like the dened predicates.

Finally, for each abducible, a pair of rules is
created: a rule for the positive abducible, e.g.,
a(I,O):-insert(a, I, O), and another rule for its negation,
e.g., not a(I,O):-insert(not a, I,O). Similar pairs of
rules are also added for abducibles b and c, and their
negations. Note that the rules are defined by the external
predicate insert/3, which inserts the corresponding
abducible with respect to the input context I and results
in the output context O. It maintains a consistent context
during the insertion, and avoids redundant abduction.

A query to a program, consequently, should be trans-
formed too, in order to conform to the transformation: pos-
itive goals are augmented with the two extra arguments for
the abductive context, whereas negative goals are made ‘pos-
itive’ in addition to the two extra context arguments. More-
over, a query should always be conjoined with not false/2
to ensure that all ICs are satisfied. For example, query not p
is transformed into not p(I,O). Its complete call, as a top
goal, becomes not p([], T ), not false(T,O), where O is
an abductive solution to the query, given initially an empty
input context. Note, how the abductive solution for not p is
further constrained by passing it to the subsequent subgoal
not false for confirmation, via the intermediate context T .

Note that at this point we are not concerned with in-
cremental IC checking, as this is not a specific tabled
abduction problem, but a general tabling problem that others
are addressing and that tabled abduction does not preclude
any reuse of.

C. Dealing with Loops

The next examples concern programs involving loops
between predicates. Consider the ground program P2 below.

abds([a/0]). p← q, a. q ← p.

XSB with its tabling mechanism supports Well-Founded
Semantics [5], which would detect direct positive loops
and fail predicates involved in such loops. For P2, query
p fails, due to the direct positive loop between tabled
predicates p ab/1 and q ab/1. On the other hand, query
not p should succeed with two abductive solutions [] and
[not a]. The call to the latter query, after transformation,



becomes not p([], T ), not false(T,O). Instead of succeed-
ing, the first subgoal not p([], T ) will loop indefinitely!
This loop occurs because of the mutual dependency between
not p/2 and not q/2 through p st 1/2 and q st 1/2. The
dependency creates a positive loop on negative non-tabled
predicates, and such loops should succeed, precisely because
the corresponding source program’s loop is a direct one
on positive literals, which hence must fail. Indeed, since
any source program’s direct positive loops must fail, the
loops between their corresponding transformed negations
must succeed [6]. For example, whereas r ← r fails query
r, perforce not r ← not r succeeds query not r. The
problem can be remedied by detecting such loops in a
program. Since XSB’s tabling mechanism already supports
dealing with direct positive loops, we need only concern
ourselves with positive and negative loops on negation in
the transform.

1) Positive Loops on Negation (PLoN): We detect PLoN
by tracking the ancestors of negative subgoals, whenever
they are called from other negative subgoals. In the trans-
formation, a list of ancestors, dubbed the close-world-
assumption (CWA) list is maintained and serves as another
extra argument for the dual and negated rules. The new
transformation, with PLoN detection, of P2 is shown below
(without showing the usual transformation for not false
and the abducibles).

1. :- table p_ab/2, q_ab/2.
2. p_ab(E) :- q([a],E). q_ab(E) :- p([],E).
3. p(I,O) :- p_ab(E),produce(O,I,E).
4. q(I,O) :- q_ab(E),produce(O,I,E).
5. p_st(I,O,CWA) :- p_st_1(I,O,CWA).
6. p_st_1(I,O,CWA) :- not_q(I,O,[not p|CWA]).
7. p_st_1(I,O,_) :- not_a(I,O).
8. q_st(I,O,CWA) :- q_st_1(I,O,CWA).
9. q_st_1(I,O,CWA) :- not_p(I,O,[not q|CWA]).
10. not_p(I,I,CWA) :- member(not p,CWA), !.
11. not_p(I,O,CWA) :- tnot(p_ab([])),p_st(I,O,CWA).
12. not_q(I,I,CWA) :- member(not q,CWA), !.
13. not_q(I,O,CWA) :- tnot(q_ab([])),q_st(I,O,CWA).

The list is only updated in the second layer of dual rules,
which are essentially the rules for negative goals (cf. lines
6 and 9). The update is done by adding the negative goal
(without any context) into the CWA list of the negative
subgoal in the body. For example, in case of p st 1 (line 6),
not p is added into the CWA list of the subgoal not q. Note
that in line 10, another rule of not p is added (similarly in
line 12, for not q) to detect PLoN, by membership testing,
i.e., whether we are returning to the same call of not p. In
that case, the output context is equal to the input context.
By placing this additional rule before the other not p rule
(line 11), we anticipate the loop by immediately succeeding
it and, using cut, to prevent the call to the next not p (which
would lead to looping).

2) Negative Loops over Negation (NLoN): XSB with its
Well-Founded Semantics and tabling mechanism is aware of
negative loops over negation (NLoN) and makes predicates

involved in such loops undefined. Consider the ground
program P3 below:

p← q. q ← not p.

where p and q are tabled predicates and, written in XSB, the
tabled negation tnot/1 is used instead of not/1 to so indi-
cate. In this example, p and q (also their default negations)
are undefined. The CWA lists previously introduced are
able to detect PLoN, but not NLoN. Query p, for example,
with respect to the transformation (in the presence of CWA
lists) will fail, instead of being undefined. It fails, because
the tabled predicate p ab is involved in a direct positive
loop through the call of not p and not q. More precisely,
whereas in the source program q is defined by the negative
subgoal not p, in the resulting transformation q ab is defined
by the positive subgoal not p. Hence, one way to resolve the
problem is to wrap the positive subgoal not p in the body
of the rule q ab with the tabled negation predicate (tnot/1
in XSB) twice so as to keep its truth value; thereby creating
NLoN (instead of direct positive loops), but also preserving
the semantics of the rule. Apart from other usual predicates
produced by the transformation, the new definition of q ab
is as follows:

1. :- table q_ab/1, over/1, not_p/1, p_st/3.
2. q_ab(E) :- tnot p_ab([]),not_p_ab([],E).
3. not_p_ab(I,O) :- call_tv(tnot over(not_p(I)),V),

(V = undefined, O = I, undefined;
inspect(p_st(I,O,[]))).

4. not_p(I) :- p_st(I,O,[]).

Here, tnot over(not p(I)) is the double-wrapping of not p
with tnot. It is realized via the intermediate tabled pred-
icate over/1, defined as over(G) :- tnot(G). The
double-wrapping is called through an auxiliary predicate
not p ab/2. The XSB system predicate call tv/2 calls the
double-wrapping and unifies V with its truth value (true
or undefined). The value of the output context O then
depends on V ’s value: it is equal to the input context
I when NLoN exists (i.e., V is undefined) or O’s value
is inspected from the tabled predicate p st by means of
predicate inspect/1, in case NLoN does not exist (i.e.,
V is true). The predicate inspect/1 can be defined, in
XSB, using the combination of its table inspection predicates
get calls/3 and get returns/2.

It is tempting to use the existing not p(I,O,CWA) in the
double-wrapping. Unfortunately, it would cause the call to
over/1 to flounder, because the output context O is still
uninstantiated; hence not p/1 is introduced instead, free
from the output context. Note that in not p/1 we also
omit the CWA context, because the call is made from q ab,
which actually has an empty CWA context (recall that the
CWA context is only relevant for dual rules). Indeed, in the
definition of not p/1 (line 4), where it is defined by the dual
rule p st/3, the CWA context of p st is empty. Its definition
is similar to the not p/3 definition, except that the quick-



kill tnot p ab([]) is moved into the q ab definition (line
2). That is, it prevents the quick-kill to be wrapped in the
tnot. Moreover, p st is tabled, so that its output context
O, which is computed when not p/1 is evaluated in the
double-wrapping, can later be reused, via inspect/1.

D. Programs with Variables

The problem gets more interesting when we have vari-
ables in the program and we consider non-ground queries.
Consider program P4.

abds([a/1]). ← q(X), r(X). q(1). r(X)← a(X).

We shall discuss how to adapt the construction of dual rules
involving predicates with variables. Recall that the IC in P4

is transformed like any other rule. Instead of only placing
a negated literal in the body of a (second layer) dual rule,
we are also going to keep all positive non-abducible literals
of the original rule that appear before this negated literal.
For example, the second dual rule false st 1 of the IC in
P4 is now defined by the negated literal not r/4 and also
by all positive non-abducible literals that appear before this
negated literal in the original rule, in this case q/3, as shown
below.
false_st(I,O,CWA) :- false_st_1(I,O,CWA).
false_st_1(I,O,CWA) :- not_q(X,I,O,CWA).
false_st_1(I,O,CWA) :- q(X,I,T),

not_r(X,T,O,[not false|CWA])).

The idea to keep these literals before the negated literal
in the body of dual rules is to provide an opportunity for the
negated literal to be ground when it is called. For example,
not r/4 in the transformation of P4 can be made ground
because X is instantiated when q/3 is called, i.e., X = 1,
like the case in the original rule. This avoids floundering
when tnot(r ab(X, [])) is called through not r/4 due to
the uninstantiated X . Query q(1), for example, will now
correctly return the abductive solution [not a(1)].

There are some points to remark on regarding this re-
finement. First, the newly introduced positive literals should
be tabulated to avoid duplication of their derivations. Sec-
ond, one could also introduce all other positive literals
in the rule originating the ‘not’. This may help produce
additional grounding, though, in going against the left-to-
right pragmatics coded by the programmer it may create
inefficiencies of its own. Third, the semantics doesn’t change
because the conditions for failure of the positive rules are
that one literal must fail even if the others succeed. The
cases where the others do not succeed are handled in the
other dual cases. Finally, knowledge of argument types (+,
−, ?), and of shared variables in the body and whether they
are local or not, would help refine the transformation to
avoid introducing positive literals not contributing to further
grounding.

In yet another grounding refinement, TABDUAL also
allows us also to deal, in the quick-kill rules, with non-

ground positive goals. For example, query q(X) gives the
abductive solution [(not a(1)] for X = 1. But, non-ground
negative goals, like not q(X) flounders due to the unin-
stantiated X in the quick-kill tnot(q ab(X, [])). To resolve
the problem, we may restrict the applicability of the quick-
kill to ground negative goals only; non-ground negative
goals may immediately call the q st/4 rule without calling
the quick-kill. This leads to an improved transformation
that allows us to have non-ground negative goals without
a tnot/1 floundering error. The further refinement of the
transformation with respect to the negated rules not q/4 of
P4 is shown below (not r/4 is also treated similarly):

not_q(X,I,O,CWA) :-
(ground(not_q(X)),tnot(q_ab(X,[]));
\+ground(not_q(X))), q_st(X,I,O,CWA).

The following example will take us to the actual final
transformation. Consider program P5.

abds([a/1]). p(X)← q(X). p(1)← a(1).
q(X)← p(X). q(2)← a(2).

Query p(X) to program P5 succeeds under TABDUAL,
giving two abductive solutions: [a(1)] and [a(2)] for X = 1
and X = 2, respectively. But query not p(X) does not
deliver the expected solution: the only solution returned is
[not a(1)] for a particular X = 1, instead of the expected
[not a(1), not a(2)] for any instantiation of X . The culprit
is in the p st definition used to answer the query:

p_st(Y,I,O,CWA) :- [Y] = [X], [Y] = [1],
p_st_1(Y,I,T,CWA),
p_st_2(Y,T,O,CWA).

Note that the p st rule above is obtained by unifying the
argument Y (from the call) with the argument of each p rule,
i.e., X and 1 from the first and second p rule respectively,
and then failing both rules by the subgoals p st 1/4 and
p st 2/4. In general, four p st rules from P5 can be
obtained to fail both p rules, by considering the unification
of the call argument Y with the arguments X and 1 of the
two p rule heads. But in practice it can be minimized, by
removing unnecessary unifications, as explained in Section
III-E.

When the goal not p(X, [], O, []) is launched, the variable
Y in both p st 1 and p st 2 is instantiated with 1. But
recall that p st 1 and p st 2 are derived from two different
p rules, hence failing p should be achieved by calling p st 1
and p st 2 independently. In other words, different variants
of the calling argument Y should be used in the call of
p st 1 and p st 2, as shown below:

p_st(Y,I,O,CWA) :- variant([Y],[Y1]), [Y1] = [X],
variant([Y],[Y2]), [Y2] = [1],
p_st_1(Y1,I,T,CWA),
p_st_2(Y2,T,O,CWA).

Now the call of p st 1 and p st 2 are independent through
the use of different variants Y 1 and Y 2, respectively. Note



we are just looking for abductive solutions for failing a
calling goal, not for constraints on its free calling variables.

E. TABDUAL Implementation

We have made an implementation [20] on the basis of
the TABDUAL specification [7] and have tested it under
the current XSB Prolog version 3.3.6. Apart from the ‘tnot
quick-kill’ optimization and the relying of the loop detection
as much as possible on the tabling mechanism of XSB, we
pushed some optimizations further in the implementation:

• We reorder literals in the body of the rules by pri-
oritizing abducibles to come first in the body. This
gives an advantage that the second layer dual rules are
first defined by abducibles, if they exist. In this way,
abductive solutions for queries with negative goals can
be obtained faster, for it is easy to incorporate negated
abducibles.

• We simplify the second layer dual rules by removing
unnecessary unifications, i.e., those that succeed or fail
independently of the instantiation of arguments from
the calls. For example, in the refined definition of p st,
from the last paragraph of Section III-D, the unification
[Y 1] = [X] can be removed because unifying with vari-
ables always succeeds. Moreover, other p st alternative
rules with the body containing [Y ] 6= [X] can also be
removed (these rules always fail).

• We split the list of abductive solutions into positive and
negative parts. Thus, checking consistency of abductive
solutions, in predicates insert/3 and produce/3, can
be done faster.

In the next section we discuss some ideas on how to
migrate key ingredients of tabled abduction into an engine-
level of logic programming systems, but they can also be
appropriated by other systems.

IV. DISCUSSION

Our high level specification design and its implementa-
tion, by means of a transformation in XSB-Prolog, produces
a transformed program that aims at being near the potential
uptake of certain operations by the underlying engine. We
sketch some ideas on how to migrate key constructs of
TABDUAL into an engine-level, say like XSB.

1) Hiding Data Structures: The CWA list (and attending
operations), which is being deployed at the object language
level, should migrate to the engine level, even disappearing
from the generated code. New operations are needed con-
cerning loop detection, in particular making positive loops
on negation succeed rather than fail, as it happens with direct
positive loops. Similarly, the abductive context can be hidden
from the object language and the operations on them moved
into the engine level, but with the proviso that these could
be inspected for debugging purposes. These signify that,
avoiding the data structures being kept, and the operations

on them carried out currently at object language level will
help improve efficiency.

2) Tabling Abduction Entries: This is the core feature of
our tabled abduction, which needs migration to the (tabling)
engine to be more fruitful. At the object language level,
we table only the output abductions entries and not the
input abductive context to allow for improved reuse, because
the input abduction table entries are not there. Reuse and
consistency are done at the language level, above the tabling
level one.

A new tabling mechanism could instead cater for the two
extra table entries, concerning the input and output abducible
sets, and provide the special lookup and update mechanisms
pertaining to these special sets-arguments. Moreover, the
sets would require an efficient data structure representation
consistent with the operations on them and the backtracking
mechanism.

V. CONCLUSION AND FUTURE WORK

We have addressed the issue of tabling abductive solu-
tions, in a way that they can be reused in abductive contexts
different from those in which they were produced. We do so
by resorting to a program transformation approach, resulting
in a tabled abduction implemented system, TABDUAL. It
makes use of the dual program technique, whereby ab-
ducibles are treated much like terminals in grammars, with
an extra argument for input and another for output abductive
context accumulation. A few other original innovative tech-
niques are employed to make the approach correct and more
efficient, and to bring it closer to the engine level. Thence,
the XSB System (and other Logic Programming systems
affording tabled negation) can migrate to their inwards what
is best done therein.

We hope this will lead, in particular, to an XSB System
that can provide its users with specifically tailored tabled
abduction. Indeed, abduction is by now a staple feature
of hypothetical reasoning and non-monotonic knowledge
representation. It is already mature enough in its deployment,
applications, and proof-of-principle, to warrant becoming a
run-of-the-mill ingredient in a Logic Programming environ-
ment.

Future work will consist in perfecting this implementation
approach to abduction, and liaising it seamlessly with the
underlying engine. That in turn will permit the continued
exploration of our applications of abduction and provide
feedback for system improvement. For more applications
of LP abduction consult our home pages, and references
therein.

And a future conceptual application area in the context
of abduction in logic, pertains to the issue that, whenever
discovering abductive solutions, i.e., explanations, for some
given primary observation, one may wish to check too
whether some other given additional secondary observations
are true, being a logical consequence of the abductive



explanations found for the primary observation. In other
words, whether the secondary observations are plausible in
the abductive context of the primary one, a quite common
scientific reasoning task.

ACKNOWLEDGMENT

Ari Saptawijaya acknowledges the support from FCT-
Portugal, grant SFRH/BD/72795/2010. We thank David
Warren for his comments on prior drafts and corresponding
implementation.

REFERENCES

[1] A. C. Kakas and A. Michael, “An abductive-based scheduler
for air-crew assignment,” J. of Applied Artificial Intelligence,
vol. 15, no. 1-3, pp. 333–360, 2001.

[2] J. F. Castro and L. M. Pereira, “Abductive validation of
a power-grid expert system diagnoser,” in Procs. 17th Intl.
Conf. on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems (IEA-AIE’04), 2004.

[3] J. Gartner, T. Swift, A. Tien, C. V. Damásio, and L. M.
Pereira, “Psychiatric diagnosis from the viewpoint of com-
putational logic,” in 7th Intl.Conf. on Principles of Knowl-
edge Representation and Reasoning, NMR ws on Abductive
Reasoning, 2000.

[4] R. Kowalski and F. Sadri, “Abductive logic programming
agents with destructive databases,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 1, pp. 129–158, 2011.

[5] A. V. Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded
semantics for general logic programs.” J. of ACM, vol. 38,
no. 3, pp. 620–650, 1991.

[6] J. J. Alferes, L. M. Pereira, and T. Swift, “Abduction in well-
founded semantics and generalized stable models via tabled
dual programs,” Theory and Practice of Logic Programming,
vol. 4, no. 4, pp. 383–428, 2004.

[7] L. M. Pereira and A. Saptawijaya, “Appendix: Abductive
logic programming with tabled abduction,” https://dl.dropbox.
com/u/47496395/appendix icsea12.pdf, retrieved: September,
2012.

[8] A. Kakas, R. Kowalski, and F. Toni, “The role of abduction
in logic programming,” in Handbook of Logic in Artificial
Intelligence and Logic Programming, D. Gabbay, C. Hogger,
and J. Robinson, Eds. Oxford U. P., 1998, vol. 5.

[9] M. Denecker and A. C. Kakas, “Abduction in logic pro-
gramming,” in Computational Logic: Logic Programming and
Beyond. Springer Verlag, 2002.

[10] M. Denecker and D. de Schreye, “SLDNFA: An abductive
procedure for normal abductive programs,” in Procs. of the
Joint Intl. Conf. and Symp. on Logic Programming. The
MIT Press, 1992.

[11] T. Eiter, G. Gottlob, and N. Leone, “Abduction from logic
programs: semantics and complexity,” Theoretical Computer
Science, vol. 189, no. 1-2, pp. 129–177, 1997.

[12] K. Inoue and C. Sakama, “A fixpoint characterization of
abductive logic programs,” J. of Logic Programming, vol. 27,
no. 2, pp. 107–136, 1996.

[13] R. Kowalski, Computational Logic and Human Thinking:
How to be Artificially Intelligent. Cambridge U. P., 2011.

[14] “ABDUAL System,” http://www.cs.sunysb.edu/∼tswift/
interpreters.html, retrieved: September, 2012.

[15] J. J. Alferes and L. M. Pereira, “Tabling abduc-
tion,” 1st Intl. Ws. Tabulation in Parsing and Deduc-
tion (TAPD’98), http://centria.di.fct.unl.pt/∼lmp/publications/
online-papers/tapd98abd.ps.gz, retrieved: September, 2012.

[16] “NegABDUAL System,” http://centria.di.fct.unl.pt/∼lmp/
software/contrNeg.rar, retrieved: September, 2012.

[17] V. P. Ceruelo, “Negative non-ground queries in well founded
semantics,” Master’s thesis, Universidade Nova de Lisboa,
2009.

[18] “XSB Prolog,” http://xsb.sourceforge.net/, retrieved: Septem-
ber, 2012.

[19] T. Swift and D. S. Warren, “XSB: Extending Prolog with
tabled logic programming,” Theory and Practice of Logic
Programming, vol. 12, no. 1-2, pp. 157–187, 2012.

[20] “TABDUAL System,” https://dl.dropbox.com/u/47496395/
tabdual icsea12.zip, retrieved: September, 2012.


