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ABSTRACT

We begin with an introduction to a simple but
powerful logic programming language called Prolog, im
order to provide a rigorous context of presentatiom of
ideas and results.

Next we present definitions of seguential, parailel

-

and co-routined executions of programs, in strictlwv
logic programming terms, and go on to define in 1cgic a
parallel interpreter for logic programs, obtainsd by a
simple program transformation from a purely seguential
interpreter, We then show how similar transformations
may be directly applied to programs to obtain transicrms
that achieve parallelism or co-routining without re-
course to special interpreters. Afterwards, we appiy °UT
resullts to data base lookup and to problems arising from
the use of negation as nonderivability, and suggast the
basis of a rudimentary control language for logic

programs.
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We conclude by examining the features of logic
which make logic programming specially suitable for
parallel and co-routined modes of processing. In the
final sections we furnish rigorous proofs of our results,
to suplement the informal and intuitive basis used to

motivate and derive them.

INTRODUCTION TO THE PROLOG LANGUAGE

Prolog is a simple but powerful programming
language founded on symbolic logic, developed at the
University of Marseille, as a practical tool for "logic
programming" ([3], (6], [73, [8], [121). A
major attraction of the language, from a user’s point of
view, is ease of programming. Clear, readable, concise
programs can be written qguickly with minimum error.
Recently, an efficient compiler and an interpreter were
implemented onthe DECsystem-10 ([9], [13]).

Like Lisp, Prolog is an interactive language de-
signed primarily for symbolic data processing. Both are
‘founded on formal mathematical systems - Lisp on the
lambda calculus, Prolog on a powerful subset of calassi-
cal logic [11] Pure Lisp in fact can be viewed as a

specialization of Prolog [141].

Introductory syntax

Here is a Prolog program, consisting of two clauses,
for relating a tree with the list of its leaves (or

frontier):
leaves (t(void, N, void), [N,..Z1 - 2).

leaves (t(Stl, N, Str), L - Z): - leaves (Stl,
L - X), leaves (Str, X - Z).

- 612 -

In general, a Prolog program consists of a set of
procedures, where each procedure comprises a number of
elauses. The procedure name is called a predicate
("leaves"” above), and has an arity which is the number
of its arguments (2 above). A clause begins with a kead
or procedure entry point, and continues with a body. If
the body is not empty it is separated from the head by
":-" (2nd clause above). Every clause terminates with a
".". The head displays a possible form of the arguments
to the procedure’s predicate, The body consists of a
number (possibly zero) of goals or procedure calls,
which impose conditions for the head to be true. If the
body is empty we speak of a unit clause (1lst clause
above) .

In general, all Prolog objects are terms. A clause
is a term, a predicate or a goal with their respective
arguments, and the arguments themselves are terms, A
term is either a vartable (distinguished by an initial
capital letter), an atom ("void" above), or a compound
term. A compound term comprises a functor ("leaves" or
"t" above) of some arity N > 1, and a seguence of N
terms as its arguments ("t(void, N, void)" above)., An
atom is treated as a functor of arity ¢. A term of the
form [H,..T] stands for the list. (H, T), whose head is
H and tail is T. The empty list is denote by [], and
list with exactly two elements by [A, BJ.

The term [N,..Z2J - 2, where "-" is a binary funct-
written in (optional) infix notation, stands for a dif-
ference list [2], A difference list L - Z stands for t
list which concatenated with list Z produces list L,
Difference lists provide a convenient way for appending
the lists they denote. Above, the (difference) list L ~
Z is conveniently split into the (difference) lists L -
X and X - Z. )
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The second clause above is just infix notation for

the term
:- (leaves (t(stl, N, Str), L - 2), v
" " (leaves Stl, L - X), leaves (Str,2)))
where":~"and "," are binary functors. ":-" takes as

arguments the head and the body of the clause, and ",
the goals. This term stands for a clause because it
figures in the set of clauses for a procedure, It is

distinguished by a final".".
Apart syntax conventions, the names and arities of

terms (and their number) are arbitrary, except for a
pre-defined set of procedures which are built into the
implementation of the language, and which achieve input,

output, arithmetic, etc.

Semantics

Prolog differs from most programming languages in
that there are two quite distinct ways to understand its
semantics. The procedural or operational semantics is
the more conventional, and describes as usual the se-

quence of states passed through when executing a program,

In addition a Prolog program can be understood as a set
of descriptive statements (one for each clause) about
the state space of a problem. The declarative or denota-
tional semantics, which Prolog inherits from logic,
provides a formal base for such an understanding. In-
formally, one interprets terms as shorthand for natural
language phrases by applying a uniform translation of

cach functor. e.g.:-

void = "the empty tree"
t(stl, N, Str) = "the binary tree with root N,
left subtree Stl and right subtree Str"
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leaves (T, L - Z) = "the leaves of tree T are the

elements of L - Z"

L - 2 = "the list of elements of L after Z is
tail subtracted from it"

A clause "P: - Q, R, S. "where P, Q, R and S are

metavariables standing for terms, is interpreted as

"P if Q and R and S"

A clause "P." is interpreted as "P is true".

Each variable in a clause should be interpreted as
some arbitrary object (i.e. variables are universally
quantified). The type of the object will be appropriate
to the functor(s) where it figures by using terms con-
sistently throughout the program.

The declarative semantics then simply defines
(recursively) the set cof terms which are asserted to be
true according to a program. A term is true if it is the
head of some clause instance and each of the goals (if
any) of that clause instance is true, where an instance
of a clause (or term) is obtained by substituting, for
each of zero or more of its variables, some term for all

occurences of the variable.
Thus the only true instance of the goal: -

leaves (t(t(void, a, void), b, Str), (a, cl -[1)
is
leaves (t(t(void, a, void), b, t(void, ¢, void)),
fa, cl] - (D.

It is the declarative aspect of Prolog which is
responsible for promoting clear, rapid, accurate pro-
gramming. It allows a program to be broken down into

small, independently meaningful units {(clauses), and it
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allows some understanding of a program without looking

into the details of how it is executed.

Procedural semantics

It is the procedural semantics that describes the
way a goal is executed, The objective of execution is to
produce true instances of the goal, It then becomes
important to know that the ordering of clauses in a pro-
gram, and of goals within a clause, which are irrelevant
as far as the declarative semantics is concerned, cons-
titute crucial control information for the procedural
semantics.

To execute a goal, the system searches for the
first clause whose head matches or unifies with the
goal. The unification process [10] finds the most
general common instance of the two terms, which is
unique if it exists. If a match is found, the matching
clause instance is then activated by executing in turn,
from left to right, each of the goals of its body (if
any). If at any time the system fails to find a match
for a goal it backtracks, i.e. it rejects the most
recently activated clause, undoing any substitutions
made by the match with the head of the clause. Next it
reconsiders the original goal which activated the
rejected clause, and tries to find a subsequent clause
which also matches the goal. Execution terminates if no
goals remain to be executed (the system has then found
a true instance of the original goal). Backtracking may
then be provoked to find other true instances of the
goal. Execution fails when no true instances of the
original goal are found, and terminates if it cannot

find any more true instances. Termination however cannot
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be guaranteed, even if there are no more true instances
(eg. if there are infinite branches).

Note that the execution just defined is a left to
right depth-first process, Note also that because
unification always provides the most general common
instance between a goal and a matchiﬁg clause, all the
most general true instances of a goal can potentially be
found (i.e. aside termination issues).

Let us now briefly look at how the goal: - leaves
(t(t(void, a, void), b, Str), [A, c¢] - []) is actually
executed. The goal only matches the second clause for
"leaves", The body of the matching clause instance is: -
leaves (t(void, a, void), [A, c] - X), leaves (Str,

X - [J]). The result of executing the first of these two
goals against the only clause it matches is to instan-
tiate A to a and X to c¢. The second goal also matches
the first clause, thereby instantiating Str to t(void,
c, void) since X is already instantiated to c.

If the second goal were matched with the second
clause, an attempt would be made to generate an infinite
tree, which need not concern us now, but showing just
how crucial can a convenient ordering of clauses be.

The connection between the execution mechanism
defined above and logical derivability, and also the
proof of completeness of the search space can be found
in [5].

Basically, each execution step is justified by
Robinson’s Resolution Principle [10]. This principle
subsumes in a single inference rule the classical rules
of "modus ponens" and "generalization" in formulations
of first order predicate calculus. For example, from: -

p(x): - agla, X), x(X).
and
q (Y, £(Y, Z)): - s (a, Z).
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it allows to conclude
p(f(a, 2)) = s (a, Z), ¥ (f(a, Z)).

by "execution" of g(a, X).

Note that computer-wise it is advantageous to have
a single inference rule uniformly applicable.

Besides the ordering of clauses and the sequencing
of goals within clauses Prolog provides just one other
essential mechanism for specifying control information.
This is the "cut" symbol, written "!". It is inserted in
a program just like a goal, but it is not be regarded as
part of the logic of the program and should be ignored
as far as the declarative semantics is concerned.

The effect of the "cut”" is as follows: when first
encountered, as a goal, "cut" succeeds immediately., If
backtracking should later return to the "cut", the
effect is to fail the goal which caused the clause con-
taining the "cut" to be activated. In other words, the
"cut" operation commits the system to all choices made
since execution of the goal activating the clause begun.
I.e.other alternatives for that goal are not considered,
as well as for all goals occurying in the matching
clause before the "cut". By means of a "cut" one can
ensure that some goals, once partly executed by a clause
up to a "cut", either must continue that partial execu-
tion or fail. The "cut" renders deterministic the whole
partial execution made by the activated clause up to it.

Example of the effect a "cut" in the flux of

control, when goal F fails: -
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where &, B, C, D, E, F, and P are metavariables standing
for predicate instances. :

Backtracking returns to goal A immediately before
B, the goal that activated the clause with the "cut". If
there was no A in P control would return to the goal

calling P.

Outstanding features of Prolog

To end this introduction to Prolog, let us briefly
review the combination of features which make Prolog a

powerful but simple to use programming language.

(1) A declarative semantics inherited from Logic in

addition to the usual procedural semantics.

(2) Identity of form of program and data - clauses
can be employed for expressing data, and can be
manipulated as terms by interpreters written in

Prolog.

(3) The input and output arguments of a procedure
do not have to be distinguished in advance, but
may vary from one call to another. Procedures
can be multi-purpose. The procedure for
"leaves" may be given completely or incompletely
specified trees or lists of nodes in any com-

bination.

(4) Procedures may have multiple outputs as well as

multiple inputs.

(5) Procedures may generate, through backtracking,
a sequence of alternative results, This amounts

to a high level form of iteration.
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(6) Terms provide general record structures with
any number of record types may be used, and
. there are no type restrictions on the fields

of a record.

(7) Pattern matching replaces the use of selector
and constructor functions for operating on

structured data,

(8) Incomplete data structures may be returned
(i.e. containing free variables) which may

iater be filled in by other procedures.

(9) All communication between co-routined or con-
current procedures is ensured by the variables
through unification. No explicit interfacing is

needed.

(10) Prolog dispenses with go to, do, for and while

loops, assignment, and references (pointers).

(11) The procedural semantics of a syntactically
correct program is totally defined. It is im-
possible for an error condition to arise or for
an undefined operation to be performed. This
totally defined semantics ensures that program-
ming errors do not result in bizarre program

behaviour or incomprehensible error messages,

(12) No part of the program is concerned with the
details of the underlying machine or implemen-

tation,

SEMANTICS CI FARALLELISM AND CO-ROUTINING IN LOGIC
PROGRAMS

We begin this section by supplving definitions of

sequential, parallel and coroutined execution of logic
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programs. Next, we describe a sequential interpreter in
clausal form, and from it derive an interpreter which
achieves parallel execution of two goals, whilst pre-
serving both declarative and procedural semantics. This
parallel interpreter, obtained by a simple transforma-
tion of the clausal program for the sequential inter-
preter, is then generalized to execute n goals in pa-
rallel. This same transformation is then shown to apply
directly to any program for obtaining parallel execution
of a number of goals using just the sequential inter-
preter, Finally, another program transformation is
provided which illustrates co-routining, and examination
is made of the features of logic programming which make
logic a unique language for parallel and co-routined

processing.

Definttions of sequential, co-routined and parallel

executions

We take unification to be, from the logic program-
mer’s point of view, a single event. When a goal unifies
with the head of a clause, all unification of arguments
is considered simultaneous. It is not relevant for the
programmer to know how the executor of the program per-
forms unification, or to specify how it should be per-
formed. Thus we take the match of a goal with the head
of a clause as the single elementary unanalysed event in
logic programs,

We say two goals are executed sequentially when
execution of one goal begins only after execution of the
other is completed,

We say two goals are executed in parallel, or con-
currently, when execution of one goal is interleaved
with the execution of the other, such that at most only
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a single elementary event takes place in one execution
before another elementary event takes place in the
other. I.e. an execution waits for the other no more
than the completion of a match with the head of a clause.

We say two goals are executed in co-routining
fashion in all other cases.

The above definitions have the virtue of providing
rigorous, implementation and hardware independent
notions of parallelism and co-routining which are
meaningful from the logic programming point of view.
Indeed, sequencing of goal calls is what traditional

search strategies are all about.

Recall the program for "leaves", displayed in the

introduction to Prolog: -
leaves (t(void, N, void), [N,.. 21 - 2).

leaves (t(Stl, N, Str), L - Z): - leaves
(stl, L - X), leaves (Str, X - Z).

The procedure: -

same-leaves (Tl, T2): - leaves (Tl, L - [1),
leaves T2, L - [1).

will execute the two calls to leaves sequentially to
find whether Tl and T2 have the same list L of leaves.
Sequential execution in this case can be largely inef-
ficient, For suppose the two trees differ in the first
leaf. This will only be discovered after the first tree
is already totally processed., Parallel execution of the
two goals however would provide the best search strategy
for arbitrary trees assuming each tree is going to be
searched in a depth-first fashion as stated by the

"leaves" procedure,
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In general, parallelism of n goals has the further
advantage that it always fails as soon as the goal which

fails soonest does. For example, one or both of the

. trees might be ill-formed.

A sequential interpreter for logic programs

Imagine the sequential interpreter we are about to
define reads in the clauses for "leaves" and re-writes

them as: -

clause (( leaves (t(void, N, void), [N,..Z2]J - 2),
C: -C M.

clause (( leaves (t(Stl,N,Str),L - 2Z2), C: - leaves
(St1,L -~ X), leaves (Str, X - 2), C )).

I.e. each clause is re-written as the single argu-
ment of a unit clause for predicate "clause", after a
variable C is conjuncted to both its consequent and its
antecedent. Introduction of this variable on both sides
of the implication does not modify the semantics of the
program as long as C is guaranteed to be bound, during
execution, to some predicate instance or conjunction of
predicate instances. Nor does it go outside fist order
logic, on the same condition., The extra parentheses
around the single argument of "clause" are just syntax
due to the infix notation used for ":-". The original
clauses for "leaves" in an equivalent form, are thus
supplied as data to the interpreter, by means of predi-

cate "clause".

The clauses for the interpreter which accepts and

executes this data are: -

i(succeed).

i(P) : - clause ((P: - C)), 1i(C).

- 623 —



where a call to the original program such as

leaves (T, L - [1)

is replaced by an equivalent call to the interpreter of

the form

i((leaves (T, L -~ [1), succeed))

The effect of "i" is to accept a conjunction of
goals terminated with "succeed" and to execute it as
follows. It considers the first goal in the conjunct,
looks for the first clause that matches the conjunction
of that goal with the remaining sequence of goals, and
accepts from the clause a new conjunction of goals to be
executed. The new conjunction of goals is just the old

one, where the first goal of the conjunct has been

replaced by the goals in the body of the original clause.

Eventually, execution terminates when the goal "succeed"

is reached.

Thus, execution of a goal by "i" exactly mimicks
the procedural semantics defined for Prolog. The dif-
ference lies in that "i" explicitly carries along the
conjunction of outstanding goals awaiting execution.
This requires the introduction of a variable C, on both
sides of the implication in a clause, for receiving and
passing along the conjunction of goals still awaiting
execution (sometimes referred to as the "continuation").
"succeed" is then needed to express the empty continua-
tion.

Proof of the equivalence between the declarative
and procedural semantics of the original clauses and
the program made up of the clauses for "i" and the

clauses for "clause" is given in a later section.
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A parallel interpreter for logie programs
Next, we show how to obtain a parallel interpreter
"ip" from the above sequential one.
Define the new predicate "ip" as: -
ip(P1l, P2): - i(P1l), i(P2).

Now symbolically evaluate the calls to "i", by
replacing them with the body of the clauses for "i"
which they match - a process also known as "unfolding"
[11.

Four clauses obtain: -

ip(succeed, succeed).

ip(succeed, P2): - clause ((P2: - C2)), i(C2).
ip(P1l, succeed): - clause ((Pl: - Cl)), i(cCl).
ip(Pl, P2): - clause ((Pl: - Cl)), clause ((P2: -

C2)), i(Ccl), i(c2).
Finally, replace calls to "i" by calls to "ip" - a
process known as "folding" [1] - using the facts

i(P) = ip(P, succeed) = ip(succeed, P) where
"succeed" is the recursion base argument of "i", and the

definition of "ip" to obtain: -
ip(succeed, succeed),

ip(succeed, P2): - clause ((P2: -~ C2)),

ip(succeed, C2).

ip(Pl, succeed): - clause ((Pl: - Cl)),

ip(Cl, succeed).

ip(Pl, P2): - clause ((Pl: - Cl)), clause ((P2: -
C2)), ip(cCl, C2).
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The symmetry of "ip" on its arguments allows a
simplification. The result is: -
ip(succeed, succeed).

ip(succeed, P2): - ip(P2, succeed).

ip(p1, P2): - clause ((Pl: - cl)), ip(P2, Cl1).

Symbolical evaluation of these clauses plus sym-
metry reproduce the previous ones.

Again, formal proof of the procedural equivalence
between the call i(P) and the corresponding calls ip(P,
succeed) and ip(succeed, P) is left to another section
as well as the declarative equivalence between the
conjunct i(P1l),i(p2) and ip(P1,P2). The proof is more
general though. Let P and Q be metavariables standing
for two predicates, Define a new predicate P & Q with

the single clause.

P&Q: -P, Q.

where the arguments of P & Q are obtained by adjoining
the arguments of P and of Q. We prove that the declara-
tive semantics of P & Q is equivalent to that of P and
Q, where the clauses for P & Q result from a simple
transformation of the clauses for P and Q. Furthermore,
the declarative and procedural semantics of P & Q pre-
serves the original semantics of P or of Q. The trans-
formation in question is just a simple one-step un-
folding produced by symbolic evaluation of the defining

clause, followed by an appropriate folding step.

A program transformation for direct parallelism

Take the clauses for "i". Evaluate "clause" with
respect to the "leaves" procedure. Call "1" the re-

sulting procedure: -
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1(succeed).
1((leaves(t(void,N, void), (N,..ZJ - 2),C)):=1(C).

1((leaves(t(Stl,N,Str),L - Z), C)): - l((leaves
(stl,L - X),leaves (Str,X - Z), C)).

It directly mimicks the behaviour of "i" over
"leaves". The only argument to this procedure specifies
a sequence of disjoint subtrees of the original tree.
The effect of the procedure is to flatten the original
tree into terminal trees, by successively flattening its
subtrees. Every time a terminal tree is found its only
leaf is inserted into the list of leaves (cf. [11).
Similarly, evaluation in "ip" of "clause" with respect
to "leaves", produces a procedure "1lp" which directly

mimicks the behaviour of "ip" over "leaves": -
1p(succeed, succeed).
lp(succeed, P): - 1lp(P, succeed).
lp((leaves(t(void, N, void), [N,..2] - Z), C),
P): - 1lp(P, C).

1p((leaves(t(St},N,Str),L - Z2),C), P): - 1p(P,
(leaves(Stl,L ~ X), leaves(Str,X-2),C)).

Of course, the transformation t relating "1" to
"1p" is the same that relates "i" to "ip". In other
words, let il1l] informally denote both the declarative
and denotational semantics of program 1 when interpreted

by interpreter i. We have: -

ifl] ¢ 1 [t(L)T = t(1) {13

that is i (1] < 1 [t(1)3 and i [1] < t(i)[1]. The trans-

formation t preserves both semantics.



Interpretation of non-transformed clauses. Bootstrapping

Both interpreters "i" and "ip" may access non-
transformed clauses. To do so the following clause must

be provided: -

clause ((P, C: - C)): - P.
which directly executes P whilst leaving the continua-
tion C untouched. The only requirement, as before, is

that P, during execution, be instantiated to some term

instance, so not to remain as a free variable.
An instance of this clause, viz: -

clause (( clause((P: - C)), Cl: - Cl)): =
clause ((P: - C)).

allows any of the interpreters to interpret the other or
itself (bootstrapping).
A parallel interpreter of n goals

The interpreter "ip" can be readily generalized

from two to n goals: -

ipn(lL] - [1).
ipn([succeed,..PS] - Z): - ipn(PS - Z).
ipn([P,..PS] - [C,..2]): - clause ((P: - C)),

ipn(PS - z).

This interpreter takes as argument a difference
list of goal conjuncts. It processes the first goal of
the first conjunct in the list for just one elementary
execution step, inserts its continuation on the back of
the list of conjuncts, and continues processing on the

next conjunct in the list, If one conjuncé succeeds, it
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continues processing the remaining ones, until eventu-

ally the list of conjuncts becomes empty.

A co-routining transformation

Reconsider the original "leaves" program. Define

the new predicate

co-leaves (T1, L1, T2, L2):- leaves (T1l, L1),
leaves (T2, L2).

Now unfold it by symbolically evaluating the two

calls to "leaves": -

co-leaves (t(void, N1, void), [N1,..Z1] - Z1, t(void,
N2, void), [N2,..22]1 - z2).

co-leaves (t(void, N1, void),; [N1,..Z1] - 21, t(Stil2,
N2, Str2), L2 - 22): -

leaves (Stl2, L2 - X2), leaves (Str2, X2 - 22).
co-leaves (t(Stll, N1, sStrl), L1 -~ Z1, t(void,[N2,
void), [N2,..Z22]1 - Z2): -

leaves (Stl, L1 - X1), leaves (Strl, X1 - Z1l),
co-leaves (t(Stll, N1, Strl), L1 - 21, t(Strl2, N2,
Str2), L2 - 22): -

leaves (Stll, L1 - X1), leaves (Strl, X1 - 21),

leaves (S5tl12, L2 -~ X2), leaves (Str2, X2 -~ 22).

Folding is now accomplished by substituting calls
to "co-leaves" for pairs of calls to "leaves". If there
were single calls to "leaves" these would be replaced

by a call to "co-leaves" where the missing arguments

would be those of the unit clause of "leaves”. In
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general, they can be any arguments known to make true
the predicate in question.

A number of sets of pairings are possible., Only one
such set though preserves the procedural semantics -of
"jeaves", in the sense that a call leaves (T, L - [1) is
procedurally equivalent to the call co-leaves (T, L -
i, v, L -01) « -
co-leaves (t(void, N1, void), [N1,..21] - Z1, t(void,
N2, voigd),[N2,..221 - 22).

co-leaves (t(void, N1, void), [N1,..z1] - 21, t(stlz,
N2, Str2), L2 - Z2): -
co-leaves (Stl2, L2 - X2, Str2, X2 - Z2).

co-leaves (t(Stll, N1, strl), L1 - 21, t(void, N2, void),

[N2,..22] - 22): =~
co-leaves (Stll, L1 - X1, Strl, X1 - Z1).

co-leaves (t(Stll, N1, Strl), L1 - z1l, t(Stl2, N2,
Str2), L2 - 22): -
co-leaves (Stll, L1 - X1, Stl2, L2 - X2),
co-leaves (Strl, X1 - 21, Str2, X2 - Z2),

The first and fourth clauses cover the cases where
both trees find a leaf and where both trees are further
decomposed into subtrees, respectively. The second and
third clauses are responsible for proper co-routining,
i.e. they cover the cases where one tree finds a leaf
but processing on that ree is suspended until the other
tree produces some more leaves.

Other choices of pairings of calls to "leaves”
produce different search behaviours, making interesting
the corresponding transformations. We refrain here from
the details.
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Parallel and co-routining processing features of legic

programming

The potential of logic programming for parallel and
co-routining processing is described in (61, [7]. Paral-
lel or co-routined execution of goals is advocated to be
indicated by the user in some sort of control language
or, alternatively, an especially smart interpreter could
have the initiative of recognizing its usefulness in
some parts of a program. In our opinion a control
language, including specification of parallelism or co-
routining, is needed anyway for allowing the user to
freely specify the control he thinks best.

The importance and utility of such a control
lanquage has been argued in [4]. It should provide the
programmer with the ability to specify appropriate
sequencing of goal calls without affecting the meaning
of programs, influencing only their efficiency and/or
their manner of finding solutions for goals,

Four features of logic stand out, in parallel co-
routined processing of logic programs.

First, sequencing of goals is arbitrary from the
declarative semantics point of view, and thus meaning is
not altered by the particular type of execution chosen.

Second, logic programs may be used as data for
other logic programs, thus allowing clauses (which are
terms) to be submitted as data do particular interpre-
ters, writtén in logic. The clauses for the interpreters
provide thus a semantics of parallelism.

Third, in logic instantanenous communication be-
tween predicates is ensured by the logic variable., Thus
parallel or co-routined executions do not require any
explicit interfacing for data flow. Unification does it

all. Moreover, partly specified data structures in the
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form of terms containing variables may be constructed by
one process and further completed by another through
instantiation of those variables. Execution control can
be effected either by a special interpreter, or by the
clauses themselves, as we have shown. Fourth it is
meaningful to define sequential, parallel and co-
routined executions in pure logic programming terms,
without recourse to implementation or machine dependent
concepts and capabilities.

Next we show how parallel processing might be in-
dicated in Prolog programs, by means of a simple syntax.
This syntax simply specifies the arguments to a particu-
lar interpreter. In the following section we shall
exhibit an interpreter which performs parallel execu-
tion of all the goals in a clause. Likewise, we could
show an interpreter for executing several clauses at
once for the same predicate, which combined with the
previous one would give the ability, to perform breadth-
first executions. We believe that composition of calls
to special interpreters forms the basis of a simple
control language.

In the two examples shown next we also display a
mechanism for directing an execgution to wait for another,
concurrently executed with it, until some conditidn is
met,

Consider the following definition of grandparent: -

grandparent (X, Z): - parent (X, Y), parent (Y, Z).

which acesses data base of unit clauses for "parent" in-
dexed on both arguments. According to whether only X or
7 are already instantiated in a call to "grandparent”,
it becomes convenient to execute one of its two goals
first, This is so because the indexing of the clauses

gives direct access to the relevant unit clauses if one
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of the arguments in the call is already instantiated.
Thus, in the case where X or Z alone are instantiated,
one would like one of the goals to await execution until
execution of the other goal instantiates Y, This can be
done using parallel processing. Rewrite "grandparent" as

follows: -

grandparent. (X, Z): - or ((atom (X), atom (Z))|lwait
or (atom (X), atom (Y)), parent (X, Y)|wait or
(atom (z), atom (Y)), parent (Y, Z)|

grandparent (X, Z): - and (var(X), var(z)), parent (X,
Y), parent (Y, Z).

or (P, Q): - P,!..

or (P, Q): - Q. '

wait (P): - P,!.
wait (P): - wait (P).
and (P, Q): - P, Q.

where atom (A) is an implementation defined predicate
which tests whether A is instantiated to an atom, and
var (V) is also an implementation defined predicate that
tests whether V is a variable which is not yet bound.

The effect of "wait" is to postpone its execution
until the condition expressed in the argument is true,

The vertical bars indicate which groups of goal
sequences are to be executed in parallel, where each
sequence by itself is sequentially executed.

The first of these clauses would then be rewritten

by the Prolog interpreter as: -

grandparent (X, Z): - or (atom (X), atom (2)),
ipn([(wait or (atom (X), atom (Y)),
parent (X, Y), succeed), (wait or (atom (Z),
atom (Y)), parent (Y, Z), succeed),.. W] = W),
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Another example of the use of "wait" combined with
parallel execution refers to the use of negation as non-
provability. This type of negation is accomplished in
Prclog by the clauses: -

not (P): - P, !, fail.
not (P).

where "fail" always fails. A problem with this defini-
tion is that it does not in general respect the seman-
tics of "not" in the case where P contains some unbound

variables. For example, different solutions are found

for

r(xX): - not (p(X)), q(X).
and

r(X): - g(X), not (p(X)).
given

pla).

q(k),

Now, for reasons of efficiency one might want the
"not" to be executed first, unless X is not instantiated.
This and similar problems can be solved by the use of
"wait" in conjunction with parallelism. The above clause

is then written: -

r(x): -|| wait (notvar (X)), not (p(X))| a(x)}|].
where "notvar" is an implementation defined predicate
which tests that X is not an unbound variable. This way,

execution of not (P(X)) is postponed until X is bound,

while execution of Q(X) goes on, eventually binding X.
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Other iInterpreters

The next interpreter provides parallel execution of
all the goals in a clause, I.e. it performs a breadth-
first execution of the and nodes of a derivation tree.

ipb (succeed - succeed),

ipb((P, L) - (C, 2)): - clause ((P: - C)),
ipb (L - Z).

where parallel execution of two goals, P and Q say, is

achieved by the call
/

ipb((P, Q, Z) - Z)

What "ipb" does it to insert each goal in a clause
at the end of the sequence of goals to be executed in
parallel, where each goal gives rise to a new separate
execution,

A final interpreter is shown for completeness. It
is just the sequential interpreter we started out from,
re-written to account for the use of the "cut" in Prolog
programs, It is meant only for Prolog knowledgeable
readers.

Take a clause of the form

P: - Q, R, !, S, !, T.

Imagine the interpreter re-writes it as

P: - ! ((Q, R, succeed)), ! ((S, succeed)), T,

The clauses for the interpreter which appropri-
atelly deals with such clauses are

i (succeed).

i (P): - clause ((P: - C)), (ifcut (C, Cl1l, C2),
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i((r(Ccl), c2)): - i(cly, !, i(c2).
ifcut ((1(cl), c2), Ccl, C2).
ifnocut ((!(Cl), C2)): - !, fail.

ifnocut (C).

THE SEMANTICS OF THE INTERPRETERS
The semantics of Prolog Programs

In this section we formalize the behaviour of
Prolog programs interpreted by the interpreters
presented above, thus complementing the intuitive
descriptions made at the appropriate places., Our for-
malization is what might be called the procedural
(operational) semantics of the interpreters, because it
describes the computation seguences obtained when the
interpreters are supplied with data.

We begin by formalizing Prolog programs themselves
and their semantics. This is easy, if we consider only
Prolog programs consisting exclusively of strictly
logical features, which we shall do henceforth. Such
programs will be called "declarations”, following [12].

It is advantageous to depart here a little from the
notations employed in the earlier part of the paper.
This will be done as needed., For the time being, let us
write unit clauses in the form "A: - " instead of the
form "A.". We define now a declaration to be a (finite)

set of clauses of the form

where A, A An are (positive) literals and n 2 O,

lya-o,
We shall consider the literals inside each clause

ordered from left to right and thé clauses inside each
declarations also ordered, from top to bottom as they
are written.

The inputs to declarationé are goal &tatements,
which are clauses of the form

where Ay,..., B are positive literals, called goals
of the goal statement, and n > O. The special case in
which n = O is the null clause, usually denoted oO. As
for any other clauge, we consider the goals inside each
goal statement as ordered.

Let D be a declaration. We say goal statement G

derives directly a goal statement G’ iff

G 1is : - Al""’ An with n >0
and 5

G' is : - By8,..., B8, A, 8,..., A 9,
where there is a clause B:—Bl,..., B in D and & is the

most general unifier of A, and B, (Notice that if n =1

1
and m = O then G’ is the null clause.) In this defini-

tion, the clause B: - B Bm is assumed to have no

1reeer
variable in common with G; i1f necessary, the variables
occurring in the clause may be renamed.

The goal statement G is said to derive a goal
statement G’ iff there is a seguence of goal statements
Go' G1""’ Gn
G, such that G_ =G, G_ = G’ and G,

o n i-

(n 2 0), called a derivation of G’ from
1 derives directly
Gi for i = 1,..., n. A refutation of G is a derivation
of the null clause from G. It is well known (5] that D
u {G} is unsatisfiable iff there exists a refutation of

G.
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We now define a derivation tree for every declara-
tion D and goal statement. G, as a tree containing all
possible derivations from G. The root of the tree is la-
belled with G. If some node is labelled with a goal
statement Gl' then there is an arc from this node to a
node labelled with a goal statement G2 iff Gl derives
directly, G2. (When determining the direct descendents
of a node labelled with G,, a new node is created for
every G, such that Gl derives directly G2, even if there
is already a node labelled with G2. Bearing this in
mind, we shall from now on confuse the name of a node
with its label, in order to simplify the exposition.) It
is clear that every path starting at the root is a
derivation from G and conversely. Thus D v {G} is un-
satisfiable iff there is a finite branch of the deriva-
tion tree of G whose leaf is the null clause.

We order the direct descendents of each node of a
derivation tree as follows: if G, and G, are direct
descendents of a common node Gl’ we say G2 is generated
before G3

occurs first in D than the clause used to derive G3

iff the clause used to derive G2 from Gl

from Gl' With this definition we are apt to order the

derivations from a goal statement G. Given two distint

derivations
(D) G = Go' Gl""’ Gn
(D') G = G’O, G'l,..., G’m

we say D is gegnerated before D' iff
. either n < m and Gi = G'i for i = 0,..., n;

- or, for some index i < min {n, m}, Gi # G',, and

if k¥ is the least such index then Gk is generated

before G’k.
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Further, we say D precedes immediately D' iff for
no derivation D" is D generated before D" and D" gener-
ated before D'.

Let us say a derivation D is final iff it is a
refutation or no other derivation is generated after it,.

By the computation of the declaration D with input
goal statement G we mean the sequence of derivations
beginning with the derivation consisting of a G alone

and such that, for every derivation D in the sequence:

- either D is final, in which case it is the last

derivation in the sequence;

- or precedes immediately the derivation that

follows it in the sequence.

A computation will be said to be terminating if it
is finite, otherwise non-terminating. A successfull
computation is a terminating computation whose last
derivation is a refutation.

We thus see that the computation of D with input G
is the top-down depth-first search of the first final
derivation in the derivation tree of G. Notice that it
may well happen that D u {G} is unsatisfiable, yet the
computation of D with input G is non-terminating. This
is so iff there exists an infinite branch of the deriva-
tion tree of G which is generated before any finite
branch whose leaf is the null clause.

This concludesvour description of the procedural

semantics of Prolog programs.
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The sequential interpreter

Recall that the sequential interpreter consists of

the two following clauses:
i(o): -

i(P): - c((pP:-C)), 1i(C)

where we are using for short'c' and 'c' instead of
'succeed' and 'clause' respectively.

Given a declaration D we define the declaration
i(g) to consist of the two above clauses plus a unit

clause

A c)y: -

c((a, C: - Ay, .., A,

for each clause A: - Al,._., An in D. We assume that the
order of these clauses in i(D) is the same as the order
of the respective original clauses in D, We assume
further that the predicate symbols 'i' and 'c' as well
as the constant 'o' are not among the predicate symbols
and constants occurring in D.

If G is an input goal statement to D, say

17"’ “n
we denote the term Al,..., An, ¢ by c° (if n = o, soO
that G is O, we have G¢° = ¢). This way,
: - i (67
is the input goal statement - i((Al,..., An' o)) to

i(D). (Note that in the term A cer B, O the comma is

1r-
just a binary functor used in infix notation, with asso-

ciation on the right implicitly assumed. The extra-

parenthesis above specify that Al"“" A ¢ is a single

nF
term and not a sequence of arguments.)
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We want to relate the computation of D with input G

with the computation of i(D) with input : - i(G%). For
the rest of this section we shall keeps this notation
fixed.
Let D be a derivation G = Go, Gl""’ Gk from G in
D. Denote by Dil the following sequence of'goal state-
ments:
- 1 O
- i (Go)
o .
:= c((G = C)), i(C)
o
:- i(Gi)
., O
:- 1(Gk ).

Denote further by Di the previous sequence Di

2
followed by the null clause, if G

1
is the null clause,

k
or by :- c<<ci := C)); i(C) otherwise
LEMMA 1.
(a) D, and D., are derivation from : - 106°) in (D),

and every such derivation has one of these two forms.

{b) D, precedes immediately D,

1 2°
(e¢) If D* is another derivation from G in D such that D
precedes immediately D°, then DiZ precedes immedi-

>
atelly D :

1

7*

Proof

(a) We shall omly prove that D,, is a derivation :-

1
1(G%) in i(D). It is clearly enough to prove that if Gj
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.0 . .
derives directly G_ 4 in D then :- 1(Gj) derives di-

rectly :- c((GJ :Z C)), i(C) and this last goal state-
ment derives directly :- i(G0j+l) in i(D). Let G, and
ivel
Gj+1 be respectively
2= Byseaey Al (n < 0)
and
- Bl yeeay Bm R A2 yoeseys An
where there is a clause B:- Bl""' Bm in D such thaE
is the most general unifier of Al and B. Then :- i(Gj)
is
- i((Al,..., An,c))
which derives directly
:- c((Al,..., A, 9 - c)), i@
that is
:- c((Gg i- €)), 1i(0)
by means of the clause i(P) :- c((P:- C)), i(C) of i(D).
Now the clause.
c((B, C' := By,...y B C')):-
is in i(D) and c((Al,..., A, 0 - C)) is unifiable with

it, with most general unifier the substitution o' given

by

o' = 0 {C/(By % ..., B 8, C} {C'/(A, 8,...,B 0, 0)}.
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Therefore :- c((Gg :=C)), i(C) derives directly

:- i((.Bl 8,00y B 8, Ay 8,..., A 8, ¢))
. . . ag
which is :- 1(Gj+l).
(b) Clear.

(c) It is clear that if D is generated before D'
then D,, is generated before D'il' The statement of (c)

follows immediately from this. o

THEOREM 2.
o 1 n . . .

IfD°, D',..., D,... is the computation of D with

G then
o o 1 1 n n

D7i1s Doges Pips LY TRERE ST PPIE
s the computation of Z(D) with input :- 2(6%).
Proof

Use the lemma and induction on k to prove that the
(2k)-th (resp. (2k+1)-th) derivation in the computation
k

of i(D) with input :- i(G°) is DX, (resp. D'
= il

12)' o

We may obtain another description of the
"behaviour" of i(D) with input :- 1(G%) if we restrict
our attention to goal statements of the form :- i(G'O).
By an ¢ -~ derivation from :- i(G%) in i(D) we mean the
sequence of goal statements of the form :- i(G'o) ob-
tained from some derivation from :- 1(¢”) in i(D). By
the lemma, everf i - derivation is of the form :- i(Gg),

- i(Gi),..., - i(G;) for some derivation G = GO,

Gl""’ Gk from G, If we denote this last derivation

from G in D by D, the resulting i -~ derivation will be
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denoted i(D). By the ¢ - computation of i(D) with input
- i(GO) we mean the sequence of i - derivations, with-

out repetition, obtained from the computation of i(D)

with input :- i(G%). From the theorem it follows that if
Do, Dl,..., Dn,... is the computation of D with input G
then 1(p%), 1(pY),..., i(D™),... is the i - computation
of i(D) with input :- i(Gc").

The parallel interpreter

The parallel interpreter consists of the following

clauses
i (o, 0): -
p
i (o, P): - i _ (P, o),
P P
ip (P, Q): - c ((P:- C)), ip (Q, C).

As for the sequential interpreter, we associate
with every declaration D a declaration ip(g), which is
defined in exactly the same way as i(D). It consists of

the- three above clauses plus a clause

c((a, C:- A A C)):-

1rece n’

for every clause A: - Al""' An in D.

Let G and H denote respectively the terms Ajye.o A
and Bl""'
(positive) literals. Denote further AjyeeasBy, @
and B

B_, ¢ by G’ ana ®’ respectively (this nota-
tion departs a little from the one previously used), so

B (n, m 2 0), where the A's and B's are

177 m

that :- G, H and :- ip(Gc, %) are inputs to D and ip(g)

respectively.
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It would be interesting to compare the computations
of D with input :- G, H and of i_(D) with input :- i
(¢°,H%).(In the first case the tgr;s G and H are com13
puted sequentially, and in the latter they are computed
in parallel.) It may happen, however, that the computa-
tion of D is successfull and the computation of ip(E)
is non-terminating, and conversely. Consider, for

example, the following declaration D:

g(f,(xX), Y):- g(X, Y)

g(Xx, g(¥)):- g(x, O)

g(o, 0O):-

m(0O, 0O):-

m(f (X), 0):- m(X, 0)

m(f (X), g (Y)):- m(f (X), g(¥))

The computation of D with input :-q(f(0), ¥Y), m(f
(0), Y) is non-terminating and the computation of ip(g)
with input :- ip((q(f(O), Y¥),o), (m(£(0), ¥), o)) is
successfull. This fact makes it difficult to compare the
above mentioned computations.

We shall follow another approach to describe the
computation of i_(D). Reconsider the definition of
"direct derivation" presented before. According to this
definition, to derive directly a given goal statement
from another goal statement we had to match the first
literal in the 1last goal statement with the head of some
clause, and the first goal statement was obtained by
resolution without factoring or merging. The reason for
using such a restrictive notion of "direct derivation"
is because this is the way Prolog has been implemented.
We shall now abandon this restriction and consider the
possibility of selecting other literals than the first

in goal statements for matching with the heads of

— 645 —



clauses. Consider the following method of obtaining a
derivation in D with top goal statement :- G, H. Every
goal statement occurring in the derivation may be

written in the form :- Gk’ Hk' where G, or Hk or both
may be empty, so that the derivation itself is of the

form :-~ G_, H ; := G,, H.;...; == G, H . Here G _1is
o o} 1 1 n n o

G and Ho is H. Consider now the goal statement :- G,

Hy . If G and H, are both empty then :- G, H is the

null clause and consequently is the last goal statement
in the derivation. Otherwise let us distinguish two

cases:

(1) k is even: if G is not empty select the first

literal in Gk' else the first literal in Hk'

(2) k is odd: if Hy
literal in Hye, else the first literal in Gk'

is not empty select the first

In either case, the selected literal is matched
with the head of some clause in D (if such a clause
exists) and the next goal statement is obtained by
resolving the given goal statement and clause without
factoring or merging. The resulting goal statement can
be written in the form :- Gk+1’ H 1 where if the
literal chosen in :- Gk’ H belongs to G, then :- G
derives :- Gk+l and Hk+l is an instance of Hk; else

:- Hk derives :- Hk+1

Such a derivation will be called a p - derivation

and Gk+l is an instance of Gk'

from :- G, H in D, where the 'p' indicates that G and H
are executed in parallel (see above for the justifica-
tion of the last statement). We speak of a p - refuta-
tion when the last goal statement in a p - derivation is
the null clause. We may say of two p - derivations when

one of them is generated before the other, and therefrom
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we define the concepts of "p - derivation tree" and "p-
computation".

We now describe the computation of i_(D) with
input :- ip(Gc, 1%) by describing its ip E computation,
to be defined below, and comparing it with the p - com-
putation of D with input :- G, H, The concept of ip -
computation is analoguous to the concept of i - computa-
tion defined in the section on the sequential inter-
preter. By an ip - derivation of :- 1 (Go, %) in ip(g)
we mean the sequence of goal statements of the form :-
i (-,-) obtained from some derivation from :- i (GU, Ho)
in i_(D). The ip - computation of ip(E) with input :- i
(Gc, 1) is the sequence of ip - derivations, without
repetitions, obtained from the computation of i_ (D). By
a lemma analoguous to lemma 1, we may associatepwith
every p - derivation D from :- G, H a unique ip - deriva-
tion iP(D) from :- ip (GO, HO), and every ip - deriva-
tion may be obtained in this way. Next, by analogy with
Theorem 2, we may say that if p°, Dl,..., pt,... is the
p - computation of D with input :- G, H then i (Do),
ip(Dl),..., i (p™),... is the ip—computation o% ip(Q)
with input :- ip(Go, 1),

This finishes our description of the behaviour of
ip(g) with input :- ip(Go, #°). From this description we
may conclude that the parallel interpreter is an im-
plementation in Prolog of the “parallel strategy"
described above for the execution of D when the goals in
the input goal statements for D are separated into two
sets G and H. Notice that if G (or H) is empty then the
parallel execution of :- G, H coincides with the usual
(sequential) execution of :- H (or:-G). We conclude this
section by showing that this parallel strategy is

complete,
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THEOREM 3.

of pu {:- (G, H)} zs unsatisfiable then there ts a
p - refutation of :- G, H in D.

Proof

our proof will be directed towards reducing the
problem of finding a p-refutation of :- G, H to the
problem of finding a refutation of :- G, H.with respect
to a convenient selection function defined for goal
statements based on D. We therefore start by defining
such a selection function p and then use a result by
r5] (Theorem 3, p. 26) which assures us of the existence
of a refutation of :- G, H with respect to p. We con-
clude the proof by showing that this refutation is also

a p-refutation.

We say a goal statement is "based" on D iff all the
function and predicate symbols occurring in it also
occur in D. By a "selection function" for D we mean a
function p assigning to each goal statement based on D
(except the null clause) a literal occurring in it. A
goal statement G "p-derives directly" a goal statement
H iff H is obtained from G and a clause in D whose head
matches p(G) by resolution without factoring or merging.
Let us define a selection function p for all non-null
goal statements based on D. This will be done by con-
structing a sequence Eo’ 91"'“' Ek,..n of ordered sets
of goal statements based on D ; and » will be defined
on these sets by induction on k. Further, every goal
statement in any set Ek will have the form :- G , H .

90 is to consist of the single goal statement :- G, H,
which we may assume to be different from the null
clause, and p selects the first literal in G if G is not
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empty, otherwise the first literal in H., Assume that Gk

and the selection function ¢ on G, have already been

defined. A goal statement :- G", H" belongs to Gk+l iff

some :- G', H' in Ek o-derives directly :- G", H" and
- G", H" does not belong to Ei for any 1 < k. The goal

statements in §k+l are ordered in the obvious fashion:
" n

for :_‘Gl’ H"l and :- G2 in §k+l’ pick the first :- G

H'l and :—- G X in gk which p-derive directly :- G"
H"l and :- G"2, H"2 respectively; if :- G
egual to :- G'2, H‘2 then :- G"l, H"l occurs in §k+l
before :- G"2, H"2 iff the clause used to generate :-

e G"l, H"l occurs in D before the clause used to gener-

l’
ll

l,HllS

ate :- G"2, H"2; otherwise, :- G"l, H"l occurs before
- G"2, H"2 iff :- G'l, H'l occurs before :- G'2, H'Z.

To define p on §k+l'let :— G", H" belong to Ek+l and

:= G', H' be the first goal statement in G, which p-
derives directly :- G", H". If G" (resp. g") is empty
then p selects the first literal in H" (resp. G"), un-
less H" (resp. G") is also empty, in which case :- G",
H" is the null clause; otherwise p selects the first
literal in G" if it selected the first literal in H ,
else it selects the f}rst literal in H"., This completes
the definition of p for goal statements belonging to the
sets Ek‘ For any other goal statement based on D, p is
defined arbitrarily. Now according to the alreagy men-—
tioned result by [5] it follows that there is a p-
refutation of :- G, H in D. This implies that the null
clause belongs to some G, . We may then construct a p-
refutation of :- G, H consisting of a sequence of k+1
goal statement such that the i-th goal statement belongs
to Ei-l . It is clear that this refutation is also a
p-refutation, thus finishing the proof of the theorem. o
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The n-parallel interpreter

This interpreter is entirely analogous to the pre-
vious one, with the only difference that any number of
goal statements may be executed in parallel, instead of
two; thus the use of lists instead of n-tuples. For this
reason we shall attempt no description of the computa-
tion of this interpreter, which would be in all relevant
ways similar to the description of the computation of

the parallel interpreter.

Co-routining

Let there be given a declaration D and suppose p
and q are respectively an n-place and an m-place pre-
dicate symbols occurring in D, When presented with an
input :- p(tl,..., tn)' q(t'l,..., t'm) D will compute
the literals p(tl,..., tn) and q(t';,..., tr,) sequen-
tially. We shall define a transformation on D such that
when the transform of D is presented with a convenient
input it can be said to compute the two above literals
co-routiningly. This transformétion consists in eliminat-
ing from D the symbols p and ¢, in creating a new (n+m)
- place predicate symbol p & q, and in substituting the
clauses in D where p & g occur by new clauses, The
transform of D will be denoted D (p & q).

Let us call a p-literal a literal of the form
p(xl,..., xn) and a p-clause a clause whose head is a
p-literal. We define similarly g-literal and g-clause.
We shall begin by defining D(p & q) only in the case
where there exist a unit p-clause and a unit g-clause
in D. Later we shall indicate how to define D(p & q)

when this requirement is not met.
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The declaration D(p & g) is the union of the three

following sets of clauses:

(1) The set of all clauses in D where neither p nor

g occur.

(2) The set of all clauses C obtained by the fol-
lowing procedure applied to clauses C' in D containing p

or q but which are neither p-clauses nor g-clauses:

(a) if the number of p-literals in the body of C!'
is different from the number of g-literals, adjoin to
the body of C' as many p-literals or g-literals as
necessary so as to make their numbers equal; these p-

literals (resp. g-literals) may be any instances of

zheads of unit p-clauses (resp. g-clauses) in D;

(b) set up a bijective correspondance between the
p-literals and the g-literals in the body of the clause
obtained in (a) and substitute each pair (p(xl,..., xn),
q(yl,..., ¥,)) in correspondance by the p & g-literal

P& glxy,..., Xpr Yyreewr Yoo

(3) T?e set of all clauses C12 obtained by applying
the following procedure to a p-clause C'1 and a g-clause
C'2 in D:

(a) rename the variables occurring in C'2 (for
instance) so that they are different from those occur-
ring in C‘2 (for instance) so that they are different

from those occurring in C'l;

(b) if the head of C'l is p(x xn) and the

1t
head of C'2.1s q(yl,..., ym), construct a clause C"12
whose head is p & q(xl,..., Xpr Yyreeoy ym) and whose

body is the set of 1iterals/which belong to the body of
C’l or of C'2; i
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(c) finally, transform C"12 into Cy, by applying to

c" the procedure applied to C' in (2).

12

The input to D(p & g) associated with the input
- p(tl,..., tn)’ q(t'l,..., t'm) to D is (- p & g
(tl,..., tn' t'l,..., t‘m). Let us abbreviate these in-
puts to :- p, g and :- p & g respectively.

THEOREM 4.

pui{:- (p, q)} is unsatisfiable iff D(p & q) u
{:- p & q} is unsatisfiable (i.e. the declarative seman-

ties are equivalent).

Proof

Suppose there is a model of D u {:- (p,q)}. This
model is a subset M of the Herbrand base of D v

{:-(p, g:}.

Let M(p & q) be the subset of the Herbrand base of
D(p & @) u {:- p & g} consisting of the literals in M
;hich are neither p-literals nor g-literals, plus a
p & g-literal p & q(xl,..., X, ym) for every p-literal
p(xl,..., xn) and every g-literal q(yl,..., ym) in M, It
is clear that M(p & g) is a model of D(p & q) v
{:-p & g}. Conversely, suppose M(p & g) is a model of
D(p & gq) v {:-p & g}. A model Mof D {:- (p, 9)} can
;e constructed by letting M consist of all the non-p
p & g-literals in M(p & q) plus literals p(xl,..., xn)
and q(yl,..., ym) for every p & q(xl,..., X v yl,...,ym)
in M(p & g). This finishes the proof. o

In the definition of D(p & q) we did not bother to
order the clauses inside D(p & g) and the literals in-

side each clause for two main reasons. In the first
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place, this was not necessary to state and prove Theorem
4., More importantly, we did not want to impose unneces-
sary restrictions from the outset on the kinds of co-
routining of p and g that could be obtained. But now we
want to compare the computation of D with input

1= p(xl,..., xn) with the computation of D(p&g) with in-

11---! n’ bll---r 17
an instance of the head of some unit g-clause. (By

put p & g(x X bm) where q(b bm) is
symmetry, we also want to compare the computation of D
with ithput :- q(yl,..., ym) with the computation of

D(p & g) with input :- p § q(al,..., Ay Yyre-os ym),
where p(al,..., an) is an instance of the head of some
unit p-clause, but this comparison is made in a manner
entirely analogous to the previous one so we will not
mention it any further.) This will dictate the orderings
D{(p & g) must be supplied with.

We may assume that the clauses in D are ordered
thus: all p-clauses come first, then come g-clauses, and
finally the remaining clauses. Indeed, as far as any
computation of D is concerned, we may permute at will
the clauses of D, provided that the clauses in each of
the three sets above maintain their relative sequential
positions. We may arrange the clauses in D(p & g) so
that the p & g-clauses come first, followed by the
remaining clauses. The relative positions of the re-
maining clauses are the same as the relative positions of
the respective clauses in D. As to the p & g-clauses,
let Cy, (resp. Cy,) be a p & é—clause obtained from a

p-clause, ¢y (resp. C'3) and a g-clause C', (resp.

2

, . . . .
C 4), then C12 occurs before C34 iff either C 1 occurs

t 1 = 1 ' t
before C 3 or C 1 C 3 and C , occurs before C 4°
In order to arrange the literals inside the clauses

of D(p & g) we have to alter slightly the definition of
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D(p & g). Theorem 4 still remains valid, however. We fix
an instance p(al,..., an) of the head of a unit p-clause,
and assume that this unit p-clause occurs in D before
any other p-clause with whose head p(al,..., an) matches.
We fix similarly q(bl,..., bm) and make the correspond-
ing assumption. Now recall that D(p & q) is the union

of three sets of clauses., Accordingly, we order the

literals in the clauses of D(p & q) in three steps:

(1') The clauses of this set also belong to D, so
the order in which the literals are written is the same
as in D.

(2') Here the clause C is now obtained from C' by
rewriting each p-literal p(xl,..., xn) (resp. each g-
literal q(yl,..., ym)) as p & q(xl,..., X bl,...,bm)

(resp. p & g (al,..., a s Yyreees ym)), while leaving

n
the ordering of the remaining literals unchanged.

(3') Let C.,. be the p & g-clause obtained from the

12
p-clause C'l and the g-clause C'2.

a') If neither C
they are both unit clauses, then Cqp is defined as be-

nor C , are unit clauses, or if

fore and the literals are ordered arbitrarily.

b') Otherwise order the literals in the body of
c"y, @s they are ordered in the one of C',; and C'y which
is not a unit clause, and transform C"l2 into C12 by

applying to C"12 the procedure applied to C' in (2').

For any goal statement G’ based on D let G be the
goal statement based on D(p & q) obtained by applying to
G' the procedure applied to C' in (2'). We may now
state the following theorem, whose (easy) proof we omit.
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THEOREM 5.

(a) If D' = (G’O, G'Z‘ e e s G'k) 18 a derivation
from :- p(xl,..., x,) in D, then D = (Go, Gysunes Gk) 18
a derivation from :- p & q(ml,..., z s bl""’ bm) in D
(p & q).

(b) If D’l, D’2,..., D'r,... i8 the computation of
D with input :- p(xl,..., xn), then Dys Doy Dos--.

is the computation of D(p & q) with input
"—p &q(xl.)"'_) x b],-.._, bm).

n’

Thus the declaration D(p & q) can be used to
simulate the original declaration D.

We end this section by indicating how D(p & gq) can
be defined whenever there do not exist in D unit p-
clauses or unit g-clauses or both. Suppose there do not
exist unit p-clauses but a unit g-clause exists. We
assume there is a ground p-literal p(al,..., an) such
that D v {:- Plaj,e..s an)} is unsatisfiable. Then we
define D' to be D v {p(al,..., an): -}, where this new
clause is placed before any other clause, and let
D(p & g) to be D'(p & q). Notice that Theorem 5 is no
longer valid as stated. The g-version of it, however,
remains valid.

CONCLUSIONS

Logic programming is highly suitable for parallel
and co-routined modes of processing. First, it supports
a natural self-contained definition of parallelism in
terms of a single elementary event - the match of a goal
with a clause. Second, it allows freedom in the ordering
of goal executions, whilst preserving the declarative

semantics of programs. Third, the logical variable,
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through unification, automatically provides for process

interfacing without execution or code overheads. Fourth,

because logic clauses are terms they can be given as

data to a parallel interpreter also written in logic.

This provides a clear semantics of parallelism,
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