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ABSTRACT
This work proposes the application of preferences over ab-
ductive logic programs as an appealing declarative formal-
ism to model choice situations. In particular, both a priori
and a posteriori handling of preferences between abductive
extensions of a theory are addressed as complementary and
essential mechanisms in a broader framework for abductive
reasoning. Furthermore, both of these choice mechanisms
are combined with other formalisms for decision making,
like economic decision theory, resulting in theories contain-
ing the best advantages from both qualitative and quantita-
tive formalisms. Several examples are presented throughout
to illustrate the enounced methodologies.

1. INTRODUCTION
Much work in logic program semantics and procedures

has focused on preferences between rules of a theory [1] and
among theory literals [2, 3], with or without updates. How-
ever, the exploration of the application of preferences to ab-
ductive extensions of a theory has still much to progress. In
our perspective, handling preferences over abductive logic
programs has several advantages, and allows for easier and
more concise translation into normal logic programs (NLP)
than those prescribed by more general and complex rule
preference frameworks.

We also argue that preferring among abductive extensions
is really a much more appealing formalism than that of hard
or soft constraints on program literals, since the latter repre-
sent formal conclusions to the program, which are often not
defeasible. An abductive extension is, by definition, a de-
feasible construct, and allows greater flexibility in enforcing
preference relations. In [6], a preliminary theory of revisable
preferences between abducible literals was presented, along
with a formal semantics based on the definition of abduc-
tive stable models. In this work we extend the theoretical
framework thence proposed, addressing many problems and
limitations that remained to be solved.

We also propose to broaden the framework to account for
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more flexible and powerful means to express preferences be-
tween abducibles, besides a priori relevancy rules embedded
in a program’s theory. In fact, we intend to show that there
are many advantages as well to prefer a posteriori, i.e. to
enact preferences on the computed models, after the conse-
quences of opting for one or another abducible are known.
Furthermore, we combine both of these choice mechanisms
with other formalisms for decision making, like economic
decision theory, resulting in theories containing the best ad-
vantages from both qualitative and quantitative formalisms.

2. FRAMEWORK

2.1 Language
Let L be any first order language. A domain literal in
L is a domain atom A or its default negation not A, the
latter expressing that the atom is false by default (CWA).
A domain rule in L is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals.
The following convention is used. Given a rule r of the form
L0 ← L1, . . . , Lt, we write H(r) to indicate L0 and B(r) to
indicate the conjunction L1, . . . , Lt. When t = 0 we write
the rule r simply as L0.

An integrity constraint in L is a rule of the form:

⊥ ← L1, . . . , Lt (t > 0)

where ⊥ is a domain atom denoting falsity, and L1, . . . , Lt

are domain literals.
A (logic) program P over L is a set of domain rules and

integrity constraints, standing for all their ground instances.
Every program P is associated with a set of abducibles A ⊆
L, consisting of literals which (without loss of generality)
do not appear in any rule head of P. Abducibles may be
thought of as hypotheses that can be used to extend the
current theory, in order to provide hypothetical solutions or
possible explanations for given queries.

2.2 Hypotheses Generation
The production of alternative explanations for a query is

a central problem in abduction, because of the combinato-
rial explosion of possible explanations. Thus, it is impor-
tant to generate only those abductive explanations which
are relevant for the problem at hand. Several approaches
have thus far been proposed, often based on some global
criteria, which has the drawback of generally being domain
independent and computationally expensive. An alternative



to global criteria for competing alternative assumptions is to
allow the theory to contain rules encoding domain specific
information about which particular assumptions are to be
considered in a particular situation.

In our approach, preferences among abducibles can be ex-
pressed in order to discard unwanted assumptions. Techni-
cally, preferences over alternative abducibles will be coded
as constraints over even cycles of default negation, under
Stable Model semantics [7], and triggering one of the prefer-
ence rules will break the cycle in favour of one abducible or
another. The notion of expectation is employed to express
preconditions for enabling the assumption of an abducible.
An abducible can be assumed only if there is an expectation
for it, and there is not an expectation to the contrary. In
this case, we say that the abducible is considered. These ex-
pectations are expressed by the following reserved domain
rules, for any given abducible a ∈ A:

expect(a) ← L1, . . . , Lt (t ≥ 0)
expect not(a) ← L1, . . . , Lt (t ≥ 0)

where every Li(1 ≤ i ≤ t) is a domain literal. Consider-
ation of an abducible can thus be expressed, for any given
abducible a ∈ A by the rule:

consider(a)← expect(a), not expect not(a)

This notion of considered abducible allows us to divide
the abductive process into two distinct moments: the gener-
ation of hypotheses and the pruning of the unpreferred ones.
Computation of preferences between models is problematic
when both the generation and comparison get mixed up, as
already mentioned in [3], but in our case we introduce a
middle-man condition instead of two distinct computations.

Consideration of an abducible could also be encoded as
an integrity constraint, such as:

⊥ ← expect(a), not expect not(a), not consider(a)

but this would prevent our framework from benefitting from
query relevance, since all abducibles would have to be eval-
uated for consideration, even if some of them are irrelevant
for the problem.

Although we will base our approach on Stable Models,
the lack of the relevance property in this semantics makes
it more difficult to constrain abduction to just the relevant
abducibles for a query. Results in recent years have pro-
vided a partial solution for this issue, by combining Stable
Models evaluation with the Well-Founded Semantics [16] in
order to guarantee goal-directed evaluation [5]. These ap-
proaches guarantee goal-directedness for partial stable mod-
els and even guarantee equivalence to total stable models
for call-consistent programs [8, 5]. As goal-directedness is,
in our perspective, critical for practical abduction over large
knowledge bases, we consider evaluation of abductive logic
programs as computation of partial stable models, obtained
by restricting evaluation to just the query-relevant part of
the program. As such, abduction is effectively restricted to
just those literals which are relevant for the query at hand.

2.3 Preferring Abducibles
In order to enact preferences between the considered ab-

ducibles, we present the language L∗, an extension of L
including preference rules expressing a relevancy preorder.
A preference atom is one of the form a ⊳ b, where a and b
are abducibles, i.e. a, b ∈ A. a ⊳ b means that the abducible

a is more relevant than the abducible b. A preference rule
in L∗ is one of the form:

a ⊳ b← L1, . . . , Lt (t ≥ 0)

where a ⊳ b is a preference atom and every Li(1 ≤ i ≤ t)
is a domain literal or a preference literal (i.e. a preference
atom or its default negation). A (logic) program P over L∗

is a set of domain rules, integrity constraints and preference
rules, standing for their ground instances.

A 2-valued interpretation M of L∗ is any set of literals
from L∗ that satisfies the condition that, for any atom A,
precisely one of the literals A or not A belongs to M . We say
that an interpretation M satisfies a conjunction of literals
L1, . . . , Lt, if every literal Li in the conjunction belongs to
M . For each preference rule r having H(r) of the form a ⊳ b
we say that an interpretation M satisfies r iff whenever b
belongs to M and M satisfies B(r), a also belongs to M .

Example 1. Consider a situation where agent Claire will
drink either tea or coffee (but not both). Suppose that Claire
prefers coffee over tea when sleepy. This situation can be
represented by a program Q over L∗ with set of abducibles
AQ = {tea, coffee}:

drink ← tea
drink ← coffee

expect(tea)
expect(coffee)
expect not(coffee)← blood pressure high

coffee ⊳ tea← sleepy

2.4 Abducible Sets
In many situations it is desirable not only to include rules

about the expectations for single abducibles, but also to ex-
press contextual information constraining the powerset of
abducibles. For instance, in the previous example we ex-
pressed that abducing tea or coffee was mutually exclusive
(i.e. only one of them could be abduced), but it is easy to
imagine similar choice situations where it would be possi-
ble, indeed even desirable, to abduce both, or neither. The
behaviour of abducibles over different sets is highly context-
dependent, and as such, should also be embedded over rules
in the theory.

Overall, the problem is analogous to the ones addressed by
cardinality and weight constraint rules for the Stable Model
semantics [10], and below we present how one can nicely
import these results to work with abduction of sets, and
also hierarchies of sets. We now present the language L+,
an extension of L∗ allowing for cardinality constraints on
the domain literals of L∗. A cardinality constraint C has
the form:

L {a1, . . . , an, not b1, . . . , not bm} U (m, n ≥ 0)

where every ai, not bi are domain literals in L∗ and L, U
represent, respectively, the lower and upper bounds on the
cardinality of (abduced) literals. Cardinality constraints can
also appear in the heads of rules, meaning that in case the
body of the rule is satisfied, the cardinality constraint should
be enforced. In this way, we can form constrained powersets
of abducibles, possibly conditioned on theory literals



With this framework, a simple way to prefer among ab-
ducible sets is to extend the preference rules in L∗ to also
apply to literals appearing in bodies of cardinality constraint
rules. Generally preferring over theory literals is not desir-
able, as we have argued in Section 1, but in this case, we are
merely using the condition literals as a means to identify
the abducible set, and to allow us the specification of pref-
erences over these identifiers.

To account for this, we extend the preference operator
⊳ to work on literals in the body of cardinality constraint
rules in L+, as this will provide us with a logic program-
ming methodology to prefer among abducible sets, as in the
following example.

Example 2. Consider a situation where agent Claire is de-
ciding what to have for a meal from a limited buffet. The
menu has appetizers (which Claire doesn’t mind skipping,
unless she’s very hungry), three main dishes, from which
one can select a maximum of two, and drinks, from which
she will have a single one. The situation, with all possible
choices, can be modelled by the following program R over
L+ with set of abducibles AR = {bread, salad, cheese, fish,
meat, veggie, wine, juice, water}:

0 {bread, salad, cheese} 3← appetizers
1 {fish, meat, veggie} 2← main dishes
1 {wine, juice, water} 1← drinks

2 {appetizers, main dishes, drinks} 3

main dishes ⊳ appetizers
drinks ⊳ appetizers
appetizers← very hungry

In this situation we model appetizers as being the least
preferred set from those available for the meal. This shows
how we can condition sets of abducibles based on the gen-
eration of literals from other cardinality constraints along
with preferences among such literals.

2.5 Declarative Semantics
In the remainder of this section we let P be a program

over L+, AP the set of abducibles of P , and M a 2-valued
interpretation of L+. We write least(P ) to indicate the least
model of P . We adopt the following two definitions from [1],
definition 3 from [6] and definition 4 from [10] and refer the
reader to those sources for a detailed exposition.

Definition 1. The set of default assumptions of P with
respect to M is:

Default(P, M) =
{not A : ¬∃r ∈ P such that H(r) = A and M � B(r)}

Definition 2. M is a stable model of P iff M = least(P ∪
Default(P, M))

Definition 3. Let ∆ ⊆ AP . M is an abductive stable
model with hypotheses ∆ of P iff:

M = least(P+ ∪Default(P+, M)), where P+ = P ∪∆

Definition 4. M satisfies a cardinality constraint C, writ-
ten as M � C, iff L ≤W (C, M) ≤ U where

W (C, M) = |{l ∈ lit(C) : M � l}|

is the number of literals in C satisfied by M

Definition 5. Let L, B, C be literals in L+. We say L di-
rectly depends on B iff B occurs in the body of some rule
in P with head L. We say L depends on B iff L directly
depends on B or there is some C such that L directly de-
pends on C and C depends on B. We say that RelL(P ),
the relevant part of P , is the logic program constituted by
the set of all rules of P with head L or some B on which L
depends on.

Definition 6. Let Q be a program over L+ with set of
abducibles AQ, M an interpretation of L+ and G a ground
instance of a given query on the program. Let ∆ ⊆ AQ. M
is a preferred relevant abductive partial stable model of Q
with hypotheses ∆, total on the set of literals of RelG(Q)
iff:

1. M is relevant and consistent

2. M defines a preorder over the abducibles in AQ

3. M 2 ⊥

4. ∀x ifM � x, then x ∈ RelG(Q)

5. for every x, y ∈ AQ, if M � x ⊳ y then M 2 y ⊳ x

6. for every x, y, z ∈ AQ, if M � x⊳y and M � y ⊳z, then
M � x ⊳ z

7. for every cardinality constraint rule r ∈ Q, if M � B(r)
then M � H(r)

8. M = least(Q+ ∪Default(Q+, M)), with Q+ = Q∪∆

9. for every a ∈ ∆, M � expect(a) and M 2 expect not(a)

10. if M � a where a ∈ ∆ or a ∈ B(c), for some cardinality
constraint rule c, then there exists no preference rule
r in Q such that:

• H(r) is x ⊳ a

• M � H(r)

• M � expect(x) and M 2 expect not(x) if x ∈ AQ

• x /∈ ∆ if x ∈ AQ

In other words, if x is preferred to a and is expected with
no contrary expectation, then it must be an assumed ab-
ducible if a is.

Note that ∆ is any possible subset of AQ, subject to any
cardinality constraints in Q. In this way we allow for specific
abducible sets to be defined on Q, and preference rules can
be applied to literals which are effectively used to toggle
such sets, and hence, allow us to enact preferences among
sets.

Example 3. Let Q be the program of Example 1, extended
with the following rules and with set of abducibles AQ =
{tea, coffee, mousse}. The new term afters denotes a pos-
sible subgoal:

afters← mousse
afters← coffee

expect(mousse)
mousse ⊳ coffee

1 {tea,coffee,mousse} 1



Q has two alternative explanations ∆1 = {coffee} and
∆2 = {tea} for the query drink. In fact, Q has two preferred
abductive stable models:

M1 = {expect(tea), expect(coffee), coffee, drink} with
hypotheses ∆1

M2 = {expect(tea), expect(coffee), tea, drink} with
hypotheses ∆2

for which M1 � drink and M2 � drink. Note that the
abducible mousse is irrelevant for the query drink and,
as such, is not even considered under the relevant part of
the program, even if it is a more preferred abducible than
coffee. The number of models reduces to one if we add
sleepy to Q. In this case, coffee being a more preferred
abducible than tea, and attending to the added cardinality
constraint, the only model of Q is M1 ∪ {sleepy}.

2.6 Program Transformation
We now present an adapted program transformation from

the one set forth in [6], translating a program encoded over
L+ with abducibles into a program encoded as a NLP ex-
tended with cardinality constraints, and no abducible liter-
als. The rules for the abducible literals encode the semantics
presented in the previous section.

Definition 7. Let Q be a program over L+, with set of ab-
ducibles AQ = {a1, . . . , am}. The program P = Σ(Q) with
abducibles AP = {}, relevant under query G, is obtained as
follows:

1. P contains all the domain rules in RelG(Q)

2. P contains all the cardinality constraint rules r ∈ Q
having H(r) of the form L {l1, . . . , lk} U , where every
li /∈ AQ

3. for every cardinality constraint rule r having H(r) of
the form L {b1, . . . , bk} U , where every bi ∈ AQ, P
contains the cardinality constraint rule:
L {l1 : consider(l1), . . . , lm : consider(lm)} U ← B(r)
where every li ∈ lit(r) and li ∈ RelG(Q)

4. for every ai ∈ AQ and ai ∈ RelG(Q), P contains the
domain rule:
consider(ai)← expect(ai), not expect not(ai)

5. for every preference rule r ∈ RelG(Q), where H(r) =
x ⊳ y, P contains one of the following integrity con-
straints:

• ⊥ ← B(r), consider(x), consider(y), y, not x
if x, y ∈ AQ

• ⊥ ← B(r), consider(y), y, not x
if x /∈ AQ and y ∈ AQ

• ⊥ ← B(r), consider(x), y, not x
if x ∈ AQ and y /∈ AQ

• ⊥ ← B(r), y, not x
if x, y /∈ AQ

Example 4. Let Q be the program of Example 3. The
result of applying the transformation from Definition 7 to
the relevant part of Q given the query drink is the program
Σ(Q):

drink ← tea
drink ← coffee

expect(tea)
expect(coffee)
expect not(coffee)← blood pressure high

⊥ ← sleepy, consider(tea), consider(coffee),
tea, not coffee

1 {tea : consider(tea), coffee : consider(coffee)} 1

consider(tea)← expect(tea), not expect not(tea)
consider(coffee)← expect(coffee),

not expect not(coffee)

Following the stable model semantics extended with car-
dinality constraints, we obtain the two preferred abduc-
tive stable models from the previous example. Also, by
adding the literal sleepy, the integrity constraint comes into
play, defeating the abductive stable model where only tea is
present (due to the impossibility of simultaneously abducing
coffee, cf. cardinality constraint). However, if later on we
add blood pressure high to the program, coffee is no longer
expected, and as such, the transformed preference rule no
longer defeats the abduction of tea which then becomes the
single abductive stable model, despite the presence of sleepy.

3. A POSTERIORI PREFERENCES
While we can indeed place a priori constraints on which

abducibles are relevant given contextual knowledge in the
situation, more often than not we are only able to enact cer-
tain choices after looking at the consequences of adopting
one or another abducible. The consequences of each abduc-
tive stable model can, and often are, unique to that model,
and we cannot model preferences across these consequences
during model generation itself. Only after the relevant mod-
els are computed can we reason about which consequences,
or other features of the models, are determinant for the final
choice, i.e. the quality of the model.

One possibility is to consider a quantitative classification
of the obtained models, for instance by associating some
measure of utility to each choice scenario, like in decision
theory. This allows us to consider and integrate many tech-
niques and results from more quantitative decision making
frameworks into our own theories, accounting for more elab-
orate choice models.

When considering abductive logic programs as specifica-
tions of choice models of agents, other possibilities come up
derived from the capability of the agent to act upon and
sense the environment. Namely, if it is the case that the
currently available knowledge of the situation is insufficient
to commit to any single preferred abductive model, it may
be possible for the agent to gather additional information
by performing experiments, or consulting an oracle in order
to confirm or disconfirm some of the remaining hypotheses.
This process may even be nested, so that the available ex-
periments are themselves considered as hypotheses with as-
sociated qualitative and quantitative preferences, allowing
to express arbitrarily complex context-dependent choices.

We explore these novel approaches in the sequel, along



with some telling examples which intend to show the need
for, and illustrate, the proposed reasoning schemes.

Other possibilities, currently under exploration, concern
a more qualitative appraisal of models, say in term of gen-
eral moral or ethical rules that look at the consequences of
abduced actions, and which may be tuned with experience.

3.1 The consequences of abduction
A desirable result of encoding abduction semantics over

models of a program (where each abducible literal may be
assumed or not) is that we immediately obtain the con-
sequences of commiting to any one hypotheses set. Rules
which contain abducibles in their bodies can account for the
side-effect derivation of certain positive literals in some mod-
els, but not others, possibly triggering integrity constraints
or indirectly deriving interesting consequences simply as a
result of accepting a hypothesis.

Sometimes these computed consequences are relevant to
the process of preference handling itself, as we prefer cer-
tain consequences to others. However, more often than not
it is not possible to simply condition preferences between
abducibles based on these consequences, as it may lead to
unexpected circular inconsistencies. Also it may be diffi-
cult to express more general preferences over what are the
preferred literals in a more complete model.

Example 5. Consider the simple abductive logic program
presented below, with A = {a, b}:

c← a 1 {a, b} 1
expect(a)
expect(b)

This program has two abductive stable models:

M1 = {expect(a), expect(b), a, c}

M2 = {expect(a), expect(b), b}.

Now let us suppose that we want to prefer models where
the literal c is not present. We could model this, for this
particular program, by stating b ⊳ a ← c. However, if we
introduced another abducible that directly or indirectly re-
sulted in the derivation of c then we would have to short-
cut another preference rule for this abducible. Also, if the
derivation of c resulted from the combination of more than
one abduction, one would have to extensively encode pref-
erences over these sets to all other possible combinations of
literals which didn’t derive c.

In the long run, the complexity of writing program rules
to account for all possible combinations for c would quickly
become unsurmountable. Also, if other interesting literals
also suggested other types of preferences over the models,
and particularly if these other preferences contradicted the
previous ones, inconsistencies could easily arise which would
destroy entire models of the program. Also, how could we
model more general meta-preferences like the one: ‘prefer
models which have a greater number of abduced literals’.

In these cases, a posteriori reasoning is much more gen-
eral and powerful to express these kinds of constraints and
preference rules which operate on the consequences of the
models themselves.

3.2 Utility Theory
Economic decision theory has been well recognized as a

comprehensive and well-founded model for describing ideal
rational agents, and much work in the field of AI has been
undertaken in order to synthesize models of bounded ratio-
nality in computational systems. The logic programming
field is no exception, with a number of results being im-
ported into logic models of belief, choice and decision making
[12]. A particularly interesting field of study regards mod-
elling agents capable of planning ahead their future choices
and actions.

Abduction can also be seen as a mechanism to enable the
generation of the possible futures of an agent, with each ab-
ductive stable model representing a possibly reachable sce-
nario of interest. Preferring over abducibles in this case is
enacting preferences over the imagined future of the agent.
In this particular domain, it is unavoidable to deal with un-
certainty, a problem that decision theory is ready to address
using probability theory coupled with utility functions.

We intend to show that combining the qualitative rea-
soning addressed in previous sections with the quantitative
decision making mechanisms of decision theory is a natural
extension to both mechanisms for handling preferences, and
neatly accounts for some interesting properties presented by
agents in the real world.

In fact, it is possible to associate a quantitative measure of
utility to each abductive scenario, by conditioning utility lit-
erals on consequences of abducibles. By combining utilities
with information regarding the probability of the occurrence
of uncertain literals, we end up with an interesting mixture
of qualitative and quantitative reasoning, where possible
abducibles, constrained by the expectation and preference
rules, generate all possible relevant future scenarios which
are then associated with a degree of belief to be coupled
with the importance that the model be adopted.

Example 6. Suppose that agent Claire is spending a day
at the beach and she is deciding what means of transporta-
tion to adopt. She knows that usually it is faster and more
comfortable to go by car, but she also knows that, because
it is hot, there is a possibility that there will be a traffic jam.
There is also the possibility of using public transportation
(by train), but it will take a lot of time, although it meets
her wishes of being more environmentally friendly.

This situation can be modelled by the following abductive
logic program:

go to(beach)← car
go to(beach)← train

expect(car)
expect(train)
1 {car, train} 1

probability(traffic jam, 0.7)← hot
probability(¬traffic jam, 0.3)← hot

utility(stuck in traffic,−8)
utility(wasting time,−4)
utility(comfort, 10)
utility(environment friendly, 3)

hot



By assuming each of the abductive hypotheses, the gen-
eral utility of going to the beach can be computed for each
particular scenario:

Assume car

Probability of being stuck in traffic = 0.7
Probability of a comfortable ride = 0.3
Expected utility = 10 * 0.3 + 0.7 * -8 = -2.6

Assume train

Expected utility = -4 + 3 = -1

It is important to clarify that it wouldn’t be possible to
condition any kind of comparison or preference between ab-
ducibles based on the value of the computed utilities dur-
ing model computation itself. This results from the fact
that the final utilities depend on literals particular to each
model, and are not available a priori. It should be clear that
enacting preferential reasoning over the utilities computed
for each model has thus to be performed after the scenarios
are available, with an a posteriori meta-reasoning over the
models and their respective utilities.

3.3 Oracles
Performing an experiment can be a critical element in

the process of making informed choices. For medical prac-
titioners, for instance, it is a natural extension of abductive
reasoning. Preliminary diagnosis (or hypotheses generation)
points to expected symptoms and consequences of assuming
a certain diagnosis. From these expected symptoms, exper-
iments can be extracted to confirm or disconfirm these con-
sequences. Experiments themselves are abducible choices,
and preferences are often applied to specify which experi-
ment should be performed first given the context of a par-
ticular patient. Some of them may be more expensive, or
more stressing to the patient, or less reliable under certain
situations.

New information obtained from performed experiments is
incorporated into the original knowledge base in order to re-
fine the preliminary diagnosis. In addition to triming down
on some of the available hypotheses, information from the
experiments can actually bring about additional hypotheses
for diagnosis that the practitioner was not able to conjecture
prematurely. This cycle of refining a diagnosis with addi-
tional inquiry is an example of iterated abduction where the
dynamics of sensing and acting upon the environment are
critical to the very process of opting for the best possible
set of hypotheses, and the following diagnosis example illus-
trates well how it relates to the non-static nature of human
preferences.

Example 7. A patient shows up at the dentist with signs
of pain upon teeth percussion. The expected causes for the
observed signs are:

• Periapical lesion

• Horizontal Fracture of the root and/or crown

• Vertical Fracture of the root and/or crown

This setting can be modelled by the following abductive
logic program D, representing a partial medical knowledge

base of the practitioner:

percussion pain← periapical lesion
radiolucency ← periapical lesion

percussion pain← fracture

fracture← horizontal fracture
elliptic fracture trace← horizontal fracture
tooth mobility ← horizontal fracture

fracture← vertical fracture
decompression pain← vertical fracture

0 {
periapical lesion,
horizontal fracture,
vertical fracture
} 1

expect(periapical lesion)
expect(horizontal fracture)
expect(vertical fracture)

⊥ ← not percussion pain

The integrity constraint indicates that the practitioner
must conclude percussion pain since that is the symptom of
the patient that requires explanation. There are three pre-
ferred abductive stable models for D corresponding to each
of the available hypotheses ∆1 = {periapical lesion}, ∆2 =
{horizontal fracture} and ∆3 = {vertical fracture}. Ex-
cluding the expectation domain literals, which are contained
in all models, we have:

M1 = {percussion pain, periapical lesion, radiolucency}
with hypotheses ∆1

M2 = {percussion pain, horizontal fracture, fracture,
tooth mobility, elliptic fracture trace} with hypotheses
∆2

M3 = {percussion pain, vertical fracture, fracture,
decompression pain} with hypotheses ∆3

Notice that in the collection of abductive stable models
we have not only each of the possible diagnosis, but also all
the expected symptoms of assuming each of the diagnosis.

Following the computation of possible diagnosis scenar-
ios, it is necessary to generate and choose an experiment
which can lead to confirmation or disconfirmation of the hy-
potheses. Let us suppose that the medical practitioner has
available an additional knowledge base of possible experi-
ments and rules stating when each experiment is indicated.
Consider the following abductive logic program E:

1 {
xray, percussion test,
mobility test, decompression test
} 1

expect(percussion test)← possible(percussion pain)
expect(xray)← possible(radiolucency)
expect(xray)← possible(elliptic fracture trace)
expect not(xray)← radiotherapy patient



expect(mobility test)← possible(tooth mobility)
expect(decompression test)←

possible(decompression pain)

mobility test ⊳ xray
decompression test ⊳ xray
mobility test ⊳ decompression test← trauma

The literal possible/1 indicates that a given symptom is
an expected possibility that should be confirmed by an ex-
periment, if one is available. The less invasive experiments
are preferred to those which are more invasive (e.g. xray).
We also impose the constraint that only one experiment may
be executed at any one time.

Let us now take all of the consequences which were ex-
tracted from the models of D and were not original symp-
toms of the patient, and assert them in program E enclosed
in distinct possible/1 literals. The following rules are then
added to E, forming the new abductive logic program E1:

possible(radiolucency)
possible(elliptic fracture trace)
possible(tooth mobility)
possible(decompression pain)

Computing the models of E1 yields two preferred abduc-
tive hypotheses for conducting a test on the patient: ∆1 =
{mobility test} and ∆2 = {decompression test}. Both of
these hypotheses stand on equal grounds, so it is possible to
non-deterministically pick one for execution. Let us assume
that ∆1 is ultimately chosen. Conducting the mobility test
on the patient’s tooth shows that no significant mobility is
present. The new information can now be asserted onto the
original diagnosis knowledge base described by D, in the
form of the new integrity constraint:

⊥ ← tooth mobility

meaning that we have disproven tooth mobility so it would
be contradictory to conclude it as a consequence of diagnosis.

By recomputing the models for the new abductive logic
program D1, we verify that the previous hypotheses set
∆2 = {horizontal fracture} has been defeated, and now
only diagnosis of periapical lesion and vertical fracture
remain as possible candidates.

An additional iteration over the abductive logic program
E∪Ps, where Ps is the set of possible/1 literals derived from
the consequences of D1, reveals that the next experiment to
be performed is the non-invasive decompression test. De-
pending on the result of this experiment, the practitioner
will be able to conclude the final diagnosis on a last iteration
of the augmented medical knowledge base. This particular
example is oversimplified however, since medical knowledge
is already structured so as to provide only crucial literals. A
literal is crucial with respect to two theories if only one of the
two theories supports the derivation of that literal. Com-
puting such crucial literals is a non-trivial, but well-known
problem, originally addressed in [14]. Its implementation is,
nevertheless, outside the scope of this work.

An empirical implementation of such automated medical
diagnostics has already been undertaken in the ACORDA
system [9], a logic programming framework specifically de-
signed to accomodate for abduction in evolving scenarios,
using the perspectives previously outlined.

4. IMPLEMENTATION

The Prolog language has been for quite some time one
of the most accepted means to codify and execute logic pro-
grams, and as such has become a useful tool for research and
application development in logic programming. Several sta-
ble implementations have been developed and refined over
the years, with plenty of working solutions to pragmatic is-
sues ranging from efficiency and portability to explorations
of language extensions. The XSB Prolog system1 is one
of the most sophisticated, powerful, efficient and versatile
among these implementations, with a focus on execution effi-
ciency and interaction with external systems, implementing
program evaluation following the Well-Founded Semantics
(WFS) for normal logic programs.

The semantics of Stable Models has become the corner-
stone for the definition of some of the most important results
in logic programming of the past decade, providing an in-
crease in logic program declarativity and a new paradigm for
program evaluation. However, the lack of some important
properties of previous language semantics, like relevancy and
cumulativity, somewhat reduces its applicability in practice,
namely regarding abduction.

The XASP interface [5, 4] (standing for XSB Answer Set
Programming), is included in XSB Prolog as a practical pro-
gramming interface to Smodels [11], one of the most suc-
cessful and efficient implementations of the Stable Models
semantics over generalized logic programs. The XASP sys-
tem allows one not only to compute the models of a given
NLP, but also to effectively combine 3-valued with 2-valued
reasoning. The latter is achieved by using Smodels to com-
pute the stable models of the so-called residual program, the
one that results from a query evaluated in XSB using tabling
[15]. This residual program is represented by delay lists, that
is, the set of undefined literals for which the program could
not find a complete proof, due to mutual dependencies or
loops over default negation for that set of literals, detected
by the XSB tabling mechanism. This method allows us to
obtain any two-valued semantics in completion to the three-
valued semantics the XSB system produces.

This kind of integration allows one to maintain the rel-
evance property for queries over our programs, something
that the Stable Model semantics does not originally enjoy.
In Stable Models, by the very definition of the semantics,
it is necessary to compute all the models for the whole pro-
gram. In our implementation framework, we sidestep this
issue, by using XASP to compute the query relevant residual
program on demand, usually after some degree of transfor-
mation. Only the resulting program is then sent to Smodels
for computation of abductive stable models.

This is one of the main problems which abduction over
stable models has been facing, in that it always has to con-
sider all the abducibles in a program and then progressively
defeat all those that are irrelevant for the problem at hand.
This is not so in our system framework, since we can usually
begin evaluation by a top-down derivation of a query, which
immediately constrains the set of abducibles that are rele-
vant to the satisfaction and proof of that particular query.

An important consideration of computing consequences,
like suggested in Section 3.1, is that we could end up having
to compute the models of the whole program in order to

1Both the XSB Logic Programming system and Smodels
are freely available at: http://xsb.sourceforge.net and
http://www.tcs.hut.fi/Software/smodels



obtain just a particular relevant subset which will be used to
enact a posteriori preferences. This can be easily avoided by
performing preliminary computation of the relevant residual
program, given the consequences that we expect to observe.
This means that the consequences believed significant for
model preference can be computed on the XSB side, and
their additional residual program sent to Smodels as well.
In this phase, we do not allow for additional abduction of
literals, but merely enforce that rules for consequences are
consumers of considered abducibles which have already been
produced.

In this way, we combine a declarative methodology to de-
scribe the abductive process, with an efficient and viable
implementation of reasoning by complementing a 3-valued
well-founded derivation with the computation of the stable
models of the residual program, in a natural way to obtain
all the possible 2-valued models from the well-founded one.

5. CONCLUSIONS
We have shown that a priori preferences over abductive

logic programs are an important tool for knowledge repre-
sentation in modelling different kinds of choice situations
where an agent needs to make a decision while considering
its present and future context. Some limitations which had
already been identified in [6] were addressed, namely how to
express preferences between abducible sets. We have shown
how previous results of extensions to the Stable Model se-
mantics, using cardinality constraints, can be used to govern
and constrain abduction of abductive literals in the context
of our framework. The incorporation of these results has
also led to a simpler transformation of abductive logic pro-
grams into normal logic programs extended with cardinality
constraints.

The broadening of our research direction to incorporate
a posteriori preferences has also been presented here as a
major topic of interest for research into prospective agents,
which can not only consider their immediate context, but
can also present a modicum of lookahead and meta-reasoning
over available scenarios, using both qualitative and quanti-
tative dimensions for decision making. We have also shown
the importance of using selected computed consequences to
constrain and condition preference handling itself, and how
model computation can be complemented by performing ex-
periments with the purpose of acquiring new information
with which to enact more informed choices.

Finally, we have shown the advantages of implementing
our framework as a hybrid Prolog-Smodels system via the
XASP package, in order to efficiently combine backwards-
and forwards-chaining reasoning, respectively for constrain-
ing the abducibles to only those which are relevant for a
given goal, and then to compute the consequences of assum-
ing them in each possible scenario.

Although in this work we insisted on a strict partial or-
der for preferences, in [6] we have already shown that this
need not necessarily be so, namely by specifying different
conditions for revising contradictory preferences [13]. The
possible alternative revisions, required to satisfy the condi-
tions, impart a non-monotonic or defeasible reading of the
preferences given initially. Such a generalization permits us
to go beyond a simply foundational view of preferences, and
allows us to admit a coherent view as well, inasmuch sev-
eral alternative consistent stable models may obtain for our
preferences, as a result of each revision.
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