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Abstract

Human social behaviour, culture change, and emergent social organization are amongst the
most intricate phenomena studied by science. Aided by theoretical and computational tools
developed to study emergent phenomena in complex systems, social theorists aim to develop a
unified body of knowledge that helps to shed light on long lasting question of human sociality.
With this intent in mind, we have been developing a new conceptual framework, in the form
of a Multi-Agent System (MAS) based on a simple abstraction of individuals’ cognitive hard-
wired neuro-psychological behaviour, and implemented as an object-oriented computational
paradigm. This framework, named Ethos, extends the traditional features provided in current
MAS for agent-based modelling, with new abstractions specifically designed to model psycho-
logically determined human social behaviour, culture, and organization. These include support
for flexible behaviour selection mechanisms, including individual experience based learning, the
transmission of information and social facilitation of learning, the management of agents’ so-
cial networks, and the definition of the task-environments that structure an agent’s action and
interaction. This is accomplished by providing an object-oriented framework with a relatively
small set of main interfaces and top classes abstracting key theoretical constructs, and having
the modeler selectively sub-class filling the basic object structure to implement her/his own
model. Thus the Ethos class structure provides a meta-model, which can be instantiated
in a flexible manner to implement each concrete model of individual human social behaviour.
In addition to presenting the general framework, we report on our own experiences in using
Ethos to (re)implement several models we have developed. This includes models of human
mate choice strategies and emergent human mating systems, and of the cultural dynamics of
preferences such as identification of fashion-like product careers. We argue that providing the
type of functionality afforded by Ethos, off-the-self, substantially improves theoretical inte-
gration and facilitates model comparison. It can also be of great help to students of social
and cognitive science who wish to develop theoretical work based on tested, established, and
accepted computational building blocks.

∗This work was partially supported by a PRAXIS XXI Ph.D. scholarship, and project FLUX, funded by FC-
T/MCES, Portugal. We would like to acknowledge the scientific and intellectual support and/or comments to earlier
draft versions of this paper to Peter Todd, Paulo Gama Mota, John McNamara, John Hutchinson, Rainer Hilscher,
Lus Correira, Monique Borgerhoff-Mulder, Nuno Preguiça, and João Sousa.
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1 Introduction

Human social behaviour and culture change are amongst the most complex phenomena stud-
ied by science. This results from the large number of interacting entities within a society, the
different neuropsychological mechanisms underlying human social interaction, and the multiple
channels of information inheritance, amongst other factors. All of these contribute to create non-
trivial dynamics in inter-personal relationships, social structure, and collective beliefs and values,
which require careful analysis. This has challenged many researchers to propose unified theoretical
framework, towards a social science based on a naturalistic interpretation of human behaviour and
culture (Durham, 1990; Boyd & Richerson, 1985; Laland, Odling-Smee, & Feldman, 2000; Barkow,
Cosmides, & Tooby, 1992; Sperber, 1996; Deacon, 1998; Donald, 1993; Mithen, 1996).

In spite of these efforts, there is an understanding that one still lacks a common theoretical language
in which to naturally express a large range of models of social phenomena (Gilbert, 2000; Doran,
2000). This is a consequence in part of the recency of the introduction of computers in mainstream
social science and, most importantly, of the complexity of the phenomenon studied. The lack of
shared language frustrates possible advances in scientific research insofar has it makes harder to
compare conflicting models and model predictions, and puts barriers to the communication between
overlapping research communities. Computational tools are a particularly valuable avenue in this
regard. Because computational tools require all abstractions to be formally specified (at least up to
the programming language level), and they need to make explicit what its ontological commitments
are. In so doing, they establish the set of basic building blocks upon which models can be built,
thus providing a common set of abstractions that modelers can employ and the community can
share.

Notwithstanding this possibility, computational tools utilized to support the modelling and simula-
tion of systems with many interacting elements (complex systems) often lack features that permit
capturing human specificities in a simple manner. For example, frameworks like Swarm, Repast,
and Ascape (Minar, Burkhart, Langton, & Askenazi, 1996; Collier, 2002; Brookings, 2000), while
largely convergent on the set of tools provided, do not provide any specific flexible mechanisms to
simplify the modelling of human social learning (e.g. observational learning (Bandura, 1985; Boyd
& Richerson, 1985)), social relationships’ dynamics (Nowak & Vallacher, 1998), dissemination of
values (Durham, 1990), emotional contagion (Doran, 2000), or non trivial behavioural control
(Bryson, 2000). This has the effect of making many interesting models hard to program, thus
losing out on some of the advantages of using computational models as a complement to analytic
mathematical ones. Namely, fast prototyping and analysis, and relaxation of assumptions made
mostly for mathematical tractability (e.g. focusing on equilibrium states, and the use of infinite
populations sizes).

To address these unique characteristics, we propose in this paper a new conceptual framework for
a Multi-Agent System (MAS), named Ethos. Our goal is to go a step further than other MAS in
providing abstractions that facilitate the ease with which modelers can express naturally a wide
range of model designs, namely, cognitive hardwired agent-based models of human social behaviour
and culture1. In section 2, we start by highlighting the requisites that we per force considered
when designing and implementing the framework. Of particular pertinence, is that we have tried to
provide abstractions of high expressiveness, but which at the same time were implemented having
performance has a key mandatory requisite. In section 3, we present the MAS overall structure and
function, and describe selected aspects of its design and implementation. To test the usefulness of

1The material presented in this paper is further elaborated elsewhere (Simão, 2003).
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Ethos abstractions, we present two original models of human social behaviour. In section 5, we set
forth a model intended to study human mating in monogamous societies. We report results which
are backed up by empirical evidence for levels of assortment in mating, relationship stability, and
distribution of age at mating. In section 6, we present a model designed as a metaphor for human
cultural change. We take a look at the dynamics of the model, with particular focus on fashion-like
collective behaviour — that is, continuous change in the trends of trait usage and avoidance. Both
of these models were implemented (or re-implemented) with Ethos. The simplicity and elegance of
their implementation in Ethos is taken as an ominous sign, and as a first step towards validating
our MAS framework. In section 7, we discuss our experience in using the services provided by
Ethos, point out directions for future work, and supply concluding remarks.

2 Framework Design and Implementation Requirements

In order to guide our research in developing a MAS framework for the simulation of cognitive driven
human social behaviour and culture, we have identified several generic design and implementation
requirements that a simulation framework should meet. Below, we enumerate some of these:

• Expressiveness and Flexibility

Generic simulation frameworks should provide an infrastructure that allows a wide range
of models to be easily implemented. Framework abstractions should map naturally into
the model application domain’s key abstractions, and should anticipate the relationships
between them. However, this is not to be achieved rigidly to the extent of excessively
constraining the model design space. While some multi-agent systems might not be more than
a highly configurable specific model (e.g. Epstein and Axtell’s Sugarscape model (Epstein &
Axtell, 1996)), a generic simulation framework should support the design of a broad range
of model designs. The challenge is to strike a balance between providing only a set of loosely
interconnected features, so that it might be hard for the model designer to understand the
envisioned ways of their use, and a framework that is so specific that it can capture naturally
only a small scope of application domain. It should be noticed that this issue permeates the
general theme of framework design and the (arguably fuzzy) distinction between a framework
and a software library (Gamma, Helm, Johnson, & Vlissides, 1995).

• Extensibility and Modifiability

Models are rarely studied in isolation. It is frequent that a family of related models or model
variants are explored over time by a research group as part of a larger project to understand a
particular type of system. Thus, it is desirable that models be easily extensible and modifiable
to explore alternative assumptions and designs, and check if and in what scientifically relevant
ways that changes model behaviour. This should be possible with minimal and localized
changes to model code. That is, it should be possible to make significant changes in one aspect
of model without affecting others. It also requires that data gathering and visualization tools
be largely tailored to promote easy exploration and experimentation.

• Transparency

Models of complex systems are often very sensitive to small changes in model assumptions.
This means that whatever framework services are used they should be as clearly specified
and easy to understandable as possible. Moreover, this increases the researcher’s confidence
that the observed behaviour and results are a genuine effect of its model assumptions, rather
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than an artifact of some layer of software that she/he did not write. The latter implies
that simulation frameworks should be well documented, and it should be possible to bypass
particular services if need be.

• Performance, Scalability, and Robustness

Typically, simulations run for many time steps, many times over, with each run potentially
involving a large number of agents. This implies that performance and scalability are central
issues. A design that may work well with a few dozen agents, might become inadequate when
their number increases to a magnitude of thousands. It also requires framework implementa-
tions to be particularly optimized for time critical operations, such as the ones involved in the
more inner simulation loops (e.g. the invocation of agent’s behaviour by an event scheduling
mechanism).

• Portability and Ease of Use

As the prevalence of computer modelling techniques increases in complex system research, the
trend is to have an ever larger number of researchers involved in the study of specific problem
domains. This is an indicator that the independent implementation of model specification,
replication of results, and sharing of code between research groups may become a widespread
practice. Thus, it is convenience for frameworks and model specifications to be inter-operable
and portable across a wide range of hardware technologies and software platforms. Portable
run-time systems like Java are specially attractive in this respect, because they have been
conceived from the root to work in virtually all currently available commercial platforms.

3 Ethos Framework Overview

The Ethos MAS framework offers as basic building blocks the kind of entities the informed
modeler is likely to consider when thinking intuitively about human social behaviour and culture.
This includes objects describing the structure and topology of physical spaces, physical entities
placed in this space (such as resources and agents with varying attributes and genetic makeups),
distinct kinds of social relationships amongst agents, behaviour selection mechanisms, mechanisms
for the social influencing of agents’ cognitive states, defined contexts of individual action and social
interaction, and others besides. In the sequel, we shall describe all such abstractions in greater
detail. In figure 1, we depict the key abstractions of Ethos and how they relate to on another. The
text labels in figure 1, and the highlighted words in the presentation below correspond to object
classes in the framework. The relationships between the main classes of Ethos’s meta-model in
terms of inheritance, aggregation, and acquaintance are shown in fig. 2. Due to the wide variety
and expressiveness of Ethos code abstractions, specific models may of course use only a subset of
all those made available.

3.1 Modelling the Physical and Social Environment

The top level abstraction of Ethos is a World object containing a set of one or more physical spaces
(Space object), whose events are timed by a common clock. Each such Space object consists of
a topological arrangement of Site objects, each of which is a place-holder for a set of physical
bodies (Body objects). A Space object defines its own geometry for the arrangement of Sites, and
provides generic services to navigate between Sites. For example, finding the list of neighboring
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Figure 1: Ethos’s Framework Main Abstractions

sites according to some neighbourhood type (e.g. Moore or von Neumann), at a specified metric
distance (e.g. Euclidean or Block), and contingent upon the underlying Space topology (e.g. 2D
torus or frame). Subclasses of Space currently implemented are: GridSpace that implements a
2D grid world, ListSpace for a one-dimensional Space object (possibly) with a dynamic number of
sites, and VoidSpace which has a single site where Body objects are positioned (see below).

The Body objects living in sites may be agents (Agent object), or other physical entities such
as growing/consumable resources (Resource objects). Agents are usually made to move from site
to site during a simulation, while other physical Bodies usually have a fixed site location. In
addition to having a spatial location by virtue of being contained in a Site, Body objects also have
(optionally) a position inside the site they currently are stationed in. Body objects also contain
generic attributes, such as age, that are used in a large number of modelling scenarios. In general,
a Body object provides the basic specification under which subclasses such as Agent objects can be
defined. Agent objects themselves proffer additional commonly used attributes, such as sex, and a
one-dimensional quality label.

In addition to physical (site) neighbour relationships, agents may establish social relationships with
other agents. Specifically, each agent maintains a list of social networks (SocialNet objects), each
intended to correspond to a different relationship type (e.g. parent-offspring, acquaintance, sexual,
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etc.). Each specific agent-to-agent relationship is coded as a Tie object, that holds information
about a relationship, such as the agents involved, its intensity, and its duration. Parent-offspring
relationships are created and managed automatically by Ethos during agent creation, while other
types of relationship are defined and managed by the simulation model.

Different criteria can be set forth to specify which agents are added/removed from a particular
social network of some agent. Agent selection in relationship management, or object selection in
general, is facilitated by using Selector objects. Selector objects can be employed, with modeler
specified criteria (implementations of interface Criteria), to implement a selection of some type of
a subset of objects from a larger set (e.g. roulette-wheel, or tournament). Selection modes can
be non-competitive, where objects are selected through a local criterium, or competitive, where
agents are selected by rank.

Agents can have finite life-span, and may be dynamically created and eliminated during a sim-
ulation run. Agents have a genetic makeup (Genome object) which is inherited from one or two
parents. Each agent’s genome contains a list of genes, whose number, data type, and initial value
distributions (when not inherited) are selected by the modeler. The details of the genetic system,
such as type of crossover and mutation intensities can be selected from the ones available or defined
by the model designer (e.g. the top level Genome class implements a multi-point crossover, while
the subclass Genome1PCX implements a one-point crossover (Goldberg, 1989)). The interpreta-
tion of genes’ values is left to the modeler, but it is conceivable that in the future we will include
genes interpreted by Ethos’s runtime system (e.g. properties that modulate agents’ behaviour).
Furthermore, this is complementary to agents’ offspring being able to inherit behaviour control
information from their parents.

Agents usually live only in one space throughout their life-span, although they can migrate on
demand between different spaces in the world. If an agent migrates to a different space in the world,
all its current relationships are deleted. This simplifies the possible distribution of a simulation
by putting different Space objects running in different address spaces and different machines. As
a result, the scheduling order of events between different Spaces of a World is undefined. Because
most models use only one Space object, we defer discussion of distribution issues.

3.2 Event Management and Population Structures

Ethos uses a simple yet flexible discrete time step scheme to trigger events. Population objects
are utilized to aggregate agents and other bodies into collective units, whose event dispatching is
coordinated. Each Population object relays control to each member Body object — by calling some
well-defined method — according to a set scheduling policy. The policy specifies several things:
whether the iterative sequence of members at each time step should be made random or fixed;
the number of phases a simulation step has; and whether dispatching of events is asynchronous or
synchronous, when more than one phase is involved.

Population objects are also used to code population level operations on Bodies. Population subclasses
refine on the base scheduling policy and services provided. AgentPopulation is a subclass specific
for Agent member objects. In addition to the inherited scheduling policies, AgentPopulation can be
set to allow agent invocation to continue in the same simulation time step until all member Agents
have run out of free time. This works in conjunction with the notification of time usage as agents
perform actions and use up their time.
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Population objects are made to subclass Body. This allows for population objects to be arbitrarily
composed in tree- or graph-like structures2. Event dispatching occurs in “depth-first” order, as
control passed to a Population always dispatches to member elements, and is not aware of super-
ordinate Populations other than the parent’s. By default, a sub-population inherits the scheduling
policy of its parent Population.

Each Space object has an associated top-level population, automatically created at space initializa-
tion. This top population is used to add other Populations (or Bodies), thus structuring the event
scheduling order. Usually, the scheduling is static and implicit in the Population structure created.
However, dynamic schemes are also possible by modification of Population membership during a
simulation. Scheduling of events for an arbitrary number of time steps can also be incorporated
into Ethos in the future, if it proves useful (similar to that found in other MAS, such as Swarm
and Repast).
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Figure 2: Ethos’s Class Hierarchy

3.3 Agents’ Behaviour Control and Task-Environments

Agents can select which action to perform within a simulation time step using a Control object.
A Control object maintains all the information that pertains to the Agent’s mental state. It is
used to decide what action to perform when faced with a context for the action, and it’s updated
on the basis of the outcome of actions. Action contexts are abstracted using TaskEnv objects.
They correspond to opportunities in physical or social contexts for individual and collective action
(Reed, 1996). Each TaskEnv has associated an arbitrary (user defined) context identifier that
empowers the agent to discriminate between different TaskEnv. During each simulation time step

2This corresponds to the implementation of a Composite object design pattern (Gamma et al., 1995).
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a TaskEnv holds a set of Agent objects, possibly with a role identifier, whose result of interaction
is computed. Thus, collective action is represented by a TaskEnv that contains more than one
Agent. Sub-classes of TaskEnv can expand the basic services to match specific scenarios. Including:
cost–benefit analysis, resource transfer, observation of others attributes and modification of self
attributes, etc.

Agents’ individual actions are garnered by making a call to the Control of the Agent. This delivers
an Action object coding an appropriate response. Once all agents have decided on their actions,
they are evaluated by the TaskEnv, and the payoffs are notified to participating Agent. This
prompts a call to the Control objects for state update. The state update is usually contingent on
each individual receiving a payoff (rewards - punishments), but social learning is also supported
by looking at information of related other agents participating in the TaskEnv (see below). By
convention, the role of AgentPopulation subclasses is to define and create TaskEnv and assign them
to member agents. The workings of a Control are made transparent to other objects, by having an
Agent provide the commonly used operations and deferring their execution to the Control 3.

Control class is abstract, and is used indirectly as the modeler instantiates one of its subclasses.
At present we support a ListControl subclass that maintains a list of actions of bounded size.
When a ListControl is requested to select an action for a TaskEnv, it tries to match one of the
Action objects stored with the TaskEnv. By default, Action subclasses match to a TaskEnv if the
(perceptual) context identifier of each is the same, but modeler specified subclasses can override
this. If a match in ListControl is found, there is a non-zero probability the response of the action
will be randomly mutated. This implements a simple exploration mechanism, similar to that of
evolutionary strategies (Back, January 1996; Beyer, 2001). If no match is found, a new action is
created, derived from an existing one. If the maximum size of the action list is reached, one is
selected for removal. Actions whose execution lead to smaller payoffs for the agent are more likely
to be removed. In addition to ListControl, we are also planning to provide a neural network based
controller that learns by association and reinforcement in the form of a Control subclass.

Control objects also provide several methods to mimic different types of social influence. The
method updateByPriming(,) is intended to model the simple types of social influence (Heyes &
Bennett G. Galef, 1996). The method updateByObservation(,) is intended to model learning by
using others’ payoff to update an agent’s own control (Bandura, 1977, 1985). In ListControl this
corresponds to finding a stored action that matches that performed by another agent and changing
its valuation. Finally, updateByImitation(,) is used to model social learning which abstracts how
behaviour responses are passed from agent to agent (Boyd & Richerson, 1985). The specifics of
the semantics of each of these methods is to be defined by subclasses of Control. They are defined
for the purpose of structuring the task of modelling social learning.

3.4 Other Features

Similar to most other MAS frameworks for agent-based modelling, Ethos provides miscellaneous
features within a “ready to use” Graphic User Interface (GUI). These include: the control of
a simulation execution; the visualization of the simulation state; the gathering and exporting
of statistics resorting to several types of data objects, such as binners and time-series; dynamic
parameter setting; amongst others. In figure 3 we display a screen shot of the GUI.

3This corresponds to the implementation of a Facade object design pattern (Gamma et al., 1995).
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In the lower left-hand side, a table of parameters is shown. Parameters can be grouped into
logical or conceptually related sets and are displayed according to this grouping. In the lower
right-hand side, two viewers are shown, one representing a data plot and another a graphical view
of a GridSpace object. In this default GUI object, viewers are all exhibited as internal frames of a
desktop area.

At the top of the figure 3, are the controls for setting up, starting, stopping, and stepping a
simulation. These are very similar in functionality to those available on the GUI of other MAS
frameworks, like Repast and Ascape. The rightmost button allows data objects to be exported
to data files, so they can be plotted and analyzed with more specialized tools. Below the control
buttons, on the right, a set of progress bars indicate the percentage of the specified number of
steps and of runs a simulation has advanced. And to the left of these, a slide bar allows the refresh
time of viewers to be set dynamically. This is the time interval after which viewers are updated
to reflect their underlying observed object4. Also in this area, through a spinner, a time of delay
can be imposed upon the simulation progress to perform slow motion execution of the simulation.

In the bottom part of figure 3 the parameter setting panels are shown on the right, and several
viewer objects are shown on the left. Since these features do not differ significantly from ones
available in other MAS for agent-based modelling, we do not delve into them in detail.

Figure 3: Ethos’s GUI look-and-feel.

4A variation of the viewer–observer object design pattern is used here (Gamma et al., 1995).
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4 Two Application Case Studies

To test the usefulness and generality of our framework, we have re-implemented several agent-
based models from the literature, sporting some form of non-trivial social interaction. Of particular
interest are models of gene-culture dual inheritance, and inter-personal social dynamics, since they
constitute the main application target of Ethos. We have also implemented new models inspired
by the theoretical leverage provided by the Ethos meta-model. In the following sections, we
describe how we implemented two such models, summarizing first the structure of the models,
followed by a description of how the abstractions of our MAS framework were employed, and
finally the presentation of the modelling results. First, in section 5, we submit a model intended to
capture the dynamics of human mating in a monogamous mating system with courtship. We then
use this model to make several qualitative predictions that are supported by empirical data. The
second model, submitted in section 6, is geared to study the cultural dynamics of trait preferences
over time, and glean under what conditions fashion-like collective behaviour will emerge.

5 Human Mate Choice: Case Study I

To model what happens when a set of individuals interacts to find mates, we begin by establishing
a population of constant size 2 × P and a fixed sex ratio of 50% (so P is the number of males
and of females). Individuals of both sexes have a one dimensional quality parameter qi, randomly
generated from a normal distribution with mean µ and standard deviation σ, truncated such that
0 < Qmin ≤ qi ≤ Qmax. Time is modelled as a sequence of discrete steps. Pairs of males and
females meet at a certain stochastic rate: at each time step each individual has a probability Y ·pi

of meeting a new individual of the opposite sex, where Y is a model parameter constant specifying
the maximum meeting rate, and pi is an individual specific discount factor which is dependent on
the individual’s interaction capability (see below). The specific individual j to be met is chosen
randomly with a probability proportional to pj .

Each individual keeps a list of the potential mates already met — the alternatives list. The
alternatives list has a maximum size of N . This corresponds to maximum number of opposite-sex
individuals an agent can maintain in its social network for making courting proposals. If the social
network becomes saturated, that is, if the alternatives list is filled, new meetings happen at the
expense of forgetting one randomly selected individual already in the list (other than the current
partner).

Within the alternatives list, one member can have the “special status” of being the individual’s
current date. This happens when both individuals previously agreed to court and have not changed
partners in the mean time (see below). It is also possible for an individual not to be courting
anybody (e.g., in the beginning of its “life”, or when it gets “dumped”). The length of time that
two individuals court one another is referred to as the courtship time ct. Each individual has a
specific minimum courtship time (Ki), which specifies how long it takes for the individual to fully
commit herself/himself to a relationship, and become willing to mate (metaphorically: to fall in
love with its partner). If both dating individuals “fall in love” in this way, then they mate, and do
not consider further dating opportunities. Every individual has a maximum reproductive lifetime
of L time steps, so some individuals might never be able to find a mate.

Since individual reproductive potential is lower at very young ages and reproductive lifetime is
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finite, the costs of delaying mating is higher later in life. Therefore, we assume that Ki has a
maximum value at the beginning of the individual’s reproductive life and decreases monotonically
with time. Specifically, we define Ki = K · (1 − ti

L ), where ti is the age of individual i, and K is a
constant model parameter defining Ki at age 0.

The interaction capability pi of an individual is negatively correlated with the degree of involvement
in the current courtship process (and therefore with ct). This is intended to model increasing levels
of intimacy and exclusivity as courtship progresses (see (Simão & Todd, 2002) and (Nowak &

Vallacher, 1998) for a detailed discussion on the issue). Specifically, pi ∈ [0, 1] = max{0, 1−
(

ct
Ki

)I},
where I > 0 is a model constant that defines the shape of the “intimacy curve”.

At each time step, every individual i has a certain probability of interacting with every member
j of its alternatives list. This probability is set as pi · pj . We call the set of all alternatives for
which an interaction is selected to occur, according to these probabilities, the interaction list of
i. After the interaction lists are computed for all individuals, each one decides what action to
perform based on his or her state: If an individual is single, he/she has to decide whether to try to
start a relationship (with some member of the interaction list), or postpone that decision to see if
a better alternative becomes available. If an individual is courting, she/he has to decide whether
to continue to court the same partner or try to court some other individual. Below, we specify the
exact decision functions applied by the agents in our model. Mark that, although an individual
can make requests to court several others at each time step, she/he can only court one individual
at a particular point in time. (See (Simão & Todd, 2002) for a more formal description of the
matching algorithm used.)

We make individual behaviour consistent with evolutionarily plausible constraints by defining a
fitness function F , in order that individuals behave in such a way as to maximize it. Specifically,
we define F (qm, t) = qm × L−t

L , were qm is the quality of the individual’s chosen mate, and t is the
age at which the individual mates. Thus, we reward a preference for high quality, and introduce
time pressure to motivate individuals to mate early (in addition to the motivation stemming from
their limited life-time).

If an individual is already courting somebody else, she/he will switch partners whenever that
provides a fitness gain. Specifically, partner switching attempts are made by an individual i if the
following inequality holds:

F (qa, t + Ki) > F (qd, t + max{0, Ki − ct}) (1)

where qa is quality of the alternative partner being considered, qd is the quality of the current
partner (the date), ct the current courtship time, and t is the age of agent i. The equation specifies
that if the expected fitness of mating with the alternative (calculated using an optimistic estimation
of the required courtship time Ki) is greater than the expected fitness of mating with the current
partner (calculated using an optimistic estimation of the remaining courtship time Ki − ct), then
switching should be attempted. For example, if the agent i has just started a date or courtship
period (ct = 1), then virtually all individuals with higher quality than the current partner would
be sought as alternative partners. On the other hand, if agent i has been courting for a long time
(ct ≈ Ki), then prospective alternative partners would need a quality somewhat higher than the
current partner to be considered as a date, because any switch needs to compensate for the lost
investment already spent in the current relationship.
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Because there are costs to entering a relationship, a reasonable strategy is for individuals to set
acceptance or aspiration levels to decide whether or not to begin courting some partner. Potential
partners falling below the aspiration level in quality are not sought (or proposed to) as dates.
This aspiration level should reflect to some extent the individual’s own quality, with high quality
individuals avoiding lower quality ones, and lower quality individuals having realistic aspiration
levels tuned to their unfortunate lower rank. Because rationally bounded agents cannot be assumed
to have information about their own relative quality automatically — their rank is relative to all
other individuals in the population, which they cannot know ahead of time — agents must estimate
their quality dynamically and use it to perform mating decisions as they go along.

Specifically, an individual i starts out being totally non-discriminating by setting her/his self-
quality estimate q∗i (here equivalent to the individual’s aspiration level) to 0. If an agent was
previously dating and the partner j took the initiative of breaking the relationship, q∗i is updated
according to the following rule:

q∗inew
= q∗iold

· (1 − α) + ω · qj · α (2)

where qj is the quality of the agent’s departing partner, ω ∈ [0, 1] is a correction factor to decrease
the agent’s expectations to slightly below the quality of that partner (we will use the value .8), and
α corresponds to the learning rate which is used to avoid individuals moving aspiration levels too
fast (we use the value .2 in our simulations). The overall procedure is likely (although not certain)
to assign q∗ an appropriate value, because the agent’s partner will break the relationship only to
start courting a higher quality individual — and this gives a rough indication that the agent is
aiming too high and is unable to retain partners of quality qj , so that a new aspiration level less
than qj is called for.

Finally, because the expectations of an individual should reflect not only its own quality but also
the availability of partners, aspiration levels should be reduced whenever waiting for a higher
quality partner does not pay off in terms of lost reproductive lifetime. Moreover, since the initial
aspiration level might not have been properly calibrated, individuals should not be too confident
about it. This means it might be advisable to attribute the failure to mate to an inflated value of
one’s aspiration level — which, in turn, should prompt a drop in the value of q∗. One simple way
to model this is to keep track of the time tw an individual has been waiting for a partner, and to
lower his/her aspiration when a waiting time threshold tmax is reached. Specifically, we will define
this threshold as follows:

tmax = τ · L − t

L
· (1 − qb

q∗
) (3)

where τ is a proportionality constant (we use the value 60), t is the age of the current individual,
and qb is the quality of the best alternative in the alternatives list whose quality is lower than q∗.
Intuitively, this threshold specifies that the time an individual is willing to wait to court someone
with the current minimal sought quality is inversely proportional to the individual’s age and the
quality of the best (attainable) alternative likely to be already available. If tw reaches tmax the
aspiration level q∗ is set to qb (and tw is reset to 0).

Overall, this behavioural strategy can be interpreted, metaphorically, as individuals trying to
climb up (and sometimes falling down) a ladder of qualities. When accepted by higher quality
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individuals, individuals tend to move their aspiration level higher (although no actual update of
q∗ is performed or required until a relationship breaks). On the other hand, when rejected, or in
any case with the passage of time, individuals will tend to move their aspiration level down.

5.1 Implementation in Ethos

To model this with Ethos, we defined two AgentPopulation sub-classes and an Agent class.
The constructor of the Agent class defines two SocialNet objects. One, identified by the inte-
ger SNET AQ, is used to maintain the list of agents of the opposite sex that the agent knows
about. This list has a maximum size of NS and the method trim() in the base class is overridden
to ensure that an agent’s date is not removed from its list of acquaintances. The second social net
maintains at most one member — the agent’s date. The sex of agents is defined by an integer,
set to be 0 or 1. Agents also set their one-dimensional quality parameter, attributed to them at
creation. This is used as primary information whenever other agents decide whether to date the
agent.

Each agent maintains a reference to a object that is its strategy. In the act() method, called at
each simulation time step, the strategy object is used to decide which of the agents of the opposite
sex referenced in the TaskEnv object the agent should propose to. Still in the act() method, a
Selector is used to add a random agent of the opposite sex to the social network using a criterium
that gives all agents an equal probability of being chosen (if they are not known acquaintances
already).

c l a s s MyAgent extends Agent implements Comparable {
CourtStrategy s = new CourtStrategy ( t h i s ) ;
. . .

MyAgent( i n t sex ) {
super ( ) ;
se tSex ( sex ) ;
s e tQua l i ty ( getRandomQuality ( ) ) ;
setMaxAge (L ) ;
addSocia lNet (new Soc ia lNet ( th i s , SNET AQ, NS) {

protec ted void trim ( ) {
Agent ag = getMember ( Global . getRandom ( ) . next Int ( getMaxSize ( ) ) ) ;
i f ( ag != getDate ( ) ) {

tbreak ( ag ) ;
}

}
} ) ;
addSocia lNet (new Soc ia lNet ( th i s , SNET DATE) ) ;

}

MyAgent getDate ( ) {
re turn ( MyAgent ) ge tSoc i a lNet (SNET DATE) . getMember ( 0 ) ;

}
. . .

pub l i c void act (TaskEnv te ) {
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i f ( Global . getRandom ( ) . nextDouble () <= Y) {
Agent ag = ( Agent ) S e l e c t o r . s e l ec tOne ( ( getSex () == 0 ? sex1 :

sex0 ) . getAllMembers ( ) , S e l e c t o r . Equ iCr i t e r i a . c r i t , nu l l ,
g e tSoc i a lNet (SNET AQ) . getAllMembers ( ) ) ;

g e tSoc i a lNet (SNET AQ) . addMember( ag ) ;
}

f o r ( I t e r a t o r i = te . getAl lAgents ( ) . i t e r a t o r ( ) ; i . hasNext ( ) ; ) {
MyAgent ag = (MyAgent ) i . next ( ) ;
i n t ac t i on = s . getAct ion ( getDate ( ) , ag ) ;
i f ( a c t i on == 1) {

props . add ( ag ) ;
}

}
Co l l e c t i o n s . s o r t ( props ) ;

}
}

The first sub-class of AgentPopulation is used to represent each sex’s sub-population. It takes as
arguments in the constructor the identifier of the sex and the number of agents created. At each
simulation time step, it selects the set of agents an agent will interact with by adding them to a
TaskEnv. It also performs population wide operations such as removing from the population mated
pairs of agents, updating agents’ strategies, and killing agents that exceed the maximum set age.

c l a s s MyAgentPopulation1 extends AgentPopulation {
i n t sex ;
TaskEnv te = new TaskEnv ( ) ;

MyAgentPopulation1 ( i n t sex , i n t n ) {
f o r ( i n t i = 0 ; i < n ; i ++) {

addMember(new MyAgent( sex ) ) ;
}
t h i s . sex = sex ;

}

pub l i c void actOne ( Agent ag ) {
te . c l earAgents ( ) ;
MyAgent ag0 = (MyAgent ) ag ;
L i s t asex = sex == 0 ? sex0 . getAllMembers ( ) : sex1 . getAllMembers ( ) ;
L i s t ags = Se l e c t o r . s e l e c t ( asex , I n t e r a c t i o nC r i t e r i a . c r i t , nu l l ,

( ag0 . getDate ( ) != nu l l ? ag0 . getDate ( ) . g e tTh i sL i s t ( ) : nu l l ) , 1 ) ;
t e . addAllAgents ( ags ) ;
ag . act ( te ) ;

}

pub l i c void act ( ) {
super . act ( ) ;
i f ( sex == 0) {

removeMated ( ) ;
}
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updateStrats ( ) ;
k i l l ( ) ;

}
}

The second sub-class of AgentPopulation is used to store the two sub-populations, each representing
one sex. Its only operation, other than passing control to its sub-populations, is to pair up agents
as a result of mutual proposal and acceptance. (For brevity reasons, we have omitted here the
details of the proposal making and matching algorithm, full specification of which can be found in
(Simão & Todd, 2002).)

c l a s s MyAgentPopulation2 extends AgentPopulation {
MyAgentPopulation2 ( ) {

sex0 = new MyAgentPopulation1 ( 0 , ( i n t ) R∗P) ;
sex1 = new MyAgentPopulation1 ( 1 , P ) ;
addMember( sex0 ) ;
addMember( sex1 ) ;

}

pub l i c void act ( ) {
super . act ( ) ;
pairUp ( ) ; //make new pa i r s

}
}

Comparing the implementation of our mate choice model(s) using Ethos with one done from
scratch we found some interesting tradeoffs. On the one side, using Ethos required us to be aware
of Ethos meta-model abstractions, and how to properly use them. On the other, the existence of
a conceptual landscape from which objects can be picked and mixed simplifies the cognitive effort
in developing non-trivial models. Moreover, the code tends to be much shorter, and the possibility
of design and/or implementation errors much smaller.

5.2 Simulation Results

5.2.1 Patterns of correlation in quality

In this section, we investigate the kind of global patterns that emerge from the individual hardwired
decision rules and social interaction model described above and see how well they account for the
self-organization of real human mating populations. We set the male population size parameter
P = 100, and the female to male sex ratio R = 1, giving 100 males and 100 females in the
population. Additionally, we set the individual reproductive lifetime to L = 200 (corresponding to
20 years, with each time step a tenth of an year). The parameters for the (quasi) normal quality
distribution were set by equating agent quality with the total number of offspring produced during
a complete (female) lifetime, using a data set from a particular human population, the Ache
(Hill & Hurtado, 1996) — although similar values apply to other societies that have not adopted
significant contraceptive use. The intimacy constant I was set to 2.0 to model a quadratic reduction
of interaction capabilities, which corresponds to a super-linear increase in couples’ intimacy as
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courtship develops. Each simulation run consists of the pairing and mating of individuals until L
time steps are reached. The results shown correspond to averages across 100 such runs.

Figure 4 depicts the linear correlation between the qualities of individuals in mated pairs as a
function of rate-of-meeting Y and the initial courtship time K. The results show that the more
alternatives individuals meet (as Y × K gets bigger), the more likely they will mate with an
individual close to them in quality. Only a small value of K is required to make the correlation
value almost independent of the meeting rate. This suggests that individuals are making good
use of their mating potential even if encounters are rare and despite the fact that they have no
initial, direct knowledge of their own mate value. Most importantly, the results are in accordance
with the reasonably high correlation coefficients (mostly between .6 and .7) empirically observed
in sampled human populations (Kalick & Hamilton, 1986).

Furthermore we found that, for the same parameter values, only a small number of dates is required
for individuals to mate (mean between 1.4 and 3.2), and the average age at mating time is always
lower than K +20. This means that (on average) individuals do not delay mating by searching for
partners for long periods of time, beyond the required courtship interval. Moreover, in virtually all
simulation runs all individuals in the population were able to mate before the end of their lifetime.
This occurs because the sex ratio here is 1 : 1 and all individuals become less and less choosy over
time. If the model is modified so that agents are replaced in the population by new ones as soon
as they mate (as we did in our previous models (Simão & Todd, 2001, 2002)), the percentage of
mated individuals drops slightly, but its always above 90%. Again, these findings are consistent
with demographic data, which indicates that in most human populations between 85% and 95%
of individuals are able to mate at least once in their lives (typically under the official seal of the
marriage institution) (Kalick & Hamilton, 1988).

Overall, the current model replicated the empirically realistic results we found in (Simão & Todd,
2002), without requiring the previous artificial split between a flirting period to set aspiration lev-
els and a separate period to search for mates. This move to a more plausible psychological design
makes it more likely that the model assumptions better approximate the actual causal mechanisms
producing the macro-level patterns found in the real world — although further empirical work is
needed to establish this. It should be noted that the combination of these three empirically val-
idated statistics — correlated mate values, high rate of matings, and little search — was never
obtained in previous models of (human) mating using realistic psychological constraints. Kalick
and Hamilton’s attractiveness-preference model requires a high number of courtships (or at least
individuals met) to achieve a realistic intra-couple quality correlation and a realistic proportion of
mated individuals (Kalick & Hamilton, 1986). Todd and Miller’s model produces unrealistically
low proportions of individuals mated (Todd & Miller, 1999). Finally, a game-theoretical model
presented by Johnstone produces statistics similar to ours, but only by giving individuals initial
knowledge of the distribution of qualities in the population and their own exact quality, and by
assuming that the cost of waiting or searching for a potential partner is constant (Johnstone, 1997).
Our model avoids the full-information requirements typical of normative, optimizing approaches
used in behavioural research, by assuming bounded rational agents that are able to gather and ex-
ploit the rich information structures presented in their task-environments to make robust decisions
(Reed, 1996; Gigerenzer, Todd, & the ABC Research Group, 1999).

16



0 0.2 0.4 0.6 0.8 1Y
0

10
20

30
40

K

0
0.2
0.4
0.6
0.8

1

corr.

Figure 4: Correlation of qualities of the two individuals in each mated pair, across a range of settings for

parameters Y (meeting rate) and K (courtship time).

5.2.2 Distribution of ages at marriage

One of the most robust empirical findings concerning population-level patterns of mating is that the
distribution of age at first marriage follows a right-skewed bell curve in many cultures, rising more
or less sharply from an early age to a broad peak between 20 and 30 years of age and then trailing
off slowly into older ages (Coale, 1971; Todd & Billari, 2003)5. How can this consistent pattern
be produced through the self-organization of individuals following simple mate choice rules? A
parsimonious hypothesis is that this could arise if age at marriage is negatively correlated with an
individual’s quality, that is, higher quality individuals marry earlier than lower quality individuals.
Then, given that quality is normally distributed, this should be enough to create the common right-
skewed bell curve. However, we found that our model did not produce such a linear relationship
between age at mating and quality. Instead, low-quality individuals (q < µ) show great variation in
mating age while high-quality individuals (q ≥ µ) show little variation (see Figure 5). This occurs
because high-quality individuals mate assortatively with similarly high-quality individuals, who
are fewer in number and therefore harder to find than average-quality individuals. Thus, although
high-quality individuals are sought after, they are unable to mate much earlier than the average
individual (nor do they mate much later than average). As a consequence, the expected overall
age-at-marriage pattern does not emerge6. Instead, a spike pattern appears with the majority
of individuals mating as soon as it is possible, but low-quality individuals spreading the age of
mating across the lifespan (see Figure 6). Thus, if the nonlinear relationship between quality and
age at marriage holds in the real world as well, then normal variation in individual quality is not

5In the analyses that follow, we consider demographically-observable marriage as a stand-in for long-term mating
behaviour.

6When we made the quality distribution uniform (q ∈ [Qmin, Qmax]), the relationship between age at mating time
and quality become linear, but because the quality distribution is no longer bell-shaped the typical age-at-marriage
pattern does not emerge then either.
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sufficient to generate the empirically-observed age-at-marriage curve.
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Figure 5: Mean mating time as a function of individuals’ quality (with Y = .1), for a fixed value of courtship

time K = 40.
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Figure 6: Distribution of age at mating (with Y = .1), for a fixed value of courtship time K (µ(K) = 40) and

for normally-distributed courtship time with same mean but variance 10.

To match the demographic data through their individual-level mate search model, Todd and Billari
(Todd & Billari, 2003) found it necessary to introduce variation in the number of dates (or potential
marriage partners) that individuals encounter during adolescence. But because we do not use

18



a distinct (and artificial) period for setting up aspiration levels in our model, we must look for
another explanation to the age-at-marriage pattern. Indeed, the explanation is quite similar: When
we include normally-distributed individual variation in the courtship time K, the distribution of
marriage times comes much closer to the observed right-skewed bell curve (see Figure 6). This form
of individual differences is reasonable to build into the model because variations in social-economic
and employment status are known to affect the propensity and ability of individuals to establish
long-term relationships (Lloyd & South, 1996; Oppenheimer, 1988). Further comparison against
empirical data could help to clarify how much variation in the age of mating (or marriage) can be
accounted for by variation in courtship time (as well as individual quality), and in what ways these
two factors relate to other individual differences in explaining this striking demographic pattern
of human mating.

6 A Model of Fashion Emergence by Conditioning: Case Study
II

We assume a population of P agents, with two attributes and two preferences. One attribute
is real-valued and remains fixed during the entire simulation runs. It represents, in a nutshell,
some quality or cluster of qualities of the agent that is positively valued by all members of the
population. For example, physical attractiveness, speech ability, or some aggregated (holistic)
perception of several of such traits7. We dub this attribute the quality attribute or quality for
short. Its value qi is assumed to be randomly generated from a normal distribution with mean
0 and standard deviation σ2. A second attribute ti is a binary trait, and represents some agent
trait or item that the agent either carries with him (when ti = 1), or not (when ti = 0). For
example, ti may represent a type or brand of clothes, or a body ornament. This second attribute
can be changed by the agent at will, according to what is perceived by the agent as being the most
valued option (from its subjective aesthetical point of view). To distinguish it from the quality
attribute, we will call it the trait attribute or trait for short. Two additional preference attributes
represent an agent’s subjective perception of what is the value of not having the trait v0

i , or of
having the trait v1

i . The values of v0
i and v1

i are updated according to a process of conditioning
(or association) between observed traits and qualities, described next. Overall, an agent ai can be
represented formally as a four element vector: < qi, ti, v

0
i , v

1
i >.

At each time step, every agent observes a set of N different agent role models. This is the set of
agents which influence an agent’s current perception of the value of having or not the trait. As a
very simple abstraction of the process of conditioning, we assume that the value (v1) of having the
trait is changed by an amount proportional to the average of the qualities of the role models that
have the trait. Additionally, since we want to explore the effects of memory within agents, we let
an agent’s new valuation to be influenced by the previous valuation. For this purpose, we define a
learning rate parameter α, that specifies how insensitive agents are to new observations. That is,
it specifies how slow or how fast agents are in forgetting previous valuations and changing to new
ones. Specifically:

v1
i (t) = v1

i (t − 1) · α +
1
N

∑
aj :aj∈Mi∧tj=1

qj · (1 − α)

7On the specific topic of mating preference this has been abstracted by Donald Symons as mate value or mate
quality (Symons, 1979).
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In the equation above, Mi is the set of models for agent ai (#(Mi) = N), α ∈ [0, 1] is the learning
parameter, and v1

i (t) and v1
i (t−1) are, respectively, the new and previous valuations of trait usage

for agent ai. In a dual manner, we define the value of not having the trait to be the average of the
qualities of the models that do not have the trait, weighted by the learning parameter α. Formally:

v0
i (t) = v0

i (t − 1) · α +
1
N

∑
aj :aj∈Mi∧tj=0

qj · (1 − α)

The set of role models for an agent is selected stochastically at each time step, such that the
probability of an agent being a model to another agent is proportional to how close their qualities
are. This is intended to model a scenario of a socially stratified society, where agents are more likely
to interact (or observe) agents that are closer to them in quality than they are to interact with
average quality individuals. We implement this by using a roulette-wheel selection mechanism
(Goldberg, 1989), and making the probability of agent qj to be a model of qi proportional to:
max{(3σ2 − |qi − qj |)−E , 0.001}, where the exponent parameter E specifies the degree of social
stratification (assortment) in the population. This setting implies that, for positive values of E,
individuals with extremely high or low qualities have little chance of interacting amongst them,
while individuals with medium quality have maximum probability of interaction. When E = 0,
the population is not stratified, and individuals have an equal probability of interacting with other
individuals with regard to qualities. Thus, higher E values imply higher correlation coefficients
between the quality of agents and their role models (numerically illustrated in the next section).

At every time step each agent goes through two phases. In the first phase, the agent is assigned
a model set of size N , and it updates its subjective value of having and not having the trait, as
described above. In the second phase, each agent ai decides whether or not to switch its trait
attribute value. If v1

i > v0
i , the agent will start using the trait by setting ti = 1 (if not set already).

Conversely, if v0
i > v1

i the agent will set ti = 0, indicating that it does not have the trait. We
assume that, once an agent changes trait usage, it takes at least D time steps until it can be
switched again. This is intended to represent a cognitive or material inertia factor (Jager, 2000).
Although changes do not occur, the values v0

i and v1
i continue to be updated.

On top of this, in order to allow the model to escape stationary situations where all or none of
the agents have the trait, we define a parameter θ that specifies the probability that an agent will
choose a random value for ti independent of its own valuation (e.g. due to some exogenous factor).

This two-phase procedure can be anecdotally interpreted as follows: individuals go out every day
sporting or not the trait (e.g. wearing a certain type of clothes). During the day they interact
and/or observe other people and, based on their observations, they update their mental subjective
perception of the value of having or not having the trait accordingly (possibly sub-consciously
(LeDoux, 1998)). At night, back home, they sleep on the matter. In the morning, with their new
sense of aesthetics properly in place, they make a fresh new decision on whether or not to wear
the trait during the day. Since, in this version of the model, updates and actions of agents are
asynchronous, we should assume, to let the metaphor hold, that each agent performs its updates
and trait changes on different days.
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6.1 Implementation in Ethos

To implement this model with Ethos we define one sub-class of Agent and one of AgentPopulation.
The sub-class MyAgent, defined below, contains one member field, item, that represents the item
or trait value the agent is carrying. Two other member fields, vs1 and vs0, represent the subjective
value the agent attributes to having the trait and to not having the trait. The last field memorizes
the time step the Agent changed trait value.

On construction, each agent is assigned a random quality and the subjective trait values are
initialized. The act(.) is used to perform one of two operations based on the TaskEnv each
corresponding to a different scheduling phase. If the TaskEnv is not null them it contains as agents
the list of role models that the Agent uses to update the subjective trait values. The other case is
when Agents check for trait change.

c l a s s MyAgent extends Agent {
i n t item ;
double vs0 ;
double vs1 ;
i n t lastChange = −1;

MyAgent( double v ) {
s e tQua l i ty ( randomQuality ( ) ) ;
v0 = v1 = v ;

}

pub l i c void act (TaskEnv te ) {
i f ( t e != nu l l ) {

updateValues ( te ) ;
} e l s e {

changeItems ( ) ;
}

}

The code below is executed when updating values. This implements in Java code the model
equations specified in the previous section. It consists of a simple interaction over the set of role
model, taking their average quality and updating the trait valuations.

pub l i c void updateValues (TaskEnv te ) {
double v0 = 0 , v1 = 0 ;
i n t n0 = 0 , n1 = 0 ;
f o r ( I t e r a t o r j = te . getAl lAgents ( ) . i t e r a t o r ( ) ; j . hasNext ( ) ; ) {

MyAgent ag = (MyAgent ) j . next ( ) ;
i f ( ! ag . item . ge tB i t ( i ) ) {

v0 += ag . getQua l i ty ( ) ;
n0++;

} e l s e {
v1 += ag . getQua l i ty ( ) ;
n1++;

}
i f ( n0 != 0 ) {
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vs0 = A∗v0 + (1−A)∗ ( v0/n0 ) ;
}
i f ( n1 != 0 ) {

vs1 = A∗v1 + (1−A)∗ ( v1/n1 ) ;
}

}
}

The method changeItems() below is used for trait value switching. Three cases are considered:
first, if the agent switched trait less or equal than D time steps, change is not allowed; second,
with a fixed probability, a random trait selection is made; third, if none of the two previous cases
apply, a switch is made to the trait value that the agent values most.

pub l i c void changeItems ( ) {
i f ( lastChange >= 0 && getTime () <= lastChange + D) {

re turn ;
}
i f ( (R != 0) && Global . getRandom ( ) . nextDouble () <= R) {

item = ( Item ) a l l I t ems . get ( Global . getRandom ( ) . next Int ( a l l I t ems . s i z e ( ) ) ) ;
mc . add ( getQua l i ty ( ) ) ;
lastChange = getTime ( ) ;
r e turn ;

}

i n t i t = getMaxItem ( ) ;

i f ( getValue ( i t ) > getValue ( item ) ) {
item = i t ;
lastChange = getTime ( ) ;
nchanges++;

}
}
. . .

}

The AgentPopulation sub-class is used to dispatch TaskEnv to agents. First, in the constructor, the
scheduling policy is set for 2 phases (instead of 1 as default). Also in the constructor, the agents
are created and an initial common trait value is assigned to them.

c l a s s MyAgentPopulation extends AgentPopulation {
TaskEnv te = new TaskEnv ( ) ;

pub l i c MyAgentPopulation ( ) {
se tSchedu l ingPhases ( 2 ) ;
f o r ( i n t i = 0 ; i < P ; i ++) {

MyAgent ag = new MyAgent(V) ;
addMember( ag ) ;
ag . set I tem ( ( Item ) a l l I t ems . get ( 0 ) ) ;

}
}
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The method actOne(,) is responsible for the role of relaying control to each Agent. If, in the first
scheduling phase, getModels(.) is used to find the appropriate models by using a Selector operation,
the criterium QualityCriteria. Once role models are obtained, they are added to a TaskEnv and
control is passed to the Agent. In the second phase, control is passed immediately to the agent for
switching of trait value, as described above.

pub l i c void actOne ( Agent ag , i n t phase ) {
i f ( phase == 0) {

L i s t models = getModels ( ag ) ;
t e . c l earAgents ( ) ;
t e . addAllAgents ( models ) ;
ag . act ( te ) ;

} e l s e i f ( phase == 1) {
ag . act ( nu l l ) ;

}
}

pub l i c L i s t getModels (Agent ag ) {
L i s t models = Se l e c t o r . s e l e c t ( getAllMembers ( ) , Qua l i t yCr i t e r i a . c r i t ,

ag , ag . g e tTh i sL i s t ( ) , N) ;
r e turn models ;

}
}

s t a t i c c l a s s Qua l i t yCr i t e r i a implements C r i t e r i a {
s t a t i c Qua l i t yCr i t e r i a c r i t = new Qua l i t yCr i t e r i a ( ) ;

pub l i c double s co r e ( Object obj , Object ctx ) {
MyAgent ag1 = (MyAgent ) obj ;
MyAgent ag2 = (MyAgent ) ctx ;
r e turn ag2 . pmeet ( ag1 ) ;

}
}

6.2 Results

To study the model’s dynamics, we set the population size parameter P = 50, and the model set
size N = 5. The standard deviation of agents’ quality σ2 is set to 2. We start by setting the
assortment parameter E = 4, which generates a correlation coefficient r between the quality of
agents and their role models to be approximately 0.75. We set the learning rate parameter α = 0.2,
and the random change parameter θ = 0.04. We start all simulation runs with no agent having
the trait (ti = 0), and we make equal to −3 ∗ σ the initial value that agents attribute to having
or not having the trait. This corresponds to a situation where trait usage is initially neutral for
all agents, and therefore it’s indifferent for them whether or not they possess it. We make each
simulation run from T = 100 to T = 500 time steps. In Table 1, we present a summary of the
model’s parameters and the base values we assign them here.

In Figure 7, we depict a bit map (Wolfram diagram) representing trait usage across time. In the
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Figure 7: Bit map of trait usage across time (D = 4).

y-axis agents are sorted by quality, with higher quality agents towards the top of the figure and
lower quality ones towards the bottom. Time runs left to right. As can be seen in the figure, with
the parameter values set above, the simulation produces a wave-like pattern. This pattern can
be more clearly demonstrated by plotting, in Figure 8, the frequency of trait usage across time.
This wave-like pattern emerges because individuals tend to switch to the trait value of higher
quality individuals. This feature is responsible for the diffusion of a trait value, but also makes the
opposite trait value more preferable over time. However, due to the inertia of agents in switching
traits, as specified by parameter D, it takes some time till agents are allowed to switch to back.

Contrary to our initial intuition, the diffusion of the trait tends to occur very rapidly. Just a
few time steps are required for a large wave of a particular trait value to emerge. We found out
that this is caused largely due to the low (but realistic) degree of assortment. To test under what
scenarios diffusion of a trait value would be slower, we made the model selection deterministic
such that agents only observe the immediately higher or lower quality individuals. In Figure 9,
we present a typical simulation result for this case. As can be gathered from the figure, chance
mutations of trait values in high quality individuals produce more ordered spreading of trait usage.
However, in this case, the correlation between agents and models raises to a value near 1. This
contradicts empirical evidence about modern societies. For example, when considering assortment
among individuals of the opposite sex in mating relationships, correlation values between .3 and .8
have been found in attributes such as IQ, physical attractiveness, and others (Kalick & Hamilton,

Parameter Description Value(s) Note
P population size 50 small sample
N number of models 5 small
E assortment 4 r ≈ 0.75
α 1 - learning rate 0.2 fast learning
σ standard deviation 2
D delay 2 cognitive or material

Table 1: Parameter settings.
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Figure 8: Frequency of trait usage across time (D = 4).

1986; Marcus W. Feldman, 2000). Similarly, it has been found in a series of empirical studies that
the same pattern of assortment does occur amongst friends of the same sex (Grusky, 2000). This
result attracted our attention because some researchers have proposed to use spatial metaphors
to represent social status in deterministic small neighborhoods (Pedone & Conte, 2000, 2001). By
comparing Figure 9 with Figure 7, it becomes apparent that the way social assortment is modelled
can be relevant in obtaining simulation results and deriving theoretical conclusions.

In is useful to compare the model’s behaviour with its fixed parameter setting, with standard
results from gene-culture co-evolutionary theory. According to R. Boyd and P. Richerson’s model
of two (discrete) traits’ cultural transmission, the trait frequency of those traits with no bias should
converge at equilibrium to the ratio of the mutation rates of the two trait values (Boyd & Richerson,
1985). Since in our model the probability of random introduction of any of the trait variants is
equal, the frequency of trait usage should converge to 50%. This does not happen in our model
because in it we also introduce time varying bias for the preference of trait usage or avoidance. In
another model, R. Boyd and P. Richerson showed that, if the bias is fixed, the population should
converge to the trait with the highest bias (Boyd & Richerson, 1985). This also does not occur
in our model because the bias changes with time. It gets higher whenever medium or low quality
individuals still do not have the trait of high quality individuals. This drives the model behaviour
into a continuum oscillation between near full trait usage to near full trait avoidance. This can be
verified in Figure 8.

7 Conclusions

In section 3, we described Ethos, a MAS framework devised to support the development of cogni-
tive hardwired agent-based models of human social behaviour and cultural change. We described
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Figure 9: Bit map of trait usage across time (D = 4) with deterministic selection of model.

its main abstractions and how they fit together. To test the usefulness of the framework, we
presented several examples that use its abstractions. Indeed, in section 5 and section 6, we set
forth two novel models that make extensive use of Ethos, and showed how substantially different
models can be expressed naturally through its abstractions. Overall, we concluded that Ethos’s
features can simplify the modelling process of a wide range of agent-based models intended to
study human social behaviour. The intrinsic tradeoff is that the modeler needs to be aware of the
specifics of the framework. We hope our approach can entice other researchers, both to use the
proposed abstractions and/or to devise alternative sets of abstractions that prove more useful than
the ones provided by Ethos.

To keep on testing the usefulness of Ethos’s main abstractions (possibly extending and refining
them), we plan to implement additional models of human social behaviour, either from the lit-
erature or designed specifically for our future studies. The design of an editor to specify models
without requiring complete knowledge of the Java programming language would also be an im-
portant next step. This could include either a mid-level programming language, full support for
model creation in a GUI, or some combination of both. Our design philosophy is that a feature
should be incorporated in Ethos only if it used in a wide range of models, and if its availabil-
ity considerably simplifies model development and testing. This contrasts with the seductive but
dangerous design strategy of providing excessive features in a framework, that are rarely or never
used by modelers. In any case, although scientifically useful models should be kept simple, it is our
working experience that some types of models benefit from additional abstractions, other than just
those provided by current MAS. Still, further work is required to learn which of Ethos’s features
are most useful and which should be added.
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