
 1

A Distributed Logic Programming Language and
its Implementation on Transputer Networks

José A. Cardoso Cunha, Pedro A. Duarte Medeiros, Luís M. Pereira

Universidade Nova de Lisboa, Departamento de Informática

Faculdade de Ciências e Tecnologia

Abstract

Currently there is a trend towards the development of programming tools and mechanisms for
the support of heterogeneous multi-agent systems on paralell computer architectures. This paper
presents a contribution to this area, as far as logic programming on a distributed execution
environment is concerned. We discuss the main issues on the design and implementation of the
logic programming language Delta Prolog [2] [3] [6] [7] [11], extending Prolog with constructs
for concurrency and communication. The work described is one of the research components of a
project on the development of mechanisms for parallel logic programming support on parallel
architectures, currently running in this University [8].

1. Delta Prolog: the language

In this section a simple example is used to review the main language constructs, along the
following relevant dimensions: specifications of sequential and concurrent composition of Prolog
goals; communication and synchronization between processes; local non-determinism (i.e. within
each Prolog process) and global (or external) non-determinism (allowing the choice among
multiple communication alternatives).

1.1 _-Prolog programs

A _-Prolog program is a sequence of clauses of the form: H :- G1,...,Gn. (n_0). The comma is
the sequential composition operator. Declaratively, the truth of goals in _-Prolog is order-
dependant, so that H is true if G1,...,Gn are true in succession.

Whereas H is a Prolog goal, each Gi may be either a Prolog or a _-Prolog goal.
A _-Prolog goal is either a split goal (for parallelism), an event goal (for inter-process

communication) or a choice goal (for external non-determinism). A _-Prolog program without
_-Prolog goals is and executes like a Prolog program, so _-Prolog is an extension to Prolog.

The programming model relies on the programmer to specify the sequentiality constraints and
the desirable parallelism existing in each problem (using the comma and the split operators), and
the corresponding communication schemes (through event and choice goals).

The paper assumes some knowledge of logic programming languages, such as Prolog. An
informal introduction to the language constructs follows.

1.2 Illustration of the main language constructs

 Published in the Procs. of 12th Technical Meeting of Occam User Group, Exeter, IOS Amsterdam, April 1990.

 2

 Consider a problem that is amenable to a decomposition into three separate processes (or
agents), which we will denote by P, I and C. This is an usual configuration whenever we have an
intermediate processing to be performed (by I) on any items that are being produced (by P), and
eventually must be sent to a consumer process C.

(i) Specifying the parallel composition of multi-agent systems

The concurrent execution of the three processes above may be specified by the top goal

prod(...) // filter(...) // consume(...), where // is a right associative parallel composition operator
and prod(...), filter(...) and consume(...) are the goals to be solved by each agent (as a separate
Prolog process, except that communication is possible, cf. below).

Declaratively, S1 // S2 is true iff S1 and S2 are jointly true. Operationally, solving S1 // S2
corresponds to a concurrent resolution of goal expressions S1 and S2, i.e. to an arbitrary
interleaving of their resolution steps.

Figure 1

(ii) Specifying sequential goal composition

The sequential evolution of a system may be specified by the comma operator, e.g. within the

filter process:

filter(...) :- communicate_with_P(...),

intermediate_processing(...),
communicate_with_C(...).

Operationally, to solve goal ´filter´ solve successively the three goals in the clause body.

(iii) Specifying communication between two agents

 Communication in _-Prolog is expressed by event goals . This is a message-based
communication mechanism where two concurrent processes jointly solve a pair of goals (one in

 3

each process) of the form T? E and T! E; the goals must be complementary, i.e. one uses
symbol ? and the other uses !, and E refers to the same name. T is a Prolog term (the message),
? and ! are infix binary predicate symbols (the communication modes), E is bound to a Prolog
atom (the event name).

In our example:

prod(...) :- produce_item(X), X ! event_P.

filter(...) :- X ? event_P,

intermediate_processing(...),
communicate_with_C(...).

A solved event goal can only be said that it was true when it solved with its complementary

goal. The declarative semantics of _-Prolog does not assign an "absolute" truth value to a goal. In
general, a goal is true for some combination sequences of events (or traces) that were true, and
false for others.

Operationally an event involves a form of "rendez-vous" of the two processes solving the goals
X ? E and X ! E, with exchange of messages achieved by unification of X and Y: an event goal,
say X?E , solves only with a complementary event goal, say Y!E, "simultaneously", whenever the
latter is available in a parallel derivation (unavailability causes resolution of the goal to
"suspend"). Note that failure of unifying the terms in both event goals leads to a failure which
must be handled by a specific computation strategy as explained in a section below.

Term unification provides the possibility of a two-way exchange, e.g. in goals ´m(1,X)!e´ and
´m(Y,2)?e´ one process would obtain the substitution X = 2 and the other one would obtain Y = 1.

The involved processes share no common variables.
This basic synchronization mechanism of _-Prolog generalizes Hoare's and Milner's

synchronous communication (Hoare 85; Milner 80) by using term unification for message
exchange. Unlike CSP and Occam, no special significance is attached to the communication
modes ! and ? (like "send" or "receive"), except that they are complementary in the sense above.

(iv) A complete program

p(X) :- prod(X) // filter // cons . % top goal

prod(X) :- a(X), X ! event_P. % produce a binding for X and then communicate.

a(2). % unit clauses for predicate a(X).
a(3).
a(4).
a(5).

filter :- X ? event_P, (X>1, X<5), X ! event_C.
 % communicate, check received item, and communicate.

cons :- X ? event_C, consume(X). % communicate and then consume an item.

The solutions for the top goal p(X) and the program above correspond to the substitutions

{X=2}, {X=3} and {X=4}, obtained by successful resolution of event goals X!event_P and
X?event_P in the communication between the producer and the filter, and of event goals

 4

X!event_C and X?event_C in the communication between the filter and the consumer. The
substitution {X=5} is ruled out by the condition in the definition of the filter predicate.

A declarative reading of this program allows us to define the solutions with no concern to any
operational execution model. Several computation strategies are possible for _-Prolog as discussed
in section 2.

(v) Non-determinism in _-Prolog programs

In _-Prolog the selection of the matching clauses for resolution with a selected Prolog goal is

like in Prolog sequential systems (i.e. uses the textual occurrence of the clauses in the program),
being independent of the state of the environment (cf the definitions for the ´a´ predicate in the
example above). Therefore to allow the programming of applications where multiple
communication alternatives may be simultaneously available whose selection depends (non-
deterministically) on the environment, we introduced choice goals.The choice operator :: is based
on its namesake introduced in (Hoare 85) (cf. also ALT construct in Occam).

These have the form A1 :: A2 :: ... :: An (n_2), where :: is the choice operator, and the Ai are
the alternatives of the goal. Each alternative has the form Ge,B , where Ge is an event goal (the
head of the alternative), sequentially conjuncted to a possibly empty goal expression B (the body
of the alternative).

 Declaratively, A1 :: A2 :: ... :: An is true iff at least one alternative is true.
Solving a choice goal consists in solving the Ge of any one alternative (whose choice is governed
by the availability of a complementary goal for its Ge), and then solving its body B. If no
complementary events are available for any alternative the choice suspends.

We illustrate this by modifying the example above and using a buffer process for the
intermediate agent I:

buffer([]) :- X? event_P, buffer([]).
buffer([X|T]) :-

(H?event_P, append([X|T], [H], NewBuffer), buffer(NewBuffer)
::
X?event_C, buffer(T)
).

where the definition of append(L1,L2,L3) (L3 is the concatenation of lists L1 and L2)is
omitted.

A top goal of the form prod // buffer([]) // cons specifies a configuration as shown below:

Figure 2

The buffer process non-deterministically chooses between participating in an event with the
producer process (and then appending a received item to the buffer) or participating in an event
with the consumer process (by offering the item at the head of its list).

1.3 Notes on the language model

 5

We focused on the following features of Delta Prolog:
(i) the language subsumes Prolog, allowing us to gain from the enormous accumulated

experience on Prolog programming;
(ii) it has a well-defined semantics, allowing the programming of distributed applications in a

logic framework, with a clear declarative semantics;
 (iii) Delta Prolog's communication model is based on the theoretical models of CCS [5] and

CSP [4], and extends the latter with two-way synchronous communication of Prolog terms (as
messages) between two processes (communication through event goals)

2. Delta Prolog: the execution models

We discuss the computation strategies and execution models that guide the implementation of
Delta Prolog systems.

 2.1 Operational execution models for Delta Prolog

First we informally introduce the notion of derivation for a goal expression and a program, and

then discuss computation strategies for completely exploring the derivations' space.
Given an initial configuration of processes, as specified by a top goal and a _-Prolog program,

the evolution of the system may be pictured as follows, for the example in 1.2 (program iv):

 6

Figure 3

Each node represents a resolvent being executed by each individual process. An arc may be
generated1, from a current node within a process, leading to a new node (that will represent the
newly obtained resolvent), whenever the expansion of the leftmost goal in the corresponding
resolvent is possible (the cases of split and choice goals are omitted for simplicity [7]):

-- for a Prolog goal this occurs if there is a matching clause and unification is successful.
-- for an event goal, a complementary event goal must be available on another process, and
term unification must be successful.

Each process performs independent derivation steps, as long as the resolution of Prolog goals

is involved, thus working exactly like a sequential Prolog system. A process reduces to ´true´
when it solves its initial goal with success.

When evaluating event goals a joint derivation step must be performed, as illustrated by the
thick line between processes. On a sucessful event, both processes proceed with their individual
computations reflecting the outcome of the exchange (in the example the filter process got its
private variable X instantiated to 2).

The solutions to a given top goal and program correspond to the configurations where all the
processes have reduced to true.

Consider the following configuration:

Figure 4

This is a configuration where a received item by the ´filter´ process, corresponding to the

binding of X to 5, does not satisfy the local condition (X>1, X<5). So, although process ´prod´ has
reduced itself to true, the remaining processes are not expandable anymore (´filter´ fails while

1 The arc enumeration is explained in section 2.2.

 7

´cons´ hangs waiting for a partner). The shown configuration is unsucessful, and a correct
computation strategy must abandon it, and look for alternative configurations.

A complete computation strategy for _-Prolog must generate all the configurations
corresponding to the defined solutions of a given top goal and program.

A sequential strategy is based on a single executor while a concurrent strategy allows the
parallel execution of multiple derivation steps by distinct executors. An informal presentation of
both strategies is given in the following. A more detailed presentation is given in [2].

2.2 Sequential execution of Delta Prolog programs

A sequential execution scheme simulates concurrency, as defined in a program, by a single
(threaded) interpreter using a co-routining strategy. In fig. 3 a possible ordering of expansion of
the nodes is shown, corresponding to an execution scheme where the interpreter tries to expand
the leftmost active process until it ends or reaches an event goal with no partner process currently
active. In the latter case the process suspends and control is switched to another process.

On failure of expansion of the current node (e.g. see configuration in fig. 4), a backtracking
strategy uses the reverse order of node expansion in its search for alternatives.

A deadlock configuration, where all the existing processes are suspended waiting for
communicating partners, is easily detected by the interpreter, and recovery uses the same reverse
order as in the failure situation.

2.3 Concurrent execution of Delta Prolog programs

Parallel evolution of an initial configuration is achieved by coordinated execution of distinct
threads of control, currently implemented as separate interpreter instances, each one being
responsible for the expansions of an individual process, locally following Prolog's sequential
search strategy.

 The cooperating Delta Prolog processes must achieve agreement on the (possibly
intermediate) results of their local computations, by exchanging unifiable terms on
communication points (events). If they do not reach this agreement, or if one of them locally
backtracks till a previous communication point, then a strategy is devised where alternative local
computations are tried, aiming to provide a solution to a top goal (i.e. the original problem to be
solved).

Failure of Prolog goals is handled by standard backtracking. Failure of _-Prolog goals is
governed by an innovative distributed backtracking strategy, which triggers a mechanism for
searching alternative configurations.

Two aspects are thus involved:

• a local search is performed by each process relative to the doing and undoing of
derivation steps of Prolog goals; this follows Prolog's depth-first search and uses local
backtracking within each process; a gain is obtainable here, vis-à-vis a purely sequential
system, as we have multiple Prolog processes that may be executing in parallel both in
the forward and backward directions;

• a global coordination of the search is required whenever a joint derivation step (involving
an event or a split goal) must be done or undone; this follows a distributed backtracking
strategy demanding the cooperation of all processes that may depend on the joint step.

The main purpose of this distributed backtracking strategy [2] [7] is to implement an

exhaustive search for the set of successful derivations for a program and goal, where a distinction

 8

between local and global search is made and no centralized control component is required. The
computation path of each process is sliced down into consecutive segments, identified as
derivation paths between two consecutive _-Prolog goals. The concept of segment allows
concentrating on interaction points only, and ignore local backtracking within segments (which is
dealt with by each process alone). An ordering amongst segments is defined that guides an
exhaustive search through all alternative derivations.

The global strategy is invoked only when a process, in local backtracking, reaches a previously
solved _-Prolog goal, or when the conditions for success of a synchronous event fail. Issues of
handling multiple failures by concurrent processes, and the handling of deadlocks are not
detailed here ([2]).

Experimentation with this novel strategy for distributed backtracking finds its motivation in
A.I. applications where a coordination is required for systems of cooperating problem solvers
(each written in Prolog style). One may see it as an extension of the backtracking facility currently
provided by existing sequential Prolog systems, onto distributed execution environments.

In order to ease the experimentation with a wider range of applications, Delta Prolog currently
allows for parallel execution and inter-process communication where no distributed backtracking
strategy is automatically implied if a failure occurs on a communication point [3]. This is the case
for systems programming where deterministic processes are usual (e.g. no backtracking is usually
required for a process directly interacting with the real world).

 3. Implementation issues

Implementation issues are discussed by defining a system layer for low-level process control

and port-based communication, suitable for the support of Delta Prolog constructs. The
implementation is organized in three layers:

(i) Delta Prolog or other distributed processing paradigms.
(ii) Port-Prolog layer.
(iii) System layer.
The System level provides the operating system support (handling low-level system

configuration and process creation, control and inter-process communication), offering an
interface for C programs.

Port-Prolog [1] supports the execution of multiple Prolog processes communicating through
ports, offering a generalized i/o interface. Each Prolog process may synchronously or
asynchronously send / receive Prolog terms through ports. This layer offers a portability level for
the experimentation with concurrency and communication constructs at the language and
application levels.

Besides its use for Delta Prolog implementation, layer (ii) is also being used for the
development of distributed transputer-based environments for systems of multiple agents
(programmed as Prolog processes) in Robotics applications [9] [10].

3.1 Delta Prolog level

There are two approaches for the implementation of the abstract models of execution

discussed in section 2:
i) An interpreter-based approach, obtained through the extension of existing Prolog

interpreters. This offers portability and debugging facilities and allows the writing in Prolog of
almost all the code supporting the _-Prolog construct.

 9

ii) A compiler-based approach, aiming at efficiency, consisting of a compiler (basicly
extending a Prolog compiler with the processing of _-Prolog goals) plus a _-Prolog abstract
machine (e.g. preferably based on a Prolog abstract machine [12] suitably extended for the support
of split, event and choice goals).

3.2 Port-Prolog interface layer.

This is an intermediate system layer providing a set of primitives for process control and

inter-process communication and assuring portability to distinct operating system environments.
It supports facilities for:

i) virtual _-Prolog process (thread) creation
ii) port-based inter-process communication, which generalizes the i/o interface of a

conventional Prolog process
iii) an inter-process signaling mechanism which may or not generate an interruption
iv) mechanisms for the control of a sequential Prolog machine, namely a facility for the

identification of specific activation frames in the stack and for the forced backtracking
of a thread to a specified stack frame.

This allows alternative implementations on different environments:
- in a single-process model all the virtual _-Prolog processes (in a co-routining fashion)

share the same address space,
- in a multiprocessed model under a single-processor operating system (e.g. Unix) they

are implemented by relying on the underlying system primitives
- in a multiprocessed model under a multiple-processor system, they may exploit a

shared-memory communication model or use the network communication facilities.
We will now give a brief description of Port-Prolog mechanisms.

The process concept

From our point of view a process provides the support for the execution of a Prolog

program, regardless of the way this is actually implemented (i.e. a Prolog interpreter or a
compiler and intermediate machine emulator). We consider the following components in the
process concept:

• a built-in Prolog (virtual) processor, responsible for the Prolog computation, following a
sequential execution model, and using depth-first search with backtracking;

• a set of input/output channels establishing the communication of the process to the
outside world;

• a Prolog program (a set of definite Horn clauses) is specified to be associated with the
process, on its creation and activation.

We provide several operations on a virtual processor, regarding the control of the execution,
and on the input/output channels, regarding the communication between independent Prolog
processes. No special operations will be discussed regarding the virtual memory abstraction, as
consisting of the Prolog workspace (local and global stacks, and trail areas) and the memory for
the clauses of the Prolog program. Further we assume no common memory between the
processes.

We want to be able to model systems of cooperating Prolog processes, communicating
through well defined interfaces. This communication is supported by an extension of the i/o
interface of a Prolog process to encompass the notion of communication ports, i.e. inter-process
communication channels for message passing. Thus our model applies to a distributed
environment with no shared memory, in which the distinct processes may be executing on
separate physical processors.

 10

The Prolog interface to an operating system environment is defined in the form of a set of
system predicates .

The creation of a Prolog process is achieved by invoking the following system predicate:
forkp(P, I, O)
where P stands for the process name, I and O stand for the standard input and output

channels for that process.
A new instance of a Prolog virtual processor is created when forkp is invoked. This means

that a skeletal environment for a Prolog computation is thus created. The process will start up and
hang waiting for goals to be sent to it. A separate operation will be required in order to specify a
set of clauses for the process memory, typically by sending the name of a file to be consulted by
the new process.

Sending signals to a Prolog process

The synchronization of the processes in a Port-Prolog program is achieved through the use

of ports, as explained above, and through the use of specific mechanisms for signaling events to a
Prolog process. Our signaling mechanism supports, in an uniform way, two different semantics
for the synchronization of independent processes, namely through the polling of event counters or
through the delivering of signals with process interruption, the interrupt handlers being specified
by Prolog predicates.

Communication ports

We introduce a special device for inter-process communication allowing for the message

passing in the form of Prolog terms. The name of a port is system-wide, i.e. is unique within a
system of cooperating processes. Processes communicate through ports by sending and
receiving Prolog terms. This is the only data structure currently supported for information
transfer through ports. We provide several variants (blocking, non-blocking, and receiving on a
set of ports).

A process may send a term by invoking the predicate:
send(M, T)
where M is a port name and T stands for a Prolog term.
A process receives a term from a port, through the predicate:
receive(M, T)
where M is a port name.

Locks

For simplicity and flexibility a mutual exclusion mechanism is supported based on locks,

with the semantics of binary semaphores.

3.3 Implementation issues

The first _-Prolog implementations were based on modified C-Prolog interpreters running on

multiuser systems (VAX/VMS, Unix).
Each _-Prolog program was supported by multiple _-Prolog executors. They were mapped to

separate processes in a multiprocessed operating system (e.g. Unix) for a single CPU computer,
where each process executes an instance of a modified Prolog (e.g. a C-Prolog interpreter plus
extensions for process creation and inter-process communication). Alternatively, they were

 11

supported by system processes running on distinct CPUs on multiprocessor machines (shared or
non-shared memory).

We are currently developping alternative approaches. A sequential model is based on a
single executor (process) that provides multiple execution contexts (each with its private stack, as
in a sequential Prolog machine). Each virtual process in a _-Prolog derivation is mapped to one of
those contexts.

Figure 5

A single execution context is active at each instant. The remaining execution contexts are
suspended on _-Prolog goals (events or completion of split goals), or they are ready but must
wait for their turn. The switching element decides which virtual process will be executed by
the single executor, at each point in a computation.

Parallel execution model and its implementation on transputer networks

The communication through event goals is particularly suited for transputer systems due to its

similarity with the CSP/OCCAM_ model.
In a distributed _-Prolog system synchronous events require an inter-node communication

facility in order to implement rendez-vous and term exchanges between two remote threads
(thread intra-node communication is supported by the single-process address space). Distributed
backtracking uses the same facility for the passing of control messages between threads, the
relevant issue being the relative amount of inter-process communications across the network when

 12

compared to the amount of local computations (i.e. Prolog derivation steps or intra-node
communications) performed by the threads in each node.

Suitable models for the structuring of the concurrency in _-Prolog programs may help in
localizing the amount of distributed backtracking in each node and among the nodes, e.g. by
creating teams of threads if they exhibit heavy interactions, and mapping the corresponding
threads into the same nodes.

A suitable execution model for a network of transputers addresses issues of
communication mechanisms and strategies for goal sheduling.

i) In each node we have a _-Prolog system, supporting multiple Delta Prolog virtual
contexts. Work progresses on a single active thread at each instant, but a queue of pending
threads is kept. A new thread is added to the queue whenever a split goal is activated.

ii) Several scheduling strategies may be conceived for such a system, allowing all the
processors in a network to be busy working on existing threads. An example of such a
scheduling policy would be one where a currently idle Delta Prolog processor, on a specific
node, tries to execute a remote goal by stealing it from another processor queue of pending
threads.

This is sketched in the following figure:

Figure 6

4. Current work

Our current prototype is running on a hardware configuration with 4 processors (cards with 1
T800 and 4 Mbytes of memory develloped at this University). The host is an IBM-PC/AT
compatible and we are using 3L Parallel C for the development of the above layers.

 13

At a first stage a system layer that provides the basic inter-process communication, file
system and interactive input/output requirements was implemented on the above transputer
prototype. Port-Prolog is currently running on top of this system layer.

The second stage corresponds to an implementation of a _-Prolog system that explores the
suitability of the language model to a transputer-based architecture, with focus on an efficient
mapping between the event goal execution requirements and the transputer model.

Acknowledgements

To colleagues of the Logic Programming and A.I. Group, and to A.Steiger-Garção and
Manuel M. Barata of the Intelligent Robotics Group. To Luís Silva and João Cabral for their work
on the implementation of the system level on the transputer prototype.

References

[1] Cunha, J.; Medeiros P.; Carvalhosa M. : Interfacing Prolog to an operating system
environment: mechanisms for concurrency and parallelism control. Internal Report, UNL,
Computer Science Department, April 1987.

[2] Cunha, J.: Concurrent execution of a logic programming language (in portuguese), PhD.
Thesis, UNL, Computer Science Department, September 1988.

[3] Cunha, J.C., Ferreira, M.C., Pereira, L.M. 1989. Programming in Delta Prolog. (presented at
the Sixth International Logic Programming Conference, Lisbon, June 1989). ICLP'89, MIT Press.

[4] Hoare, C.A.R. 1985. Communicating sequential processes. Prentice-Hall, Englewood Cliffs,
New Jersey.

[5] Milner, R. 1980. A calculus of communicating systems. LNCS 92, Springer-Verlag, New
York.

[6] Pereira, L.M.; Monteiro L.; Cunha J.C.; Aparício J.N. : Delta-Prolog: a distributed
backtracking extension with events. (Internal Report, UNL-29/85, Computer Science Department,
November 1985), In "Proc. 3rd Int. Conf. on Logic Programming", Lecture Notes in Computer
Science #225, pp 69-83, Springer-Verlag, New York, 1986.

[7] Pereira, L.M.; Monteiro L.; Cunha, J.C.; Aparício, J.N., Concurrency and communication in
Delta Prolog. In IEE International Specialists Seminar on "The design and applications of parallel
digital processors", pp, 94-104, Lisbon, 1988.

[8] Cunha, J.C.; Pereira, L.M; Medeiros, P.D.; Carvalhosa, M.B.; Paralogism: mechanisms for
parallel logic programming support, UNL-33/89, Computer Science Department, July 89.

[9] Stgeiger-Garção, A. ; Barata, M. M.; Gomes, L.; Integrated environment for prognosis and
monitoring systems support, UNIDO 1st Workshop, Lisbon, September 89.

[10] Barata, M.M.; Cunha, J.C.; Steiger-Garção, A. ; Transputer environment to support
heterogeneous systems in Robotics, submitted for publication.

 14

[11] Pereira, L., Nasr, R. : Delta Prolog: a distributed logig programming language, Procs. Fifth
Generation Computer Systems. Tokyo.1984.

[12] Warren, D.H.D. : An Abstract Prolog instruction set. Technical Note 309, Artificial
Intelligence Center, SRI International, Menlo Park. 1983.

