RATIONAL DEBUGGING OF LOGIC PROGRAMS
Luls Moniz Pereira

Departamento de Informatica
Universidade Nova de Lisboa
2825 Monte da Caparica

Portugal

July 1985 .

ABSTRACT

Information about Prolog data term's dependencies on derivation
goals can be used for improved debugging, whether in the wrong

solution or the missing solution type of faulty program behaviour.

A debugger for full Prolog (itself written in Prolog) has been
developed that automates the reasoning ability required tq pinpoint
errors, resorting to the user only to ask about the intended program
semantics. The debugger makes cooperative use of both the declarative

and the operational semantics of Prolog programs.

In this writing the debugging algorithm is expressed in detail,
session protocols are exhibited, comparison to other work is made, but

the implementation is not examined.

INTRODUCTION

36

In logic programming many difficult problems remain whose
statement is simple. One is: what's a rational way of debugging

logic programs ?

The presuposition that there is some such a way is implicit in
the gquestion, but that should not be surprising. Logic deals with
general rational forms of reasoning, irrespective of what the subject

matter of its expressions may be.

Research in Logic Programming has shown that such independence
regarding content manifests itself both in the forward direction of
reasoning, as well as in the backwards one. Consequently, general
interpreters for Prolog have been invented that perform more
intelligently when backtracking, by avoiding derivation attempts that
are bound to fail (on the basis of information about the dependency of

bindings on previous derivation nodes) [Bruynooghe and Pereira 84].

In a similar vein, the debugging of logic programs is amenable to
a general content independent approach. In the context of logic
programming, debugging can be envisaged as a precise rational
activity, whose purpose is to identify inconsistent or incomplete
logic program statements, by systematically contrasting actual with
intended program behaviour. A program can be thought of as a theory
whose logical consequences engender its actual input/output behaviour.
Whereas the program's intended input/output behaviour is postulated by
the theory's purported models, i.e. the truths the theory supposedly

accounts for.

317

The object of the debugging exercise is to pinpoint erroneous or
missing axioms, from erroneous or missing derived truths, so as to

account for each discrepancy between a theory and its models.

I provide here one answer to the above question, for full Prolog
programs, which relies on information about each term's dependency on
the set of previous derivation steps (such information is gleaned and
retained by means of a suitably modified unification algorithm

[Bruynooghe and Pereira 84]).

The debugger does so by contrasting theory and model, questioning
the user about the intended program model. The types of questions are
whether goals are admissible (i.e. have correct argument types),
whether goals should be solvable or unsolvable (i.e. have some true
instance or not), whether solved goals are true or false, and whether
a set of solutions to a goal is complete. The user is not required to
produce solutions to goals (as in [Shapiro 83]), nor to know about the
operational semantics of Prolog programs (which renders the debugger
helpful for knowledge acquisition validation by the non-programmer).
All answers given by the user are stored, and repetition of the same

or subsumed questions from the debugger is avoided.

The requirement of rationality, over and above the requirement of
algorithmicity, imposes that no subderivations will be examined for
errors which are irrelevant to the diagnosis of a bug, with respect to
some given available information. Rationality requires that the
debugging steps should be not only sufficient but necessary as well
(relative to thét information). Of course, a prescient being would be

able to pinpoint erroneous clauses at once. More pragmatically, a

38

sensible trade-off must be found between the price of information and

the economies it permits.

The present approach to rational debugging contends that the
dynamic information regarding term dependency on derivation nodes,
plus some of the operational semantics history, and a record of
answers to system queries gleaned from the user, provide a basis for a

practical method of rational debugging which can be automated.

Indeed, I have developed a Prolog debugger, itself written in
Prolog, which incorporates the aforementioned rational debugging
method. In particular, Shapiro's pioneering algorithmic debugging
[Shapiro 83] is improved upon, though through an altogether different

approach.

To some extent the rational debugger embodies people's debugging
methodology. However, the availability of computing power makes
practical more elaborate debugging procedures than most people care to
use on their own, relying in fact on more information than the human

debugger is expected to be aware of.

The debugger makes use of information about the dependency of
terms on derivation steps to follow up on wrong solutions to goals,
and to delimit the search tovidentify goals with missing solutions.
The dependency information is generated by a modified unification
algorithm [Bruynooghe and Pereira 84] that keeps track of where each
binding (or match with an empty binding) occured. Such information is
also used to provoke direct backtracking to a specific node in a
derivatidn with the purpose of examining it for bugs, and to;

performing intelligent backtracking program execution (making the

39

debugger more efficient). In this respect, the ability to jump back
over subderivations irrelevant to failures avoids unnecessary
prompting of the user with questions. The debugger also knows about
both the declarative and the operational semantics of Prolog and uses
them cooperatively to achieve a faster detection of bugs, and further

avoid unnecessary questioning of the user.

In the sequel, the debugging algorithm's rationale is presented
in some detail, but for reasons of space, does nof include cut
treatment, and other Prolog extra-logical features such as its
"ersatz” negation by non-provability, the "repeat...fail" construct,
"assert” and "retract" usage, "var” and "nonvar", etc. These, as well
as implementation details will be the subject of another paper.

Comparison to other work is made, and session protocols are exhibited.

THE RATIONAL DEBUGGING ALGORITHM AND ITS RATIONALE

A) Wrong Solution Mode

Al. A goal known to have a wrong solution is presented to the debugger. The
debugger solves it and asks you to state whether the solution found is wrong
If not wrong, the debugger then produces the next solution and queries you

again, until the wrong solution is obtained.

A2. A wrong solution has been identified and you point, with the cursor, at
some wrong term within it.

(The debugger is easily modified to let you point at more than one wrong
term ; I have prefered to track down one bug at the time so one can.follow
the debugger's behaviour more easily ; also, multiple wrong terms may have

the same origin, as when they come from one same recursive procedure.)

4O e

A3. The debugger then uses the set of dependencies of the wrong term (i.e.
derivation steps on which its binding depends [Bruynooghe and Pereira 84])
to thread back through the execution tree to the most recent dependency

node for the term. In the wrong term debugging mode the derivation tree is
"frozen", so that no alternatives are sought when going back. The dependency
set includes both the productive dependencies (where bindings were produced)
and the consumptive dependencies between functors (where bindings are

consumed but not produced -- empty bindings).

The former are those used by selective backtracking Prolog [Pereira and
Porto 82] in programs assumed correct, but not the latter. For debugging
purposes, the empty bindings may be the source of bugs in those cases where
a binding should have been rejected, thereby originating a failure, but

wasn't and didn't.

A4. At the (next) most recent dependency node, the debugger queries you
whether the goal at that node is "admissible" (a goal is admissible if it
complies with the intended use of the procedure for it -- i.e. it has the

correct argument types -- irrespective of whether the goal succeeds or not).

A5=Ad4.no. If the goal is not admissible, the debugger asks you to point at

some wrong term within it and continues at A2 with the new term.

A6=A4.yes. If the goal is admissible, then the debugger matches the goal
with the head of the clause used at tﬁat node in the frozen derivation,
and queries you whether the resulting literal is "solvable" (i.e. if it
should have a solution according to the intended program semantics). If
the clause body is empty it asks instead whether the lite;al is "true",

rather than "solvable”, as there are no body goals to solve.

Ll

A7=A6.no. You answer "no" to the matched head literal being solvable or true
First note that the goal did solve. So at least one of the following holds:
- the clause head is wrong because it produced a wrong binding,

or because it should not have matched the goal.

- some body goal should have failed but didn't or some goal that would fail -

is missing.
The debugger asks you to point at a wrong term in the literal, so it can
detect whether it was passed by the goal on to and accepted by the clause,

or is textually present in the clause head.

A8.1. If the body is empty, then a wrong unit clause has been found, and the
debugger reports an error corresponding to your previous answer (i.e.

whether you've pointed to a term textually present or not).

A8.2. If the body is not empty, next the debugger asks you whether each of
the (non built-in) solved goal instances is i) inadmissible
t) true or f) false. Note that the t) and f) questions assume universal

quantification over any variables.

case i) It requests you to point at some wrong term within it, reverts to
wrong solution debugging mode, and follows part A of the algorithm at

step A3, with the new term.

case t) If all solved clause body goals are true, then the clause is
wrong because it has produced a false conclusion from true premises. The
debugger reports an error according to what term you pointed at in the

matched clause head literal, at step A7.

case f) As the goal has solved, it asks if you want to debug the goal. If

you do it starts the debugger on it at step Al; if not it aborts to Prolog.

L2

A9=A6.yes. You answer "yes" to the matched head literal being solvable or
true.

First, consider that the wrong term being tracked down is not a variable.
In that case, the clause invocation and execution are not blameable for
producing or not rejecting the wrong term being tracked down. Note that the
wrong term cannot have been produced by the clause body. In that case,

any node producing it would have already been examined and detected before,
since the wrong term's dependencies are visited in reverse time order.

So continue at ad.

Alternatively, the wrong term being tracked down is variable. In that caSe
a too general solution is being produced by some clause. If you were

asked whether the matched clause head was “"true" (that's when the clause
body is empty) continue at A4 (the question implied universal
quantification).

If the body is not empty, you were asked if the matched clause head was
"solvable" (the question implied existencial quantification). To detect
whether an overgeneral solution is being produced at the present clause,
you are asked about each of the solved goals in the body, as in A8.2. Cases
i) and f) are dealt with in the same way. Case t) is different: if all the
solved body goals are true, you are asked if the solved clause head is true.
If “yes" continue at A4, otherwise an erroneous clause (that produces an

overgeneral solution) has been found.

B) Missing Solution Mode

Bl. Some solution is missing for a finitely failed goal which is presented
to the debugger. It then attempts to find solutions to the goal until you

state that the missing solution would be next. Infinite failure has no

L3

special treatment yet. The depth-control method has not been improved upon.

B2. The debbuger initiates an attempt to find the next solution, aware that
at least one goal which failed should not have done so. The top goal becomes

the currently known lowest unsolving ancestor.

B3. When a failed goal is detected, the failure may be legitimate or

unjustified.

B4=B3.legitimate. (B3.unjustified is dealt with in case s of B8.2)

If the failure is legitimate, then it cannot be the cause of a missing
solution. Rather than asking you immediately which is the case, the debugger'
attempts to find some ancestor of the failed goal that solves (the list of

ancestors is available at each step). Which one is appropriate ?

It picks the most recent ancestor, below the currently known lowest
unsolving ancestor goal, that is above all the non-ancestor dependency nodes
of the failed goal, so as to give opportunity for backtracking to take place
to those nodes and eventually solve the failed goal. Another possibility is
that, on backtracking, some alternative is found that makes the goal failure

irrelevant (if the chosen ancestor does solve), by avoiding it altogether.

BS. The appropriate ancestor may be known to be unsolving though it should
be solvable. If so, go to step B8. If not, it then considers whether it has

backtracked over it to the failing goal or not.

B6=B5.no. If not, it attempts to solve the ancestor (by calling a Prolog

Prolog interpreter) and continues at B7.

B6=BS5.yes. If so, it finds out whether the ancestor has a next solution

(i.e. solves again). It does this by calling on the Prolog Prolog

Lk

interpreter to find if there are at least N+l solutions to the ancestor,
where N is the number of times backtracking to it has taken place.
Continues at B7,

B7.

B7.1. If the ancestor solves, then the debugger switches off debugging and
backtracks from the failed goal continuing execution until that ancestor

solves, whence it returns to the missing solution debugging mode at step B3.

87.2.
If the ancestor does not solve, then it queries you whether this failure is
legitimate or not. It asks if the ancestor goal is i) inadmissible

u) unsolvable or s) solvable.

case i) It requests you to point at some wrong term within it, reverts to
wrong solution debugging mode, and follows part A of the algorithm at step

A3, with the new term.

case u) Failure of the ancestor was to be expected ; it then switches off
debugging and backtracks from the failed goal until the ancestor is reached,

and it returns to the missing solution debugging mode at step B4.

case s) The ancestor becomes the currently known lowest unsolving ancestor

and debugging continues at step BS.

B8. The failed goal is reconsidered, and a failure analysis takes place :
B8.1. There are no clauses for the goal. You are told so and debugging
terminates.

B8.2. The goal fails before any backtracking to it occurred (i.e. it did not
produce a solution). The debugger inguires whether the goal is

i) inadmissible u) unsolvable or s) solvable.

L5

case i) It prompts you to point at some wrong term within it and reverts to

wrong solution debugging mode at step A3 with the new term.

case u) The failure is justified ; it then simply proceeds with the
execution by backtrackiﬁg from the goal (note that selective backtracking
[Pereira and Porto 82] is used throughout by the debugger, so that
subderivations irrelevant to failures are skipped and no unnecessary

questions about them are posed).

case s) If there is no matching clause, this bug is reported and debugging
terminates. Otherwise the bug is that no matching clause solves its body .
All the failures in its execution are legitimate, for otherwise they

- would have been detected previously, since they must have océured and been
considered before the present one. The goal is reported as having a missing

solution and debugging terminates.

B8.3. The goal fails after backtracking to where it was spawned (i.e. it had
produced a solution before). The debugger inquires whether the goal is

i) inadmissible u) unsolvable or s) solvable.

case i) Same as in B8.2,.

case u) Since it has solved before, that solution is wrong ; debugging
reverts to wrong solution mode and tackles that goal starting at Al.

case s) Although it has solved before, not all intended solutions may have
been produced ; the debugger calls on a standard interpreter to compufe all
produceable solutions and inquires if they are correct and a complete set,
by asking you to indicate if some solution is m) missing w) wrong or

n) neither missing nor wrong.

case m) If they are not all the solutions, a goal has been detected with

L6

a solution missing whosé descendents have no missing solutions, for
otherwise they would have unjustifiedly failed before and been reported.
case w) If one of them is incorrect, wrong solution mode can be entered
to debug the goal.

case n) If they are all the-solutions, the failure is legitimate and

backtracking ensues ; debugging proceeds at step B4.

COMPARISON TO OTHER WORK
The only other similar work is algorithmic debugging [Shapiro83].
The following are the main contrasts between rational (R) and

algorithmic (A) debugging :

(Al) The level of discourse is that of literals.

(Rl)'The level of discourse is finer, being that of terms within literals.

(A2) Asks unnecessary questions because it cannot jump over subderivations
1ttolevant.to a bug.

(R2) PFollows dependencies of terms on derivation steps, enabling it to jump
over irrelevant suhdefivations, so that its questions are to the point.

Its questions are not only sufficient but necessary as well.

(A3) Cannot switch from missing solution mode to wrong solution mode.
(Incidently, that's why the user has to input all the correct ground
instances in its missing solution algorithm.)

(R3) Does switch from one mode to another as shown in the rationale above.

(A4) Does not hake use of Prolog's operational semantics.

(R4) Uses Prolog's declarative and operational semantics cooperatively.

In short, (R) converges faster than (A) on bugs, with less user effort, like

L7

the protocols below exemplify. The difference becomes bigger with larger

programs.

RATIONAL DEBUGGER PROTOCOLS (on the examples in [Shapiro 83])

The terminal cursor is used to point at some symbol by placing it over the
symbol and pressing <RET>. Here the symbol """ indicates the position
immediately below the cursor. In the protocols that follow, the comments on

the right refer to the the steps at issue of the debugging algorithm.

[shapiro 83] page 41 example. The insert sort below is used for debugging :

isort([X|Xs),¥s) :- isort(Xs,zs), insert(X,2s,¥Ys).

isort([1,(D.

insert(X, [Y|¥s],[¥|2s]) :- ¥Y>X, insert(X,Y¥s,2s). /* should be Y<X */
insert(X, [Yl¥s], [X,Y|¥s]) :- X=<Y.

insert(X,[],[X]).

Terminal session :
?- wrong isort([2,1,3],S).

isort([zllv3]l[zu3:1])

top goal solution ok ? n steps Al, A2

use arrow to point at wrong term.

insert(2,[3,1],X1)

admissible goal ? n steps A3, A4, AS, A2

use arrow to point at wrong term. insert expects a sorted
list as 2nd argument

insert(1,(3],Xx1)

admissible goal ? y steps A3, A4

insert(1,[31,[(3|x1])

solvable goal ? n steps A6, A7
use arrow to point at wrong term.

insert(1,[],[1])
step A8.2

L8

state whether this goal is :
i) inadmissible -~ t) true f) false
choose one : t »

Error in clause

insert(X1, [X2|x3],[X2|X4]) :- X2>X1, insert(Xl,X3,X4).

in misused variable having an occurrence in the head,

or goal missing in body.

(Shapiro 83) page 50 example. Another insert sort with an error :

isort([xIXs],Ys) :- isort(Xs,2s), insert(X,Zs,Y¥s).

isort((],[D.

insert(X, [Y]¥s], [X,¥|¥Ys]) :- X=<¥.
insert(X, [Y|¥s],(Y|2s)) :- insert(x,Ys,zs).

insert(X,[],[x]).

Terminal session :

?- wrong isort([4,1,2,3,5,6],S).
150:t([4,1,2,3,5,6],[1,2,3,4,5,6])
top goal solution ok 7 y

§ = [102'3"0516] H
isort([4,1,2,3,5,6],[1,2,3,5,4,6])

top goal solution ok 7 n
use arrow to point at wrong term.

insert(l.[S'G].Xl)
admissible goal ? y

insert(4,([5,6],{5lx1])

solvable goal ? n
use arrow to point at wrong term.

insert(4,[6],[4,6])
state whether this goal is :

i) inadmissible . . t) true £) false
choose one : t

L9

/* Y<X missing */

step Al

steps Al, A2

steps A3, A4

steps A6, A7

step A.8.2

Error in clause
insert(x1, [x2]x3]), [x2|x4]) :- insert(Xl1,X3,X4).
in misused variable having an occurrence in the head,

or goal missing in body.

[Shapiro 83] page 56 example. Yet another insert sort for debugging :

isort([X|Xsl,¥s) :- isort(Xs,Zs), insert(X,Zs,¥s).

isort([1,[D).

insert(x, [Yl¥s], [¥|2s]) :- Y<X, insert(X,Ys,2s).
insert(X, [Y|¥s], [X,Y|Ys]) :- X=<Y.

/* insert(X,[],[(X]). is missing */

Terminal session @

missing solution next ? y insert(l,[],X1) failed
isort([1]},X1) _ ancestor found

steps B4, BS, B6, B7.2

state whether this goal is :
i) inadmissible u) unsolvable s) solvable
choose one : s
insert(1,[],Xx1) step B8.2
state whether this goal is :
i) inadmissible u) unsolvable s) solvable
choose one : S
That there is no matching clause is the reason for a missing solution to the
goal
insert(1,[],X1)
activated in clause

isort([x1]x2],X3) :- isort(X2,X4), insert(X1,X4,X3).

ACKNOWLEDGEMENTS
This work_was partly done during a sabbatical leave, at the Artificial

Intelligence Technology Group, Digital Equipment Corporation, Hudson MA,USA.

50

It's also part of an DEC External Research Project on Expert Systems in
Prolog, and of a contract with the Junta Nacional de Investigacao
Cientifica (JNICT), Portugal. Thanks are due to Luis Monteiro, Roger Nasr,

Michael Poe and Karl Puder for their comments.

REFERENCES

(Bruynooghe and Pereira 84] Bruynooghe,M. ; Pereira, L.M.
Deduction revision through intelligent backtracking
in "Issues in Prolog Implementation”,
(J.Campbell ed.), Ellis Horwood Ltd. 1984

(Pereira and Porto 82] Pereira, L.M. ; Porto, A.
Selective backtracking

in "Logic Programming”,
{K.Clark, S.Tarnlund eds.), Academic Press 1982

(shapiro 83] Shapiro, E.

“Algorithmic Debugging”
M.I.T. Press 1983

51

