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Abstract

We discuss the evaluation of conditionals. Under classical logic a conditional of the form A implies

B is semantically equivalent to not A or B. However, psychological experiments have repeatedly shown

that this is not how humans understand and use conditionals. We introduce an innovative abstract

reduction system under the three-valued  Lukasiewicz logic and the weak completion semantics, that

allows us to reason abductively and by revision with respect to conditionals, in three values. We

discuss the strategy of minimal revision followed by abduction and discuss two notions of relevance.

Psychological experiments will need to ascertain if these strategies and notions, or a variant of them,

correspond to how humans reason with conditionals.

1 Introduction

We present a novel approach to evaluate indicative and subjunctive (or counterfactual) con-
ditionals. It differs from all approaches to evaluate conditionals which we are aware of like
e.g. [12,13,16,19,20,24,25,27,28,30] in that it also considers conditionals whose conditions are
unknown and evaluates them by applying revision and abduction in order to satisfy them.

Our approach is based on the ideas first expressed in [29], viz., that in a first step we reason
towards a particular representation of some aspects of the world as logic programs and, in a
second step, we reason with respect to the least model of this representation in a particular three-
valued logic. It has been shown in [14] that the (strong) Kleene-Kleene logic proposed by [29]
does not lead to the desired results, but the  Lukasiewicz logic [17] does, if the weak completion
of logic programs is considered. This so-called weak completion semantics (WCS) has been
successfully applied to several human reasoning tasks including the Suppression Task [9], the
Selection Task [10], the Belief-Bias Effect [21, 22] and spatial reasoning [7].

In this paper we apply WCS to deal with conditionals. The background knowledge is formal-
ized in a logic program and a set of integrity constraints following [29]. The weak completion
of such a program admits a least model under  Lukasiewicz logic and, hence, this model is used
in the evaluation of a conditional. The evaluation is computed with respect to an abstract
reduction system presented in Section 3. If the condition of the given conditional is false, then
the conditional is considered to be a counterfactual and non-monotonic revision is applied to
satisfy its conditions. If the condition of the given conditional is unknown or true, then the
conditional is considered to be an indicative one. If the condition is unknown then the condi-
tional is evaluated by either applying monotonic revision or abduction in order to satisfy its
condition. If the condition is true then the conditional is evaluated by inspecting the truth
value of its conclusion.

The abstract reduction system is shown to be terminating but non-confluent, which leads to
different evaluations of a given conditional. As we are unaware of any data from psychological
experiments which would help us to identify the answers preferred by humans, we develop in
Section 4 a set of questions which need to be experimentally evaluated. Following [23] we

∗The authors are mentioned in alphabetical order.
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believe that humans prefer a particular model or – in our case – apply a particular strategy in
evaluating conditionals, viz. minimal revision followed by abduction (see Section 5).

Finally, in Section 6 we focus on relevance: It seems to be natural and is widely assumed
in the literature that humans evaluate the truth of the consequence based on whether it is
supported on something in common with the support of the condition, i.e., their supports must
not be completely disjoint or irrelevant to one another [18]. We discuss several concepts of
relevance and show why strong relevance fits best in our system.

Our contributions are embedded into the specification of the WCS approach in Section 2
and concluding remarks in Section 7. This paper is an extension and revision of [6, 8], where
we have considered indicative conditionals and have shown that this approach subsumes the
proposal presented in [26].

2 Preliminaries

We assume the reader to be familiar with logic and logic programming, but recall basic notions
and notations. Throughout this paper, A and B, possibly indexed, denote an atom and a literal,
respectively. A (logic) program is a finite set of (program) clauses of the form A← >, A← ⊥
or A← B1 ∧ . . .∧Bn, n > 0, where > and ⊥ denote truth and falsehood, resp. A is called the
head and >, ⊥ as well as B1 ∧ . . .∧Bn are called the body of the corresponding clause. Clauses
of the form A← > and A← ⊥1 are called positive and negative facts, respectively. We restrict
terms to be constants and variables only, i.e., we consider data logic programs. Throughout
this paper, P denotes a program. We assume for each P that the underlying alphabet consists
precisely of the symbols occurring in P and that non-propositional programs contain at least
one constant.

The depends on relation is the transitive closure of the following relation: A1 depends on A2

if gP contains a clause of the form A1 ← body and A2 occurs (positively or negatively) in body .
Let S be a set of ground literals; dep(S,P) = {A2 ← body ∈ gP | body ∈ {>,⊥},∃B ∈ S :
B = A1 or B = ¬A1, and A1 depends on A2}. When writing sets of literals we will omit curly
brackets if a set has only one element.

gP denotes the set of all ground instances of clauses occurring in P. A ground atom A is
defined in gP iff gP contains a clause whose head is A; otherwise A is said to be undefined.
def (S,P) = {A← body ∈ gP | A ∈ S or ¬A ∈ S} is called the definition of S in P, where S is
a set of ground literals. S is said to be consistent iff it does not contain a pair of complementary
literals.

For a given P, consider the following transformation: (1) For each defined atom A, replace
all clauses of the form A← body1, . . . , A← bodym occurring in gP by A← body1∨ . . .∨ bodym.
(2) Replace all occurrences of ← by ↔. The obtained ground set of formulas is called weak
completion of P or wcP.2

We consider the three-valued  Lukasiewicz (or  L-) logic [17]. An interpretation I is a mapping
from the set formulas into the truth values. It is represented by 〈I>, I⊥〉, where I> = {A |
I(A) = >}, I⊥ = {A | I(A) = ⊥}, I> ∩ I⊥ = ∅, and each ground atom A 6∈ I> ∪ I⊥ is mapped
to U (unknown). Let 〈I>, I⊥〉 and 〈J>, J⊥〉 be two interpretations. We define:

〈I>, I⊥〉 ⊆ 〈J>, J⊥〉 iff I> ⊆ J> and I⊥ ⊆ J⊥,
〈I>, I⊥〉 ∪ 〈J>, J⊥〉 = 〈I> ∪ J>, I⊥ ∪ J⊥〉.

1We consider weak completion semantics and, hence, a clause of the form A ← ⊥ is turned into A ↔ ⊥
provided that this is the only clause in the definition of A.

2Note that undefined atoms are not identified with ⊥ as in the completion of P [5].
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A model of P is an interpretation which maps each clause occurring in P to true. It has
been shown in [14] that each P as well as its weak completion admits a least model under
 L-logic, which is the intersection of all models of P. Moreover, the least  L-model of wcP can be
obtained as the least fixed point of the following semantic operator, which is due to Stenning
and van Lambalgen [29]: Let I be an interpretation ΦP(I) = 〈J>, J⊥〉, where

J> = {A | A← body ∈ gP and I(body) = >},
J⊥ = {A | def (A,P) 6= ∅ and ∀A← body ∈ def (A,P) : I(body) = ⊥}.

Weak completion semantics (WCS) is the approach to consider weakly completed logic programs
and to reason with respect to the least  L-models of these programs.3 We write P |=wcs F iff
formula F holds in the least  L-model of wcP. In the remainder of this paper, MP denotes the
least  L-model of wcP.

An integrity constraint is an expression of the form ⊥ ← body . Under three-valued se-
mantics, there are several ways to understand integrity constraints [15], two of them being
the theoremhood and the consistency view. Under the theoremhood view a model satisfies an
integrity constraint if body is false. Under the consistency view, a model satisfies an integrity
constraint if body is unknown or false. In this paper, P satisfies a set IC of integrity constraints
iff there exists a model I of gP, and for each ⊥ ← body ∈ IC , we find that I(body) ∈ {⊥,U}.

An abductive framework consists of a logic program P, a set of abducibles AP = {A← > |
def (A,P) = ∅}∪{A← ⊥ | def (A,P) = ∅}, a set of integrity constraints IC, and the entailment
relation |=wcs . It is denoted by 〈P,AP , IC, |=wcs〉.

One should observe that each P and, in particular, each finite set of positive and negative
ground facts has an  L-model. For the latter, this can be obtained by mapping all heads occurring
in this set to true. Thus, in the following definition, explanations as well as the union of a
program and an explanation are satisfiable.

An observation O is a set of ground literals; it is explainable in the abductive framework
〈P,AP , IC, |=wcs〉 iff there exists a (minimal) E ⊆ AP called explanation such that MP∪E
satisfies IC and P ∪ E |=wcs L for each L ∈ O.

Let S be a finite and consistent set of ground literals in

rev(P,S) = (P \ def (S,P)) ∪ {A← > | A ∈ S} ∪ {A← ⊥ | ¬A ∈ S},

where A denotes an atom. rev(P,S) is called the revision of P with respect to S. Note that P
is revised such that each element of S is true in Mrev(P,S) (see Proposition 1).

3 ARSC–An Abstract Reduction System for Conditionals

In this paper, we consider conditionals of the form if C then D, where C and D are finite
and consistent sets of literals viewed as conjunctions of literals. Conditionals are evaluated
with respect to some background information specified as a program and a set of integrity
constraints. More specifically, as the weak completion of each program admits a least  L-model,
conditionals are evaluated under the least  L-model of a program. In the reminder, let P be a
program, IC be a finite set of integrity constraints,MP be the least  L-model of wcP such that
MP satisfies IC, and if C then D be a conditional. The states of ARSC are either the truth
values or quadruples containing the program, the integrity constraints and two consistent and
finite sets of literals. The initial state for a given program P, a set IC of integrity constraints
and a conditional if C then D is 〈P, IC, C,D〉. Final states are true, false and unknown.

3WCS is related to the well-founded semantics as discussed in [11].
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The set of rules of ARSC is {−→t,−→c,−→a,−→r}:

• 〈P, IC, C,D〉 −→tMP(D) iff MP(C) = true.

• 〈P, IC, C,D〉 −→c 〈rev(P,S), IC, C \ S,D〉
iff MP(C) = false, where S = {L ∈ C | MP(L) = ⊥}.

• 〈P, IC, C,D〉 −→a 〈P ∪ E , IC, C,D〉
iff MP(C) = unknown, O ⊆ C, O 6= ∅, for each L ∈ O we find MP(L) = unknown,

and E explains O in the abductive framework 〈P,AP , IC, |=wcs〉.

• 〈P, IC, C,D〉 −→r 〈rev(P,S), IC, C \ S,D〉
iff MP(C) = unknown, S ⊆ C, S 6= ∅, for each L ∈ S we find MP(L) = unknown,

and Mrev(P,S) satisfies IC.

ARSC extends the reduction system for indicative conditionals presented in [8] in that it
can handle counterfactuals by the rule −→c; more precisely, conditionals whose condition is
false are no longer mapped to a state vacuous but rather the program is revised in order to
satisfy the conditions of the conditional.

ARSC modifies the reduction system presented in [8]. Explanations generated by the rule
−→a may not persist because the rule −→c may be applied afterwards and −→c revises the
program non-monotonically (see Proposition 1). Hence, when applying −→a, observations
cannot be deleted from C even if they are explained.

3.1 Properties

Proposition 1. 1. rev is non-monotonic,
i.e., there exist P, S and F such that P |=wcs F and rev(P,S) 6|=wcs F .

2. rev is monotonic, i.e., MP ⊆Mrev(P,S), if MP(L) = U for all L ∈ S.

3. Mrev(P,S)(S) = >.

For a proof see [6]. Hence, applications of −→c are non-monotonic, whereas applications of
−→r are monotonic. Likewise, applications of −→a are monotonic:

Proposition 2. Let 〈P,AP , IC, |=wcs〉 be an abductive framework. If for each L ∈ O we find
MP(L) = U and O can be explained by E ⊆ AP , then MP ⊆MP∪E .

Proof. By induction on n ∈ N one can show that ΦP ↑ n ⊆ ΦP∪E ↑ n, where Φ ↑ 0 = 〈∅, ∅〉 and
Φ ↑ (n + 1) = Φ(Φ ↑ n). The result follows immediately.

Theorem 1. ARSC is terminating.

Proof. Let 〈P, IC, C,D〉 be a state. Applications of the rule −→t yields a final state. Applica-
tions of the rules −→c and −→r reduce the number of literals occurring in C. As C is finite and
no rule increases C, there cannot by an infinite chain of applications of −→c or −→r. Finally,
consider −→a: Because O 6= ∅ the number of abducibles occurring in AP is reduced in each
application. AP is finite for finite data logic programs P, which prevents an infinite chain of
applications of −→a.

Corollary 1. Derivations in ARSC are of the form {−→c,−→a,−→r}n· −→t.

Theorem 2. Let 〈P, IC, C,D〉 be a state. The rules {−→t,−→c,−→r} need to consider each
element of C only once.
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Proof. If MP(C) = >, then −→t is applicable yielding a final state, and the result holds. If
MP(C) = ⊥, then −→c is applied and the definitions for S = {L ∈ C | MP(L) = ⊥} have
been replaced by facts such that the least  L-model of the revised program maps each literal
occurring in S to true. As C is consistent, these new facts will never be revised again. Finally,
if MP(C) = U and −→r was applied, then the definitions for S ⊆ C have been replaced by
facts such that the least  L-model of the revised program maps each literal occurring in S to
true, where for each L ∈ S we findMP(L) = U. As C is consistent, the new facts will never be
revised again.

Theorem 2 does not extend to −→a: Let P1 = {a ← b, b ← c}, IC = ∅, C = {a,¬b} and
D = c. We find MP1

= 〈∅, ∅〉 and AP1
= {c ← >, c ← ⊥}. As MP1

(C) = U we may apply
−→a with O = a, which can be explained by E1 = {c← >}:

〈P1, ∅, {a,¬b}, c〉 −→a 〈P2, ∅, {a,¬b}, c〉,

where P2 = P1∪E1 = {a← b, b← c, c← >}. We findMP2
= 〈{a, b, c}, ∅〉 andMP2

({a,¬b}) =
⊥. Thus, we can only apply −→c with ¬b being the only literal occurring in C, which is mapped
to false under MP2 :

〈P2, ∅, {a,¬b}, c〉 −→c 〈P3, ∅, a, c〉,
where P3 = rev(P2,¬b) = {a← b, b← ⊥, c← >}. We findMP3

= 〈c, {b, a}〉 and, hence, a ∈ C
is no longer assigned to true and must be re-considered:

〈P3, ∅, a, c〉 −→c 〈{a← >, b← ⊥, c← >}, ∅, ∅, c〉 −→t true.

Theorem 3. ARSC is not confluent.

Proof. Reconsider the previous example, but select O = ¬b in the first step. O can be explained
by E2 = {c← ⊥} and we obtain

〈P1, ∅, {a,¬b}, c〉 −→a 〈P4, ∅, {a,¬b}, c〉,

where P4 = P1 ∪ E2 = {a← b, b← c, c← ⊥}. We find MP4 = 〈∅, {a, b, c}〉 and apply −→c by
revising the definition of a:

〈P4, ∅, {a,¬b}, c〉 −→c 〈{a← >, b← c, c← ⊥}, ∅,¬b, c〉 −→t false.

But it also possible to reduce the initial state to unknown:

〈P1, ∅, {a,¬b}, c〉 −→r 〈{a← >, b← ⊥}, ∅, ∅, c〉 −→t unknown.

3.2 Examples

The Shooting of Kennedy [1] President Kennedy was killed. As background knowledge
we consider the following implications: If Oswald shot (os) then the president was killed (k).
If somebody else shot (ses) then the president was killed. Finally, it was determined that
Oswald shot. Following the approach presented in [29], we represent implications as licenses for
implications by adding abnormality predicates ab1 and ab2.

P5 = {k ← os ∧ ¬ab1, k ← ses ∧ ¬ab2, os ← >, ab1 ← ⊥, ab2 ← ⊥}.

with MP5
= 〈{os, k}, {ab1, ab2}〉. Consider the conditional

if Oswald had not shot, then someone else would have.
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Its condition ¬os is false under MP5 and, hence, we view it as a counterfactual.

〈P5, ∅,¬os, ses〉 −→c 〈P6, ∅, ∅, ses〉 −→t unknown,

where P6 = rev(P5,¬os) = (P5 \ {os ← >})∪ {os ← ⊥}. As ses is mapped to unknown under
MP6

= 〈∅, {os, ab1, ab2}〉, the conditional is unknown as well. Now consider the conditional

if Kennedy was killed and Oswald did not shoot, then someone else did.

Its condition {k ,¬os} is still false under MP5
and we obtain

〈P5, ∅, {k ,¬os}, ses〉 −→c 〈P6, ∅, k , ses〉.

BecauseMP6(k) = U we try to explain k in the abductive framework 〈P6, {ses ← >, ses ← ⊥},
∅, |=wcs〉 and find that E3 = {ses ← >} is the only explanation for k :

〈P6, ∅, k , ses〉 −→a 〈P6 ∪ E3, ∅, k , ses〉 −→t true,

where ses is mapped to true under MP6∪E3 = 〈{ses, k}, {os, ab1, ab2}〉. Instead of abduction
we could have applied revision:

〈P6, ∅, k , ses〉 −→r 〈P7, ∅, ∅, ses〉 −→t unknown,

where P7 = rev(P6, k) = {k ← >, os ← ⊥, ab1 ← ⊥, ab2 ← ⊥} and ses is mapped to unknown
under MP7 = 〈k , {os, ab1, ab2}〉.

Firing Squad Pearl presents in [19] the so-called firing squad example: If the court orders
an execution (e), then the captain will give the signal (s) upon which riflemen A and B will
shoot the prisoner (ra, rb). Consequently, the prisoner will be dead (d). We assume that the
court’s decision is unknown, that the captain is law-abiding, that both riflemen are accurate,
alert and law-abiding, and that the prisoner is unlikely to die from any other causes. Altogether,
we obtain the program

P8 = { s ← e ∧ ¬ab1, ra ← s ∧ ¬ab2, rb ← s ∧ ¬ab3,
d ← ra ∧ ¬ab4, d ← rb ∧ ¬ab5} ∪ {abi ← ⊥ | 1 ≤ i ≤ 5}

with MP8
= 〈∅,Ab〉, where Ab = {abi | 1 ≤ i ≤ 5}. Consider the conditional

if the captain gave no signal and rifleman A decides to shoot,
then the court did not order an execution.

Its condition {¬s, ra} is unknown underMP8
and, hence, we view it as an indicative conditional.

We can revise P8 wrt {¬s, ra} to obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8, {¬s, ra}), ∅, ∅,¬e〉 −→t unknown,

where Mrev(P8,{¬s,ra}) = 〈{ra, d}, {s} ∪Ab〉 and, hence, ¬e is unknown. Alternatively, we can
revise P8 wrt ¬s first to obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8,¬s), ∅, ra,¬e〉
−→c 〈rev(rev(P8,¬s), ra), ∅, ∅,¬e〉 −→t unknown,

where Mrev(P8,¬s) = 〈∅, {s, ra, rb, d} ∪ Ab〉 and, hence, ra is false. The remaining conditional
if ra then ¬e has become a counterfactual wrt the background program rev(P8,¬s) and,
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consequently, the definition for ra is revised. As another alternative, we can revise P8 wrt ra
first to obtain

〈P8, ∅, {¬s, ra},¬e〉 −→r 〈rev(P8, ra), ∅,¬s,¬e〉
−→a 〈rev(P8, ra) ∪ {e ← ⊥}, ∅,¬s,¬e〉 −→t true,

where Mrev(P8,ra) = 〈{ra, d},Ab〉 and, hence, ¬s remains unknown. We could apply again
revision leading to the same result as in the previous cases, but we apply abduction to explain
¬s by {e ← ⊥}, which yields a true conditional.

The condition {¬s, ra} cannot be explained in the abductive framework 〈P8, {e ← >, e ←
⊥}, ∅, |=wcs〉. But {e ← ⊥} explains ¬s and we obtain

〈P8, ∅, {¬s, ra},¬e〉 −→a 〈P8 ∪ {e ← ⊥}, ∅, {¬s, ra},¬e〉
−→c 〈rev(P8 ∪ {e ← ⊥}, ra), ∅,¬s,¬e〉 −→t true,

where MP8∪{e←⊥} = 〈∅, {e, s, ra, rb, d} ∪ Ab〉 and, hence, ra is false. As final alternative we
observe that {e ← >} explains ra and we obtain

〈P8, ∅, {¬s, ra},¬e〉 −→a 〈P8 ∪ {e ← >}, ∅, {¬s, ra},¬e〉
−→c 〈rev(P8 ∪ {e ← >},¬s), ∅, ra,¬e〉
−→c 〈rev(rev(P8 ∪ {e ← >},¬s), ra}, ∅, ∅,¬e〉 −→t false,

where MP8∪{e←>} = 〈{e, s, ra, rb, d},Ab〉 and, hence, ¬s is false. After revising the program
wrt ¬s, ra is false and we need to revise the program once more.

The least  L-models of the weak completion of the last programs in the various reduction
sequences are shown in Table 1, where we have omitted the final application of −→t and have
indexed the remaining rules by the conditions, which were revised or explained. s and ra are
always false and true, respectively. d is always true as it depends on ra (and rb). rb is always
false as it depends on s. But e may take any truth value depending on the sequence in which
the conditions are considered and on the rules, which are applied. Thus, the conditional

if the captain gave no signal and rifleman A decides to shoot,
then rifleman B will not shoot and the prisoner will be dead.

will always be evaluated as true. The situation will change if it becomes known that a broken
firing pin leads to a malfunctioning rifle. In this case, P8 is updated by replacing the definition
of ab4 with ab4 ← b.4 If rifleman A decides to shoot now, then it is unknown whether the
prisoner will die as b is unknown. If b← > is added to the program, then the prisoner will not
die. Section 6 discusses an extension, which allows to abduce unknown consequences.

Fig. 1 shows the dependency graph of the program P8. Revision cuts the dependencies from
a particular node and assigns true or false to the node. Abduction assigns true or false to the
node marked e. The revision step can be understood analogously to Pearl’s interventions in his
Do-Calculus [19], where the antecedent node is isolated from its parent nodes in the network
and imposed to be true or false.

4 The Need for Experimental Data

Although many papers and books have been written about conditionals we are unaware of
psychological experiments, which would allow us to define adequate strategies for the application

4We could update the definition of ab5 as well, but we should then identify the firing pins of the different
rifles.
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→r{s,ra} →r{s}→c{ra} →r{ra}→a{s} →a{s}→c{ra} →a{ra}→c{s}→c{ra}
s ⊥ ⊥ ⊥ ⊥ ⊥

ra > > > > >
d > > > > >

rb ⊥ ⊥ ⊥ ⊥ ⊥
e U U ⊥ ⊥ >

Table 1: The final least  L-models in the firing squad example. The derivation shown in the
grey box is our preferred one; it is computed by MRFA in Section 5.

· d

•
ab4

•
ab5

·
ra

·
rb

· s

•
ab2

•
ab3

•
ab1

·
e

◦ d

•
ab4

•
ab5

◦
ra

·
rb

· s

•
ab2

•
ab3

•
ab1

·
e

◦ d

•
ab4

•
ab5

◦
ra

•
rb

• s

•
ab2

•
ab3

•
ab1

•
e

Figure 1: (Left) The dependency graph of P8. Positive dependencies are depicted by solid
arrows, negative dependencies by dotted arrows. •, ·, and ◦ denote nodes, which are mapped
to ⊥, U and > by MP8

, resp. The leaf node marked e is undefined, whereas all other nodes
are defined. (Middle) The dependency graph of rev(P8, ra): ra does not depend on s and ab2

anymore and is mapped to true. (Right) The dependency graph of rev(P8, ra) ∪ {e ← ⊥}.

of rules in ARSC and to determine, how humans evaluate conditionals in examples like the
Shooting of Kennedy or the Firing Squad.5 From our perspective the following questions should
be evaluated:

• Do humans reason with multi-valued logics and, if they do, which multi-valued logic are
they using? Can an answer ’I don’t know’ be qualified as a truth value assignment or is it
a meta-remark?

• What do we have to tell humans such that they fully understand the background information
including, e.g., the dependency graph in the firing squad example?

• Do humans apply abduction and/or revision if the condition of a conditional is unknown
and, if they apply both, do they prefer one over the other? Do they prefer skeptical over
creduluous abduction? Do they prefer minimal revision?

• How important is the order in which multiple conditions of a conditional are considered?

• Do humans consider abduction and/or revision steps, which turn an indicative conditional
into a subjunctive one like in the second, fourth and fifth reduction sequence of the firing
squad example?

We believe that humans do reason with a third truth value; we have shown that the Sup-
pression and the Selection Tasks can be adequately modeled under WCS and, moreover, in

5Experimental data are available for examples like the Suppression or the Selection Task, but these tasks
are considerably simpler than the conditionals discussed in the Firing Squad example.
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these tasks skeptical abduction had to be applied [9, 10]. We believe that minimal revision
followed by abduction are applied if the conditions of a conditional are unknown. Finally, we
believe that humans do not consider abduction and/or revision steps, which turn an indicative
conditional into a subjunctive one. Altogether, we believe that humans prefer a particular
strategy in evaluating conditionals: They do not consider derivations as stated in Corollary 1,

but rather search for derivations of the form
n−→c ·

0/1−→r ·
0/1−→a ·

0/1−→t, where n ∈ N0 and −→r

is only applied if needed.
In other words, the rule −→c is only applied if the given conditional is a counterfactual, in

which case the rule may be applied several times because unknown conditions may be turned
into false ones by applications of −→c. But as soon as the condition of a conditional is mapped
to true or unknown, −→c will not be applied anymore. Moreover, because rev(rev(P,S),S ′) =
rev(P,S ∪S ′) and (P ∪E)∪E ′ = P ∪ (E ∪E′), −→r and −→a need to be applied at most once.

If the condition of a conditional is unknown, then a final state can always be reached by
applying the revision rule to all unknown conditions (first derivation in the Firing Squad exam-
ple), but this is usually not a derivation where minimal revision is applied (third derivation).
On the other hand, if −→c cannot be applied anymore, then derivations may end in irreducible
states, which are not final (see second, forth or fifth derivation of the Firing Squad example,
which would all get stuck).

5 Minimal Revision Followed by Abduction

Our belief expressed in the last section allows us to redefine the evaluation of a conditional.

1. If MP(C) = > then if C then D is assigned to MP(D).

2. If MP(C) = ⊥, then evaluate if C then D with respect to Mrev(P,S),
where S = {L ∈ C | MP(L) = ⊥}.

3. If MP(C) = U, then evaluate if C then D with respect to MP′ , where

• P ′ = rev(P,S) ∪ E ,

• S is a smallest subset of C and E ⊆ Arev(P,S) is a minimal explanation for C \ S such
that MP′(C) = >.

If the condition C of a conditional is true, then the conditional is an indicative one and is
evaluated as implication in  L-logic. If C is false, then the conditional is a counterfactual one
and non-monotonic revision is applied in order to reverse the truth value of those literals, which
are mapped to false. If C is unknown, then we propose to split C into two disjoint subsets S and
C \ S, where the former is treated by revision and the latter by abduction. In case C contains
some literals, which are true and some, which are unknown underMP , then the former will be
part of C \ S because the empty explanation explains them. As we assume S to be minimal,
this approach is called minimal revision followed by abduction (MRFA). Furthermore, because
all revised or explained literals were assigned to unknown, this case is monotonic.

Reconsidering the Firing Squad example we find that the third derivation shown in grey in
Table 1 is the only evaluation wrt MRFA.

As another example consider the Forest Fire scenario taken from [4]: Lightning (`) causes a
forest fire (f ) if nothing abnormal is taking place, lightning happened, the absence of dry leaves
is an abnormality, and dry leaves (d) are present. We obtain

P9 = {f ← ` ∧ ¬ab1, `← >, ab1 ← ¬d , d ← >}

with MP9
= 〈{d , `, f }, {ab1}〉. Now consider the conditional
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if there had not been so many dry leaves on the forest floor,
then the forest fire would not have occurred.

As MP9(¬d) = ⊥, the conditional is a counterfactual and we consider rev(P9,¬d). Because
Mrev(P9,¬d) = 〈{`, ab1}, {d , f }〉 maps ¬f to true, the conditional is true. Suppose we addition-
ally learn that arson (a) may cause a forest fire:

P10 = P9 ∪ {f ← a ∧ ¬ab2, ab2 ← ⊥}.

We find MP10
= 〈{d , `, f }, {ab1, ab2}〉 and Mrev(P10,¬d) = 〈{`, ab1}, {d , ab2}〉. Under this

model f is unknown and, consequently, the conditional is unknown.
Let us assume that arsonists would never go out when there is a storm, especially not when

there is lightning: There would never be fire-raising due to arson and lightning at the same
time. We represent this information by

IC = {⊥ ← ` ∧ a}.

From IC and because P10 |=wcs `, we assume a certain background knowledge that can be
expressed as the observation O = {¬a}. P10 together with the only explanation for O is

P11 = P10 ∪ {a ← ⊥}.

We find MP11
= 〈{d , `, f }〉{ab1, ab2, a} and Mrev(P11,¬d) = 〈{`, ab1}, {d , ab2, a, f }〉. Under

this model f is false, and consequently the conditional is true.

6 Relevance

We will discuss relevance in the context of the evaluation of conditionals and present two notions
of relevance, both indirectly inspired by [2,3] applied in our context, namely the interdependence
of proof supports.

So far, a conditional if C then D is mapped to unknown ifMP (C) = > andMP (D) = U. We
have seen several examples like the first derivation in the Shooting of Kennedy example or the
last derivation discussed in the Forest Fire example. These conclusions are due to the fact that
we are using WCS, which adopts an open-world semantics and assigns unknown to undefined
atoms. Had we applied the well-founded or stable model semantics instead, then because they
adopt a closed-world semantics, false would have been assigned to undefined atoms. This would
have led to a positive evaluation in the last derivation of the Forest Fire example, as now, by
the absence of dry leaves, lightning could not have caused the forest fire and by arson being
assigned to false by default, arson could not have caused the forest fire as well. However, in
the Shooting of Kennedy example, by assigning false to ses by default, the conditional would
be false, which is a rather unexpected result.

We prefer to construct a context in which the conditional is true such as:

The conditional if ¬d then ¬f is true in the context of a being false.

This can be achieved by allowing abduction wrt consequences if the condition of a conditional
is mapped to true. Returning to the mentioned examples we find in the case of rev(P10,¬d)
that {a ← ⊥} is a minimal explanation for ¬f in the abductive framework 〈rev(P10,¬d), {a ←
>, a ← ⊥}, ∅, |=wcs〉. Hence, the conditional if there had not been so many dry leaves, then the
forest fire would not have occurred is true in the context of a being false.
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In the case of P6 we find that {ses ← >} is a minimal explanation for ses in the abductive
framework 〈P6, {ses ← >, ses ← ⊥}, ∅, |=wcs〉. Hence, the conditional if ¬os then ses is true
in the context of ses being true.

In fact, any conditional whose conditions are true and whose consequences are unknown can
be mapped to true in the context of its consequences being true. As an example consider the
conditional

if Oswald had not shot, then lightning would have occurred

and suppose that it is evaluated wrt P5. We would revise P5 wrt ¬os to obtain P6 and then
explain ` by {`← >}. For the evaluation of conditionals this does not seem to be very helpful
as it does not include any additional relevant information provided by the conditional itself.
This brings us to two new aspects that need to be taken into account: Firstly, we need to
restrict the set of abducibles such that the consequence cannot abduce itself and, secondly, we
need to check whether the condition of a true conditional is relevant to its consequence.

6.1 Weak Relevance

We might define relevance through dependencies as follows: atom B is relevant to atom A
iff A depends on B. Unfortunately, this definition is too weak. Let P12 = {a ← b, c ← b}.
Is c relevant to a? As a does not depend on c, the answer is no. Assume that we would
like to evaluate if c then a wrt P12 using MRFA: c will be true by abducing the explanation
E4 = {b← >} and, consequently, a will be true as well. Thus, c influences a wrt P12 ∪E4. But,
a still does not depend on c in P12 ∪ E4.

Consider the following weak notion of relevance: C and D are weakly relevant to one another
wrt P iff

({A← > | A ∈ C} ∪ {A← ⊥ | ¬A ∈ C} ∪ dep(C,P))
∩ ({A← > | A ∈ D} ∪ {A← ⊥ | ¬A ∈ D} ∪ dep(D,P)) 6= ∅

Applied to the program P12 ∪ E4 and the conditional if a then c we find

({a← >} ∪ {b← >}) ∩ ({c← >} ∪ {b← >}) = {b← >} 6= ∅.
c and a are weakly relevant to one another.

As another example consider if b then a and P13 = {a← b, b← >, a← >}. As a depends
on b, b is relevant to a. However, this seems to be too strong, because the truth of b has no
influence on a. a will always be true in MP13 . Our notion of weak relevance does not help
here: a and b are weakly relevant to one another, because

({a← >} ∪ dep(a,P12)) ∩ ({b← >} ∪ dep(b,P12)) = {b← >} 6= ∅.

6.2 Strong Relevance

Consider yet another definition of relevance: C is strongly relevant to D wrt P iff MP(C) =
MP(D) = > andMP′(D) 6= > where P ′ = P \ (def (C,P)∪dep(C,P)). The idea behind strong
relevance is to check whether D looses support as soon as the support of C is withdrawn. Note
that in contrast to weak relevance, strong relevance is not symmetrical.

Consider again P13: In order to verify whether b is strongly relevant to a wrt P13, we
first need to check that both are true in MP , which is indeed the case. After that, note that
P ′12 = P12 \ {b ← >} = {a ← b, a ← >} where MP′

12
(a) = >. Accordingly, b is not strongly

relevant to a wrt P12.
Returning to P12 and E4 = {b← >} we observe that a and b are true and, additionally, a is

not true under MP′
12

, where P ′12 = (P12 ∪ E4) \ {def (c,P12) ∪ dep(c,P12)} = {a← c}. Hence,
c is strongly relevant to a.
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6.3 Extending MRFA by Strong Relevance

The notion of strong relevance captures best our intention, and therefore we will assume it
forthwith. Step 1 in MRFA is modified in two ways: Firstly, by checking whether for the true
conditionals, the condition is strongly relevant to the consequence; and secondly by allowing
abduction, in case the consequence is unknown:

1. (a) If MP(C) =MP(D) = > and C is strongly relevant to D,
then if C then D is true.

(b) If MP(C) = > and MP(D) = ⊥, then if C then D is false.

(c) If MP(C) = > and MP(D) = U, then:

i. If E ⊂ AP \ ({A← > | A ∈ D}∪{A← ⊥ | ¬A ∈ D}) is a minimal explanation for
O ⊆ D,MP∪E(D) = > and C is strongly relevant to D wrt P∪E , then if C then D
is true in the context of E .

ii. Else, if C then D is unknown.

If none of the cases applies because C is not strongly relevant to D, then the conditional is
meaningless.

Let us clarify the difference between strong and weak relevance by considering an extension
of the Kennedy example from Subsection 3.2:

P14 = {k ← os ∧ ¬ab1, k ← ses ∧ ¬ab2, os ← >, ab1 ← ⊥, ab2 ← ⊥, k ← >},

which additionally states that, independently of whether Oswald shot Kennedy, Kennedy is
dead. Consider the conditional

If Oswald shot, then Kennedy is dead.

MP14
= 〈{k , os}, {ab1, ab2}〉, where k and os are both true. os is not strongly relevant to k

because k is still true in MP′
14

= 〈{k}, {ab1, ab2}〉 where

P ′14 = P14 \ (def (os,P14) ∪ dep(os,P14)) = P14 \ {os ← >}.

However, os and k are weakly relevant to one another, because

({os ← >} ∪ dep(os,P14)) ∩ ({k ← >} ∪ dep(k ,P14))
= ({os ← >}) ∩ ({k ← >} ∪ {os ← >}) = {os ← >}.

In a nutshell and intuitively, in the example under consideration, os is not essential for k , and
found not strongly relevant to it; but it is conceivable that os influences (the truth value of) k
by revision or abduction, and so both are weakly relevant to one another.

7 Conclusion

We have presented a novel approach on conditional evaluation: ARSC is an abstract reduction
system, which is flexible enough to model various evaluation steps for conditionals, possibly
leading to different outcomes. Our hypothesis is that humans prefer a certain evaluation strat-
egy, formalized in MRFA. We additionally assume that they take relevance into account and
discuss the notions of weak and strong relevance. As there is not enough experimental data in
the literature, we summarize the central questions that need to be investigated through psy-
chological experiments. The results will hopefully give us insights on whether our approach or
a variation thereof adequately models how humans reason about conditionals.
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