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Abstract 

Currently there is a trend towards the development of programming tools and mechanisms for 
the support of heterogeneous multi-agent systems on paralell computer architectures. This paper  
presents a contribution to this area, as far as logic programming on a distributed execution 
environment is concerned. We discuss the main issues on the design and implementation of the 
logic programming language Delta Prolog [2] [3] [6] [7] [11],  extending Prolog with constructs 
for concurrency and communication. The work described is one of the research components of  a 
project on the development of mechanisms for parallel logic programming support on parallel 
architectures, currently running in this University [8]. 

1. Delta Prolog: the language 

In this section a simple example is used to review the main language constructs, along the 
following relevant dimensions: specifications of sequential and concurrent composition of Prolog 
goals; communication and synchronization between processes; local non-determinism (i.e. within 
each Prolog process) and global (or external) non-determinism (allowing the choice among 
multiple communication alternatives). 

1.1  _-Prolog programs 
 

A _-Prolog program is a sequence of clauses of the form: H :- G1,...,Gn. (n_0).  The comma  is 
the sequential  composition operator. Declaratively, the truth of goals in _-Prolog is order-
dependant, so that H is true if G1,...,Gn are true in succession.   

Whereas H is a Prolog goal, each Gi may be either a Prolog or a _-Prolog goal.  
A _-Prolog goal is either a split  goal (for parallelism), an event  goal (for inter-process 

communication) or a  choice   goal (for external non-determinism).  A _-Prolog program without 
_-Prolog goals is and executes like a Prolog program, so _-Prolog is an extension to Prolog. 

The programming model relies on the programmer to specify the sequentiality constraints and 
the desirable parallelism existing in each problem (using the comma and the split operators),  and 
the corresponding communication schemes (through event and choice goals). 

The paper assumes some knowledge of logic programming languages, such as Prolog. An 
informal introduction to the language constructs follows. 

 
1.2  Illustration of the main language constructs 
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  Consider a problem that is amenable to a decomposition into three separate processes (or 
agents), which we will denote by P, I and C. This is an usual configuration whenever we have an 
intermediate processing to be performed (by I) on any items that are being produced (by P), and 
eventually must be sent to a consumer process C. 

 
 
 
(i) Specifying the parallel composition of multi-agent systems 
 
The concurrent execution of the three processes above may be specified by the top goal 

prod(...) // filter(...) // consume(...), where // is a right associative  parallel composition operator 
and prod(...), filter(...)  and consume(...)  are the goals to be solved by each agent (as a separate 
Prolog process, except that  communication is possible, cf. below). 

Declaratively, S1 // S2 is true iff S1 and S2 are jointly true.  Operationally, solving S1 // S2 
corresponds to a concurrent resolution of goal expressions S1 and S2, i.e. to an arbitrary 
interleaving of their resolution steps.  

 

 
Figure 1 

 
(ii) Specifying sequential goal composition 
 
The sequential evolution of a system may be specified by the comma operator, e.g. within the 

filter process: 
 
filter(...) :- communicate_with_P(...),  

intermediate_processing(...),  
communicate_with_C(...). 

 
Operationally, to solve goal ´filter´  solve successively the three goals in the clause body.  
 
(iii) Specifying communication between two agents 
 

  Communication in _-Prolog is expressed by  event goals . This is a message-based 
communication mechanism where two concurrent processes jointly solve a pair of goals (one in 
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each process) of the form T? E   and   T! E; the goals must be complementary, i.e. one uses  
symbol ? and the other uses !, and E refers to the same name. T is a Prolog term (the message), 
? and ! are infix binary predicate symbols (the communication modes), E is bound to a Prolog 
atom (the event name). 

 
In our example: 
 

prod(...) :- produce_item(X), X ! event_P. 
  
filter(...) :- X ? event_P,  

intermediate_processing(...),  
communicate_with_C(...). 

 
A solved event goal can only be said that it was true when  it solved with its complementary 

goal. The declarative semantics of _-Prolog does not assign an "absolute" truth value to a goal. In 
general, a goal is true for some combination sequences of events (or traces) that were true, and 
false for others.  

Operationally an event involves a form of "rendez-vous" of the two processes solving the goals 
X ? E   and   X ! E, with exchange of messages achieved by unification of X and Y: an event goal, 
say X?E , solves only with a complementary event goal, say Y!E, "simultaneously", whenever the 
latter is available in a parallel derivation (unavailability causes resolution of the goal to 
"suspend"). Note that failure of unifying the terms in both event goals leads to a failure which 
must be handled by a specific computation strategy as explained in a section below. 

Term unification provides the possibility of a two-way exchange, e.g. in goals ´m(1,X)!e´  and 
´m(Y,2)?e´ one process would obtain the substitution X = 2 and the other one would obtain Y = 1.  

The involved processes share no common variables. 
This basic synchronization mechanism of _-Prolog generalizes Hoare's and Milner's 

synchronous communication (Hoare 85; Milner 80) by using term unification for message 
exchange. Unlike CSP and Occam, no special significance is attached to the communication 
modes ! and ? (like "send" or "receive"), except that they are complementary in the sense above.  
 
 

(iv) A complete program 
 
p(X) :- prod(X) // filter  // cons .  % top goal 
 
prod(X) :- a(X), X ! event_P.   % produce a binding for X and then communicate. 
 
a(2).     % unit clauses for predicate a(X). 
a(3).      
a(4).   
a(5). 
 
filter :- X ? event_P, (X>1, X<5), X ! event_C.  
     % communicate, check received item, and communicate. 
 
cons  :- X ? event_C, consume(X). % communicate and then consume an item. 
 
The solutions for the top goal p(X) and the program above correspond to the substitutions 

{X=2},  {X=3} and {X=4}, obtained by successful resolution of event goals X!event_P and 
X?event_P  in the communication between the  producer and the filter, and of event goals 
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X!event_C and X?event_C in the communication between the filter and the consumer. The 
substitution  {X=5} is ruled out by the condition in the definition of the filter predicate.   

A declarative reading of this program allows us to define the solutions with no concern to any 
operational execution model. Several computation strategies are possible for _-Prolog as discussed 
in section 2. 

(v) Non-determinism in _-Prolog programs 
 
In _-Prolog the  selection of the matching clauses for resolution with a selected Prolog goal is 

like in Prolog sequential systems (i.e. uses the textual occurrence of the clauses in the program), 
being  independent of the state of the environment (cf the definitions for the ´a´ predicate in the 
example above). Therefore to allow the programming of applications where multiple 
communication alternatives may be simultaneously available whose selection depends (non-
deterministically) on the environment, we introduced choice goals.The choice operator :: is based 
on its namesake introduced in (Hoare 85) (cf. also ALT construct in Occam). 

These have the form  A1 :: A2 :: ... :: An  (n_2), where :: is the choice operator, and the Ai are 
the alternatives  of the goal. Each alternative has the form  Ge,B , where Ge is an event goal (the 
head of the alternative),  sequentially conjuncted to a possibly empty goal expression B (the body  
of the alternative). 

 Declaratively, A1 :: A2 :: ... :: An is true iff at least one alternative is true. 
Solving a choice goal consists in solving the Ge of any one alternative (whose choice is governed 
by the availability of a complementary goal for its Ge), and then solving its body B. If no 
complementary events are available for any alternative the choice suspends.  

We illustrate this by modifying the example above and using a buffer process for the 
intermediate agent I: 

 
buffer([]) :- X? event_P, buffer([]). 
buffer([X|T]) :-  

(H?event_P, append([X|T], [H], NewBuffer), buffer(NewBuffer) 
:: 
X?event_C, buffer(T) 
). 
 

where the definition of append(L1,L2,L3) (L3 is the concatenation of lists L1 and L2)is 
omitted. 

A top goal of the form prod // buffer([]) // cons   specifies a configuration as shown below: 

 

Figure 2 

The buffer process non-deterministically chooses between participating in an event with  the 
producer process (and then appending a received item to the buffer) or participating in an event 
with the consumer process (by offering the item at the head of its list).    

 

1.3 Notes on the language model 
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We focused on the following features of Delta Prolog:  
(i) the language subsumes Prolog, allowing us to gain from the enormous accumulated 

experience on Prolog programming;  
(ii) it has a well-defined semantics, allowing the programming of distributed applications in a 

logic framework, with a clear declarative semantics; 
 (iii) Delta Prolog's communication model is based on the theoretical models of CCS [5] and 

CSP [4], and extends the latter with two-way synchronous communication of Prolog terms (as 
messages) between two processes (communication through event goals) 

 

2. Delta Prolog: the execution models 

We discuss the computation strategies and execution models that guide the implementation of 
Delta Prolog systems. 

 
 2.1 Operational execution models for Delta Prolog 

 
First we informally introduce the notion of derivation for a goal expression and a program, and 

then discuss computation strategies for completely exploring the derivations' space. 
Given an initial configuration of processes, as specified by a  top goal and a _-Prolog program, 

the evolution of the system may be pictured as follows, for the example  in 1.2 (program iv): 
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Figure 3 
 

Each node represents a resolvent being executed by each individual process. An arc may be 
generated1, from a current node within a process, leading to a new node (that will represent the 
newly obtained resolvent), whenever the expansion of the leftmost goal in the corresponding 
resolvent is possible (the cases of split and choice goals are omitted for simplicity [7]): 

 
-- for a Prolog goal this occurs if there is a matching clause and unification is successful. 
-- for an event goal, a complementary event goal  must be available on another process, and 
term  unification must be successful. 

 
Each process performs independent derivation steps, as long as the resolution of Prolog goals 

is involved, thus working exactly like a sequential Prolog system. A process reduces to ´true´  
when it solves its initial goal with success. 

When evaluating event goals a joint derivation step must be performed, as illustrated by the 
thick line between processes.  On a sucessful event, both processes proceed with their individual 
computations  reflecting the outcome of the exchange (in the example the filter process got its 
private variable X instantiated to 2).  

The solutions to a given top goal and program correspond to the configurations where all the 
processes have reduced to true.  

Consider the following configuration: 
 

 

Figure 4 

 
This is a configuration where a received item by the ´filter´ process,  corresponding to the 

binding of X to 5, does not satisfy the local condition (X>1, X<5). So, although process ´prod´ has 
reduced itself to true, the remaining processes are not expandable anymore (´filter´ fails while 

                                                 

1 The arc enumeration is explained in section 2.2. 
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´cons´ hangs waiting for a partner). The shown configuration is unsucessful, and a correct 
computation strategy must abandon  it, and look for alternative configurations. 

A complete computation strategy for _-Prolog must generate all the configurations 
corresponding to the defined  solutions of a given top goal and program. 

A sequential strategy is based on a single executor  while a concurrent strategy allows the 
parallel execution of multiple derivation steps by distinct executors. An informal presentation of 
both strategies is given in the following. A more detailed presentation is given in [2]. 
 
2.2 Sequential execution of Delta Prolog programs 
  

A sequential execution scheme simulates concurrency, as defined in a program, by a single 
(threaded) interpreter using a co-routining strategy. In fig. 3 a possible ordering of expansion of 
the nodes is shown, corresponding to an execution scheme where the interpreter tries to expand 
the leftmost active process until it ends or reaches an event goal with no partner process currently 
active. In the latter case the process suspends and control is switched to another process.  

On failure of expansion of the current node (e.g. see configuration in fig. 4), a backtracking 
strategy uses the reverse order of node expansion in its search for alternatives. 

A deadlock configuration, where all the existing processes are suspended waiting for 
communicating partners, is easily detected by the interpreter, and recovery uses the same reverse 
order as in the failure situation.  

 
 

  
2.3 Concurrent execution of Delta Prolog programs 
 

Parallel evolution of an initial configuration  is achieved by coordinated execution of distinct 
threads of control, currently implemented as separate interpreter instances, each one being 
responsible for the expansions of an individual process, locally following Prolog's sequential 
search strategy. 

 The cooperating Delta Prolog processes must achieve agreement on the (possibly 
intermediate) results of their local computations, by  exchanging unifiable terms on 
communication points (events). If they do not reach this agreement, or if one of them locally 
backtracks till a previous communication point, then a strategy is devised where alternative local 
computations are tried, aiming to provide a solution to a top goal (i.e. the original problem to be 
solved).  

Failure of Prolog goals is handled by standard backtracking. Failure of _-Prolog goals is 
governed by an innovative distributed backtracking strategy, which triggers a mechanism for 
searching alternative configurations.   

 
Two aspects are thus involved: 

• a local search is performed by each process relative to the doing and undoing of 
derivation steps of Prolog goals; this follows Prolog's depth-first search and uses local 
backtracking within each process; a gain is obtainable here, vis-à-vis a purely sequential 
system, as we have multiple Prolog processes that may be executing in parallel both in 
the forward and backward directions; 

• a global coordination of the search is required whenever a joint derivation step (involving 
an event or a split goal) must be done or undone; this follows a distributed  backtracking 
strategy demanding the cooperation of all processes that may depend on the joint step. 

  
The main purpose of this distributed backtracking strategy [2] [7] is to implement an 

exhaustive search for the set of successful derivations for a program and goal, where a distinction 
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between local and global search is made and no centralized control component is required. The 
computation path of each process is sliced down into consecutive segments, identified as 
derivation paths between two consecutive _-Prolog goals. The concept of segment allows 
concentrating on interaction points only, and ignore local backtracking  within segments (which is 
dealt with by each process alone). An ordering amongst  segments is defined that  guides an 
exhaustive search through all alternative derivations.   

The global strategy is invoked only when a process, in local backtracking, reaches a previously 
solved _-Prolog goal, or when the conditions for success of a synchronous event fail.  Issues of 
handling  multiple failures  by concurrent processes, and the handling of deadlocks are not 
detailed here ([2]). 

Experimentation with this novel strategy for distributed backtracking finds its motivation in 
A.I. applications where a coordination is required for systems of cooperating problem solvers 
(each written in Prolog style). One may see it as an extension of the backtracking facility currently 
provided by existing sequential Prolog systems, onto distributed execution environments. 

In order to ease the experimentation with a wider range of applications,  Delta Prolog currently 
allows for parallel execution and inter-process communication where no distributed backtracking 
strategy is automatically implied if a failure occurs on a communication point [3]. This is the case 
for systems programming where deterministic processes are usual (e.g. no backtracking is usually 
required for a process directly interacting with the real world). 

 

 3. Implementation issues  
 
Implementation issues  are discussed by defining a system layer for  low-level process control 

and port-based communication, suitable for the support of Delta Prolog constructs.  The 
implementation is organized in  three layers:  

(i)  Delta Prolog or other distributed processing paradigms. 
(ii) Port-Prolog layer. 
(iii)  System layer. 
The System level provides the operating system support (handling low-level system 

configuration and process creation, control and inter-process communication), offering an 
interface for C programs.  

Port-Prolog [1] supports the execution of multiple Prolog processes communicating through 
ports, offering a generalized i/o interface. Each Prolog process may synchronously or 
asynchronously send / receive Prolog terms through ports. This layer offers a portability level for 
the experimentation with concurrency and communication constructs at the language and 
application levels. 

Besides its use for Delta Prolog implementation, layer (ii) is also being used for the 
development of distributed transputer-based environments for systems of multiple agents 
(programmed as Prolog processes)  in Robotics applications [9] [10]. 

 

3.1 Delta Prolog level 

 
There are two approaches for the implementation of the abstract models of execution 

discussed in section 2: 
i) An interpreter-based approach,  obtained through the extension of existing  Prolog 

interpreters. This offers portability and debugging facilities and allows the writing in Prolog of 
almost all the code supporting the _-Prolog construct. 
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ii) A compiler-based approach, aiming at efficiency, consisting of a compiler (basicly 
extending a Prolog compiler with the processing of _-Prolog goals) plus a _-Prolog abstract 
machine (e.g. preferably based on a Prolog abstract machine [12] suitably extended for the support 
of split, event and choice goals).  

3.2 Port-Prolog interface layer.  
 
This is an intermediate system layer providing a set of primitives for process control and 

inter-process communication and assuring portability to distinct operating system environments.  
It supports facilities for: 

i) virtual _-Prolog process (thread) creation 
ii) port-based inter-process communication, which  generalizes the i/o interface of a 

conventional  Prolog process  
iii) an inter-process  signaling mechanism which may or not generate an interruption  
iv) mechanisms for the control of a sequential Prolog machine, namely a facility for the 

identification of specific activation frames in the stack and for the forced backtracking 
of a thread to a specified stack frame. 

This allows alternative implementations on different environments: 
- in a single-process model all the virtual _-Prolog processes (in a co-routining fashion) 

share the same address space,  
- in a multiprocessed model under a single-processor operating system (e.g. Unix) they 

are implemented by relying on the underlying system primitives 
- in a multiprocessed model under a multiple-processor system, they may exploit a 

shared-memory communication model or use the network communication facilities. 
We will now give a brief description of  Port-Prolog mechanisms. 

The process concept  
 
From our point of view a process provides the support for the execution of a Prolog 

program, regardless of the way this is actually implemented ( i.e. a Prolog interpreter or a 
compiler and intermediate machine emulator). We consider the following components in the 
process concept: 

•  a built-in Prolog (virtual) processor, responsible for the Prolog computation, following a 
sequential execution model, and using depth-first search with backtracking; 

• a  set of input/output channels establishing the communication of the process to the 
outside world; 

• a Prolog program (a set of definite  Horn clauses) is specified to be associated with the 
process, on its creation and activation. 

We provide several operations on a virtual processor, regarding the control of the execution, 
and on the input/output channels, regarding the communication between independent Prolog 
processes. No special operations will be discussed regarding the virtual memory abstraction, as 
consisting of the Prolog workspace (local and global stacks, and trail areas) and the memory for 
the clauses of the Prolog program. Further we assume no common memory between the 
processes. 

We want to be able to model systems of cooperating Prolog processes, communicating 
through well defined interfaces.  This communication  is supported by an extension of the i/o 
interface of a Prolog process to encompass the notion of communication ports, i.e. inter-process 
communication channels for message passing. Thus our model applies to a distributed 
environment with no shared memory, in which the distinct processes may be executing on 
separate physical processors. 
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The Prolog interface to an operating system environment is defined in the form of a set of 
system predicates .  

The creation of a Prolog process is achieved by invoking the following system predicate: 
forkp( P, I, O) 
where P stands for the process name, I and O stand for the standard input and output 

channels for that process. 
A new instance of a Prolog virtual processor is created when forkp is invoked. This means 

that a skeletal environment for a Prolog computation is thus created. The process will start up and 
hang waiting for goals to be sent to it. A separate operation will be required in order to specify a 
set of clauses for the process memory, typically by sending the name of a  file  to be consulted by 
the new process. 

 
Sending signals to a Prolog process 
 
The synchronization of the processes in a Port-Prolog program is achieved through the use 

of ports, as explained above, and through the use of specific mechanisms for signaling events to a 
Prolog process. Our signaling mechanism supports, in an uniform way, two different semantics 
for the synchronization of independent processes, namely through the polling of event counters or 
through the delivering of signals with process interruption, the interrupt handlers being specified 
by Prolog predicates. 

  
Communication ports 
 
We introduce a special device for inter-process communication allowing for the message 

passing in the form of Prolog terms. The name of a port is system-wide, i.e. is unique within a 
system of cooperating processes.  Processes communicate through ports  by sending and 
receiving Prolog  terms. This is the only data structure currently supported for information 
transfer through ports. We provide several variants ( blocking, non-blocking, and receiving on a 
set of ports). 

A process may send a term by invoking the predicate: 
send( M, T ) 
where M is a port name and  T stands for a Prolog term. 
A process receives a term from a port, through the predicate: 
receive( M, T) 
where M is a port name.  
  
Locks 
 
For simplicity and flexibility a mutual exclusion mechanism is supported based on locks, 

with the semantics of binary semaphores.   
 

3.3 Implementation issues 
 
The first _-Prolog implementations were based on modified C-Prolog interpreters running on 

multiuser systems (VAX/VMS, Unix). 
Each _-Prolog program was supported by multiple _-Prolog executors. They were mapped to 

separate processes in a multiprocessed operating system (e.g. Unix) for a single CPU computer, 
where each process executes an instance of a modified Prolog (e.g. a C-Prolog interpreter plus 
extensions for process creation and inter-process communication). Alternatively, they were 
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supported by system processes running on distinct CPUs on multiprocessor machines (shared or 
non-shared memory). 

We are currently developping alternative approaches. A sequential model is based on a 
single executor (process) that provides multiple execution contexts (each with its private stack, as 
in a sequential Prolog machine).  Each virtual process in a _-Prolog derivation is mapped to one of 
those contexts.  

 

 
 

Figure 5 

A single execution context is active at each instant. The remaining execution contexts are 
suspended on _-Prolog goals (events or completion of split goals), or they are ready but must 
wait for their turn. The switching element decides which virtual process will be executed by 
the single executor, at each point in a computation.  

Parallel execution model and its implementation on transputer  networks 
   
The communication through event goals is particularly suited for transputer systems due to its 

similarity with the CSP/OCCAM_ model.   
In a distributed _-Prolog system  synchronous events require an inter-node communication 

facility in order to implement  rendez-vous and term exchanges between two remote threads 
(thread intra-node communication is supported by the single-process address space). Distributed 
backtracking  uses the same facility for the passing of control messages between threads, the 
relevant issue being the relative amount of inter-process communications across the network when 
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compared to the amount of local computations (i.e. Prolog derivation steps or intra-node 
communications)  performed by the threads in each node. 

Suitable models for the structuring of the concurrency in _-Prolog programs may help in 
localizing the amount of distributed backtracking in each node and among the  nodes, e.g. by 
creating teams of threads if they exhibit heavy interactions, and mapping the  corresponding 
threads into the same nodes. 

A suitable execution model for a network of transputers addresses issues of 
communication mechanisms and strategies for goal sheduling. 

i) In each node we have a  _-Prolog system, supporting multiple Delta Prolog virtual 
contexts. Work progresses on a single active thread at each instant, but a queue of pending 
threads is kept. A new thread is added to the queue whenever a split goal is activated. 

ii) Several scheduling strategies may be conceived for such a system, allowing all the 
processors in a network to be busy working on existing threads. An example of such a 
scheduling policy would be one where a currently idle Delta Prolog processor, on a specific 
node, tries to execute a remote goal by stealing it from another processor queue of pending 
threads.  

This is sketched in the following figure: 
 
 

 
 

Figure 6 
  
 

4. Current work 

Our current prototype is running on a hardware configuration with 4 processors (cards with 1 
T800 and 4 Mbytes of memory develloped at this University). The host is an IBM-PC/AT 
compatible and we are using 3L Parallel C for the development of the above layers. 
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At a first stage  a system layer that provides the basic inter-process communication,  file 
system and interactive input/output requirements was implemented on the above transputer 
prototype. Port-Prolog  is currently running on top of this system layer. 

The second stage corresponds to an implementation of a  _-Prolog system that explores the 
suitability of the language model to a transputer-based architecture, with focus on an efficient 
mapping between the event goal execution requirements and the transputer model. 
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