
Specification and Dynamic Verification of Agent
Properties

Stefania Costantini1, Pierangelo Dell’Acqua2, Lu ı́s Moniz Pereira3, and
Panagiota Tsintza1

1 Dip. di Informatica, Universit̀a di L’Aquila, Coppito 67100, L’Aquila, Italy
stefcost@di.univaq.it

2 Dept. of Science and Technology - ITN, Linköping University Norrk̈oping, Sweden
piede@itn.liu.s

3 Departamento de Inforḿatica, Centro de Inteliĝencia Artificial (CENTRIA), Universidade
Nova de Lisboa 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. In previous work, we have proposed a multi-level agent model with
(at least) a meta-level aimed at meta-reasoning and meta-control. In agents, these
aspects are strongly related with time and therefore we retain that they can be
expressed by means of temporal-logic-like rules. In this paper, we propose an
“interval” temporal logic inspired by METATEM, that allows properties to be
verified in specific time interval situated either in the past or in the future. We
adopt this logic for definition and run-time verification of properties which can
imply modifications to the agent’s knowledge base.

1 Introduction

Agents are by definition software entities which interact with an environment, and thus
are subject to modify themselves and evolve according to both external and internal
stimuli, the latter due to the proactive and deliberative capabilities of the agent them-
selves (whenever encompassed by the agent model at hand). In past work, we have
defined semantic frameworks for agent approaches based on logic programming that
account for: the kind of evolution of reactive and proactive agents due to directly deal-
ing with stimuli, that are to be coped with, recorded and possibly removed [1]; the kind
of evolution related to adding/removing rules from the agent knowledge base [2]. These
frameworks have been integrated into an overall framework for logical evolving agents
(cf. [3] and [4]) where moreover every agent is seen as the composition of a base-
level (or ground-level or object-level) agent program and one or more meta-layers. In
this model, updates related to recoding stimuli are performed in a standard way, while
updates involving the addition/deletion of (sets of) rules, related to learning, belief re-
vision, etc. are a consequence of meta-level decisions.

As agent systems are more widely used in real-world applications, the issue of ver-
ification is becoming increasingly important (see [5] and the many references therein).
In computational logic, two common approaches to the verification of computational
systems are model checking [6] and theorem proving. There are many attempts to adapt



these techniques to agents (see again [5]). In this paper, we address the problem con-
cerning the monitoring of agents behavior against desired properties, or w.r.t. a certain
specification, in a different way. We assume defined, possibly both at the object and at
the meta-level, axioms that determine properties to be respected or enforced, or simply
verified, whenever a property is desirable but not mandatory. We assume these prop-
erties to be verified at runtime, with a certain frequency associated with the property
itself depending upon its criticality. Upon verification of a property (which is evalu-
ated within a context instantiated onto the present circumstances), suitable actions can
be undertaken, that we call in generalimprovementactions, or simplyimprovements:
improvements can implyrevisionof the agent knowledge, or tentativerepair of mal-
functioning, or tentativeimprovementof future behavior, according to the situation at
hand. Our approach is to some extent similar to that of [7] for evolving software.

As many of the properties to be defined and verified imply temporal aspects, we
have considered to adopt a temporal logic, and our choice has fallen on METATEM [8]
[9]. Since properties should often be defined on certain intervals, we define a variant
of METATEM, that we call A-IMETATEM, where operators are defined over intervals.
We do not adopt the full power of METATEM rules, where operators are interpreted as
modalities, and semantics provided accordingly. Instead, we remain within the realm
of logic programming, and interpret the temporal axioms in the context of the above-
mentioned semantic framework. Therefore, we should better call our axioms “temporal-
logic-like” axioms. However, to simulate to some extent the power of modal logic, im-
provements can imply the removal/addition of new temporal-logic-like axioms. The
addition of new ones determines their immediate operational use. In this way, we stay
within our semantic framework, where we are able to provide a full declarative se-
mantics and an efficient corresponding operational semantics, as demonstrated by the
existing implementations ([10], [2]), though the proposed approach has not been fully
implemented yet.

The plan of the paper is as follows. In Section 2 we summarize the features of the
agent model our framework is based upon. This model is very general, and many exist-
ing agent-oriented logic languages can be easily rephrased in terms of it. In Section 3
we shortly summarize the METATEM temporal logic, and then introduce the proposed
extension. In Section 4 we show how we mean to use temporal-logic-like rules for
defining properties, how these properties are meant to be verified, and we establish our
notion of improvement. We then conclude.

2 Layered Agent (Meta-)Model

We do not mean to restrict the proposed approach to one single agent model/language.
Therefore, we refer to an abstract agent model (or, we might say, meta-model). In this
way, the approach can be adapted to any specific agent formalism which can be seen
as an instance of this meta-model. We therefore refer to the abstract multi-layer meta-
framework for agents proposed in [3] and [4]. In this framework, an agent is considered
to be composed of two distinct interacting layers: the BA (orbase layer, or ground
layer) and (one or more) Meta-level(s). The BA is a base level, whereas the MA (that
stands for Meta-Agent) along with the IEA (Information Exchange Agent), constitutes



the Meta-Level. Here we assume that the BA is a logic program and make an additional
assumption that its semantics may ascribe multiple models to BA in order to deal with
“uncertainty”. For the semantics of logic programs we can adopt one of those reported
in the survey [11] and for the semantics dealing with “uncertainty” we can suggest, e.g.,
the Answer Set Semantics proposed in [12].

The Meta-level, by means of both components MA and IEA, performs various kinds
of meta-reasoning and is the responsible for supervising and coordinating the BA’s ac-
tivities. The MA meta-level is in charge of coordinating all activities and takes deci-
sions over the BA layer. More precisely, the MA layer will be the one up to decide
which modifications have to be undertaken onto the BA level, in order to correct (or im-
prove) inadequacies or unexpected behavior. The IEA layer, instead, is the one deciding
and evaluating when an interaction with the society is necessary in order to exchange
knowledge: in fact, agents are in general not entities standing alone but, rather, are part
of (one or more) group(s) called “society”. Below we do not give a formal definition of
the BA, MA and IEA as their actual form depends upon the various possible concrete
instances of the meta-framework. Rather, we specify the requirements the have to obey.
We also define the overall architecture, and outline a possible semantic account.

2.1 Agent Model: the knowledge base

Below we outline the requirements for the knowledge base of an agent in the proposed
framework. In line with [13] and with the BDI (beliefs, desires, intentions) model (see
[14] as an example of a BDI framework), the components forming the BA and/or the
MA layers include the following.

1. Both BA and MA layer contain in general abelief component, enclosing modules
for reasoning, planning, goal identification, reactivity and proactivity, etc.

2. The BA and MA layers also contain a set ofdesires(called SD) andintentions
(called SI). SD includes all goals adopted or under considerations while the SI is
composed by all plans both in execution and consideration.

3. In addition to the components proposed in [4], we consider the (optional) compo-
nents ofability andconfidenceenclosing modules of:trust, abilities of agents in
computing certain action andconfidence. The latter component is responsible for
reasoning about the confidence of the agent in doing something (an action, a goal,
etc.) and can be influenced by other agents in the society.

4. In order to interact with the society, there will be a component encompassing the
agent’s interaction mechanisms.

5. In order to manage beliefs as well as confidence (and their alterations), a specific
component may be provided, which should possibly include a learning mechanism.

All components mentioned in the above points have to be combined, exploited, and
supervised by a control component. This component is based on control information
aimed at improving control effectiveness.

2.2 Agent Model: operational behavior

To define the operational behavior of the agent meta-model we exploit our previous
work reported in [3]. Each agent is considered as a logic program that will evolve by its



interaction with the environment. In fact, the interaction triggers many agent activities
such as response, goals identification, decisions on recording or pruning the gathered
information, etc. Of course, these activities will be affected by the belief, desire and
intention control that is part of the agent’s MA. Note that this component will itself
evolve and change in time as a result of the interaction with the society. In this paper,
we are going to consider the evolution of the initial agent into subsequent (related)
versions of the agent itself. Therefore, we consider that each interaction will, eventually,
determine the evolution of the initial agent in terms of successive transformations.

Here is a more formal view of agent evolution. We consider a generic instance of
our agent meta-model that we refer to asM. The agent modelM will have to provide
an agent-oriented programming language and a control mechanism. For example, ifM
provides a prolog-like programming language,C may be a meta-interpreter,CI may be
a set of directives to the interpreter. Below we describe the operational behavior of our
meta-model thus providing a specification to whichM should conform, whatever its
specific functioning, to be seen as an instance of our framework.

Definition 1. An agent programPM is a tuple〈BA,MA, C, CI〉 of software compo-
nents whereBA and MA are logic programs,C is the control component andCI
(optional) contains some kind of control information.

In previous definition, we consider that the control componentC takes as input both
the logic programs BA and MA and the control informationCI. TheCI component
has the role of customizing therun-timebehavior of the agent. E.g.,CI may contain
directives may state the priorities among different events/goals that the agent has to
cope with, and the frequency those properties have to be taken into consideration.

As mentioned before, the initial agent is considered as a logic program, to which
we associate theinitial state of the agent. More formally, the initial agent is given by
means of the following definition.

Definition 2. The initial agentA0 is an agent programP0M (or simplyP0 whenM
is clear from the context), i.e.,〈BA0,MA0, C0, CI0〉, whereBA0, MA0 are the initial
logic programs, andC0, CI0 are, respectively, the initial control and control information
components.

In the following, we are going to state that the controlC and control information
CI components are enabled to actually affect the operational behavior of agents. In
fact, both components are taken as input by an underlying control mechanismUM that
implements the operational counterpart of the agent model. For example, if the agent
model provides a prolog-like programming language the underlying control mechanism
may be either an interpreter or a virtual machine related to a compiler.

Definition 3. Theunderlying control mechanismUM (or U in short), able to put into
operation the various components of an agent modelM, is a transformation function
operating in terms of a set of distinguishablesteps, starting fromA0 and transforming it
step by step intoA1, A2, . . . , givenCi andCIi as defined inA0, A1, A2,. . . respectively.

Next, we consider that the transition from a generic stepAi into the next stepAi+1

is defined as follows:



Definition 4. LetP be an agent program. Then,∀i ≥ 0, Ai→U(Ci,CIi)Ai+1.

It is important to notice that, given an initial stepA0, subsequent stepsAjs in gen-
eral do not follow deterministically. The reason is that each step depends on the both
on the interaction with the society (external environment) and on the internal choices of
each agent that are based on its previous knowledge and “experience”.

Theunderlying controlU can operate in two different ways: (i)U provides different
parallel threads for the levels BA and MA or (ii)U provides an interleaving of control
between the two layers.

In the former case, the MA level continuously monitors the BA. In the latter case
instead, control must somehow pass between the two levels, e.g., as follows.

– Control will shift upfrom BA to MA periodically (and/or upon certain conditions)
by means of an act calledupward reflection. When controls shifts up, the MA will
revise the BA’s activities, which may imply constraints and condition verification.

– Vice versa, control willshift downfrom the MA to the BA by performing an act
calleddownward reflection.

Forms of control based on reflection in computational logic are formally accounted
for in [15]. The frequency as well as the conditions of each type of shift is defined in
the control information componentCIi and therefore can be encoded as a subset of
directives included in this component. A declarative semantics for evolving agents that
fulfils the above-proposed meta-model is presented in [1]. Dynamic changes that the
MA level can operate on the BA level can be semantically modeled by means of the
approach of Evolving Logic Programs (described in [16]). In the following, we will
assume these formalizations as the semantic bases of the approach proposed here.

The meta-model and its operational behavior are consistent at least with the KGP
([17], [18],[19]) and DALI ([20], [21], [10]) agent-oriented languages.

2.3 Agent Model: specific aspects

To deal with dynamic verification of agent properties, both the BA and MA layers are
supposed to include a component composed of a set ofconstraints(called SC): as we
will see later, here we include all temporal constraints designed in order to induce or
verify that certain actions or goals are performed in the correct order and in the allocated
time. In addition, we consider constraints on the appropriate performance of actions that
include what should happen and what should not happen.

In our setting, we assume that the new knowledge that an agent acquires from the
society is recorded at the same time in two different ways: (i) together with meta-
information that allows the agents to track the new knowledge and to store (an possibly
later remove) it along with time-stamps and expectations; (ii) as plain knowledge added
to the beliefs component.

The first way enables agents to reason about expectations and thus about goals that
have not been accomplished yet. Therefore, the meta-information will help the agent
“explore” the set of beliefs and to adequately update it (that is, remove/deactivate those
beliefs that are deemed useless). Expectations, obligations and prohibitions have been
coped with in logical agents by the approach (complementary to ours) of [22], where
abducible predicates are used in the representation of obligations and prohibitions.



3 A-IMETATEM: Temporal Logic in the proposed framework

As already mentioned, the MA level is the one responsible for run-time monitoring
of BA’s activities over time. Therefore, in our perspective the MA will include rules
inspired by temporal logic. Also the BA may include and take profit of this kind of
rules: however, we mainly consider here meta-rules defined in the MA. Note that the
MA is supposed to perform checks atrun-timerather in advance like in model checking
(which is however by no means excluded, but is not treated here). The basic aim of the
checks is the detection of either fulfillment or violations of constraints that have to be
worked out by some action ofimprovement. Those actions can not be decided “a priori”
since they will depend on each specific context.

In previous section, we discussed the non determinism of states that can be reached
by agents during their evolution. For defining temporal-logic-like rules while keeping
the complexity under control, we are going to adapt the approach of METATEM, a
propositional Linear-time Temporal Logic (LTL), that implicitly quantifies universally
upon all possible paths. LTL logics are called linear because, in contrast to Branching
time logics, they evaluate each formula with respect to a vertex-labeled infinite path
p0p1..., where: each vertexpi in the path corresponds to a point in time (or “time instant”
or “state”),p0 is the present state and eachpi, with i > 0, are future states.

In order to model the dynamic behavior of agents, we propose an extension to
the well-established METATEM logic called A-IMETATEM, an acronym standing for
“Agent-Interval METATEM”.

3.1 METATEM

In this subsection, we present the basic elements of propositional METATEM logic
or PML ([9], [8]). The PML language is based both on the classical propositional logic
enriched by temporal operators and on the direct execution of temporal logic statements.

First, we present thesyntaxof METATEM. The symbols used by this language are:
(i) a setAC of propositions controlled by the component which is being defined; (ii) a
setAE of propositions controlled by the environment (note thatAC ∩ AE = ∅); (iii)
an alphabet of propositional symbolsAP , obtained as the union of setsAC andAE

(AP = AC ∪ AE); (iv) a set of propositional connectives such astrue, false, ¬, ∧, ∨,
⇒ and⇔; (v) a set of temporal connectives; (vi) quantifiers,∀ and∃.

The set of temporal connectives is composed of a number of unary and binary con-
nectives referring to future-time and past-time. Given a propositionp ∈ Ap and the
formulaeϕ andψ, the syntax of connectives is given below. Note that ifϕ andψ are
formulae so is their combination.

Unary connectives referring to future time:

– © that is the “next state” symbol and©ϕ stands for: “the formulaϕ will be true
at next state”,

– ¤ that is the “always in future” symbol and¤ϕ means that the formulaϕ will
always be true in the future,

– ♦ that is the “sometime in future” symbol and♦ϕ stands for: “there is a future state
where the formulaϕ will be true”.



Binary connectives referring to future time:

– W that is the “unless” (or “weak until”) symbol. The formulaϕWψ is true in a
states if the formulaψ is true in a statet, in the future of states, andϕ is true in
every state in the time interval [s,t) (t excluded)

– U that is the “strong until” . The formulaϕUψ is true in a states if the formulaψ
is true in a statet, in the future of states, andϕ is true in every state in the time
interval [s,t] (t included). In other worlds, from now on,ϕ remains true untilψ
becomes true.

Unary connectives referring to past time:

– • is the “last state” operator and the formula•ϕ stands for “if there was a last
state, thenϕ was true in that state”,

– ¨ is the “some time in past” operator and the formula¨ϕ means that formulaϕ
was true in some past state,

– ¥ is the “always in the past” and the formula¥ϕ means thatϕ was true in all past
states,

– ¯ is the strong last time operator, wherēϕ⇔¬• ¬ϕ

Note that the last state operator can determine the beginning of time by using the
formula•false.

Binary connectives referring to past time:

– Z is the “zince” (or “weak since”) operator. The formulaϕZψ is true in a states
if the formulaψ is true in a statet (in the past of states), andϕ was true in every
state of the time interval [t,s),

– S that is the “since” operator. The formulaϕZψ is true in a states if the formula
ψ is true in a statet (in the past of states), andϕ was true in every state of the time
interval [t,s]. That means thatϕ was true sinceψ was true.

A METATEM program is a set of temporal logic rules in the form:

past time antecedent→ future time consequent

where the “past time antecedent” is considered as a temporal formula concerning the
past while the “future time consequent” is a temporal formula concerning the present
and future time. Therefore, a temporal rule is the one determining how the process
should progress through stages.

The last part of this section is dedicated to the presentation of METATEM formulae
semantics. For doing so, we first define the Model structures used in the interpretation
of temporal formulae.

In the following, we considerσ to be astate sequence(s0s1...), i the current time
instant. We define astructureas a pair(σ, i) ∈ (N → 2AP ) x N whereAP is the
alphabet of propositional symbols. The relation² is the one giving the interpretation
for temporal formulae in the given model structure. In general, a propositionp ∈ AP is
true in a given model iff it is true in the current moment. As base case, we consider that
formulatrue is true in any structure, whilefalse is true in no model. Then we have:



Definition 5. Semanticsof temporal connectives is defined as follow:

– σ, i ² true
– σ, i ² ¬ϕ iff not σ, i ² ϕ
– σ, i ² ϕ ∧ ψ iff σ, i ² ϕ andσ, i ² ψ
– σ, i ²© ϕ iff σ, i + 1 ² ϕ
– σ, i ² ¤ ϕ iff forall k ∈ N σ, i + k ² ϕ
– σ, i ² ♦ ϕ iff exists somek ∈ N σ, i + k ² ϕ
– σ, i ² ϕ U ψ iff exists somek ∈ N such thatσ, i + k ² ψ and forall j ∈ 0..k − 1,

σ, i + j ² ϕ
– σ, i ² ϕW ψ iff σ, i ² ϕ U ψ or σ, i ² ¤ ϕ
– σ, i ²•ϕ iff i > 0 thenσ, i− 1 ² ϕ
– σ, i ² ¥ ϕ iff forall k ∈ 1..i σ, i− k ² ϕ
– σ, i ² ¨ ϕ iff exist somek ∈ 1..i such thatσ, i− k ² ϕ
– σ, i ² ϕ S ψ iff exist somek ∈ 1..i such thatσ, i− k ² ψ andforall j ∈ 1..k − 1,

σ, i− j ² ϕ
– σ, i ² ϕ Z iff σ, i ² ϕ S ψ or σ, i ² ¥ ϕ

3.2 A-IMETATEM

The purpose of this work is to allow properties and anomalous behavior in agent evo-
lution to be checked at run-time. Since agent evolution can be considered as an infinite
sequence of states, it is often not possible (and not suitable) to verify properties of the
entire sequence. Sometimes it is not even desirable, since one needs properties to hold
(or never to hold) within a certain time interval. This is why we propose an extension,
called A-IMETATEM (acronym of “Agent-Interval METATEM”), to the METATEM
logic.

Below are the future time interval operators of A-IMETATEM(wherem < n).

– τ where the propositionτ(si) is true ifsi is the current state. I.e., we introduce the
possibility of accessing the current state;

– ©m, i.e.,ϕ should be true at statesm+1;
– ♦m stands for “bounded eventually”, i.e.,♦mϕ means thatϕ eventually has to hold

somewhere on the path from the current state tosm;
– ♦m,n stands for “bounded eventually in a time interval”, i.e.,♦m,nϕ means thatϕ

eventually has to hold somewhere on the path from statesm to sn;
– ¤m,n stands for “always in a given interval”, i.e.,¤m,nϕ means thatϕ should

become true at most at statesm and then hold at least until statesn;
– ¤〈m,n〉 means thatϕ should become true just insm and then hold until statesn,

and not insn+1, where nothing is said for the remaining states;
– N stands for “never”, i.e.,Nϕ means thatϕ should not become true in any future

state;
– Nm,n stands for “bounded never”, i.e.Nm,nϕ means thatϕ should not be true in

any state betweensm andsn, included.

The past time interval operators instead are:



– •m, i.e., given the current statesi thenϕ was at statesm, with m < i;
– ¥m,n is the “always in past” operator where, given the current statesi andm ≤

n ≤ i thenϕ was true in the entire time intervalm,n. I.e.,¥m,nϕ means that ifϕ
was true at statesm and then it remained true at least until statesn;

– ¥〈m,n〉 is the strict version of¥m,n, whereϕ was true only in the time interval
m,n. I.e.,¥〈m,n〉 means thatϕ became true just in statesm and then remained true
exactly until statesn

After having introduced the syntax of A-IMETATEM, we present the semantics of
A-IMETATEM formulae.

Definition 6. (Semantics of A-IMETATEM formulae)Letσ be astate sequences0s1...,
i the current momentin time, andϕ, ψ METATEM-formulae. Thesemanticsof A-
IMETATEM is defined as:

– all basic METATEM operators are defined as in Definition 5
– we defineσ ² τ(s0) (for i = 0), wheres0 ≡ •false, in order to track down the

initial state (or time) of theσ-sequence;
– σ ²©mϕ iff σ, m + 1 ² ϕ;
– σ ² ♦mϕ iff exist somej, j ≤ m: σ, j ² ϕ;
– σ ² ¤m,nϕ iff forall m ≤ j ≤ n: σ, j ² ϕ;
– σ ² ¤〈m,n〉ϕ iff forall j, m ≤ j ≤ n: σ, j ² ϕ andforall r: r < m: σ, r ² ¬ϕ and

σ, n + 1 ² ¬ϕ;
– σ ² Nϕ iff forall j, j ≥ 0: σ, j ² ¬♦ϕ;
– σ ²•mϕ iff for m < i, wherei is the current state:σ, m ²ϕ;
– σ ² ¥m,nϕ iff forall j, m ≤ j ≤ n ≤ i: σ, j ²ϕ;
– σ ² ¥〈m,n〉ϕ iff forall m ≤ j ≤ n ≤ i: thenσ, j ²ϕ andforall r: r < m thenσ, r

² ¬ϕ andσ, n + 1 ² ¬ϕ

Based on previous definition of A-IMETATEM semantics, we propose a run-time
control of goals/plans performed by agents during their evolution and learning process.
We remark that verification of properties is not meant to occur at every state but, rather,
with a frequency associated to each property. In such a way, a crucial property for agent
evolution can be tested more often than a less relevant one. For doing so, we need a
further extension to define subsequences and refine the semantics accordingly.

We considerσ to be an infinite sequence of statess0, s1, ... of a system andσk to be
the subsequences0, sk1 , sk2 , ... where for eachkr (r ≥ 1), kr modk = 0, i.e.,kr = g
× k for someg. Note that we haveσ1 = σ, σ2 = s0, s2, s4, ... and so on. All operators
introduced above can be redefined for subsequences.

Definition 7. Let Op be any of the operators introduced in A-IMETATEM andk ∈ N
with k > 1. ThenOpk is an operator whose semantics is a variation of the semantics of
Op where the sequenceσs is replaced by the subsequenceσs

k.



4 A-IMETATEM for defining and verifying properties in logical
agents

In our framework, agents are supposed to live in an open society where they interact
with each other and with the environment, and where they can learn either by observing
other agents behavior or by imitation. Given the evolving nature of learning agents, their
behavior has to be checked from time to time and not (only) a priori. Model checking
and other “a priori” approaches are static, since the underlying techniques require to
write an ad-hoc interpreter and this operation can not be re-executed whenever the agent
learns a new fact/rule/action. Note that, in case of re-execution this operation would
in principle be required a huge number of times, adding a further cost to the system.
Moreover, an a priori full validation of agent’s behavior would have to consider all
possible scenarios that are not known in advance. These are the reasons why we propose
(also) a run-time control on agent behavior and evolution, for checking correctness
during agents activity, rather than a model checking control.

In fact, we will add to the underlying logic programming agent-oriented language
the possibility of specifying rules including A-IMETATEM operators. These rules will
be attempted at a certain frequency, and whenever verified may determine suitable mod-
ifications to the program itself. In the rest of this section, we first define the syntax of
A-IMETATEM operators in the context of logic programs, and introduce some useful
notation; next, we define A-IMETATEM basic rules, A-IMETATEM contextual rules,
and A-IMETATEM rules with improvements. Along with the explanation we provide
some examples.

In our framework, we consider A-IMETATEM rules to be applied upon universally
quantified formulae. Note that the negation operator (not) is interpreted in our setting
as “negation-as-failure”. For introducing A-IMETATEM rules in logic-programming
based languages, we first have to represent the A-IMETATEM operators within this
kind of languages. This representation is shown in Figure 1.

In the following, we omit the operator arguments when implied from the context,
and in these cases we writeOP instead ofOP (m,n; k). We often omit frequency:
we assume in fact that there exists a default frequency, defined in the componentCI
including control information (cf. Section 2). Also, as a special case, when we do not
care about the starting point of an interval, we introduce the special constantstart
whereOP (start, n; k) means thatOP is checked since the “beginning of time” up
to n, where the beginning of time coincides with the agent’s activation time. We also
introduce the shorthandnow standing for the timet for whichNOW (t) holds.

In addition to the basic operators, we introduce here two useful derived operators.
The first one is related to the issue, that often occurs in practice, of defining a “normal”
occurrence of an event, such as, e.g., a reaction to a certain external stimulus or the trig-
gering of an internal process of an agent trying to achieve a goal. We say that an event’s
occurrence is “normal” when it occurs sufficiently often. For performing this type of
control, it is necessary to define a new operator of A-IMETATEM, calledUSUALLY .

Definition 8. Given a sentenceϕ and a related frequencyfϕ ∈ N we define the opera-
tor USUALLY as follows:USUALLY (M,N)ϕ ≡ ALWAYS (M, N ; fϕ)ϕ.
The shortcomingUSUALLY ϕ stands forALWAYS (start, now; fϕ)ϕ.



A-IMETATEM Op k OP(m,n;k)
τ(t) NOW (t)

©k NEXT (1 ; k)

©j
k NEXT (j ; k)

♦k FINALLY (1 ; k)

♦k
m FINALLY (m; k)

¤k ALWAYS(1 ; k)

¤m,n
k ALWAYS(m,n; k)

¤〈m,n〉
k ALWAYS 2 (m,n; k)

Nk NEVER(1 ; k)

Nm,n
k NEVER(m,n; k)•k LAST (1 ; k)•k

m LAST (j ; k)

¥k P ALWAYS(1 ; k)

¥k
m,n P ALWAYS(m,n; k)

¥k
〈m,n〉 P ALWAYS 2 (m,n; k)

Fig. 1. Representation of A-IMETATEM operators
-

According to this definition, the new operatorUSUALLY is a shortcoming for a
check with frequencyfϕ, whereALWAYS has the usual role of checking the proposi-
tion in all given states. Therefore,USUALLY ϕ holds as far as this periodical check is
successful.

The second derived operator holds if the given event has occurred at some point of
an interval, one or more times:

Definition 9. Given a sentenceϕ we define the operatorSOMETIMES as follows:
SOMETIMES (M,N)ϕ ≡ ¬ALWAYS (M, N)ϕ ∧ ¬NEVER(M,N)ϕ.

For each A-IMETATEM operator, we define its negated counterpart.

Definition 10. Given an A-IMETATEM formulaOP (m,n; k), we define
N −OP (m, n; k) standing for¬OP (m,n; k).

4.1 A-IMETATEM basic rules

We can now define the form of a basic A-IMETATEM rule.

Definition 11. An A-IMETATEM ruleρ is a writing of the formα : β or simplyβ
where we have the following.β is a conjunction including logic programming literals
and/or (possibly negated) A-IMETATEM operators;α (if specified) is an atom of the
formp(t1, . . . , tn) which is called the rulerepresentative.

Once attempted, an A-IMETATEM rule is verified (orsucceeds, orholds) whenever
all its conjuncts succeed (which implies that all the A-IMETATEM operators hold and



all the logic programming literals are provable). In the case of A-IMETATEM opera-
tors (or their negation), this means that the related property holds either in the specified
interval (if elapsed) or up to now. According to the semantic framework of [1] where
special formulas can be designated to be periodically executed, A-IMETATEM rules
will be periodically attempted (we will also say “checked”). Whenever we should have
a conjunction including A-IMETATEM operators with different frequencies, it is up
to the implementation to choose one: here, we assume a random choice. We also as-
sume a default frequency whenever not explicitly defined. As a first example of an
A-IMETATEM rule, we are going to comment the following:

NEVER(goal(g), deadline(g , t),
NOW (T1 ), T1 ≤ t ,
not achieved(g), dropped(g)

We assume predicatesgoal , achieved anddropped to be suitably defined in the
agent’s knowledge base. Informally:goal(g) means thatg is the goal that has to be
achieved;achieved(g) is deemed true when the plan for reaching the goalg has been
successfully completed;dropped(g) means that agent has dropped any attempt to achieve
g . The rule states that it cannot be the case that a given goal not accomplished up to
now, but not expired yet (the deadlinet for this goal has not been met) is dropped by
the agent. There are in principle different ways to exploit this rule: (i) as an “a priori”
check to be performed whenever adrop action is attempted; if the check fails, then the
action is not allowed and (ii) as an “a posteriori” check on the agent behavior; in case of
violation, some repair action should presumably been undertaken, as discussed below.

Notice that for performing this kind of evaluation we have to consider ground rules.
In the above rule in fact, the only variable is the present timeT1 , which is however
instantiated by the predefined operatorNOW . Below we generalize to the non-ground
case.

4.2 A-IMETATEM contextual rules

For the sake of generality, and in view of a changing environment, we propose a fur-
ther extension of rule syntax to include variables instantiated by anevaluation context
associated to each rule.

Definition 12. Letρ be anA-IMETATEM rule.
The correspondingcontextual A-IMETATEM ruleis a rule of the formρ :: χ where:

– χ is called theevaluation contextof the rule, and consists of a conjunction of logic
programming literals;

– every variable occurring inρ must occur in an atom (non-negated literal) of the
contextχ.

From Definition 12 it follows that the evaluation of a contextual rule becomes feasi-
ble only when grounded from the context. In order to clarify the syntax of acontextual
A-IMETATEM rule, we propose the following example:

FINALLY (N ;F ) achieved(G) ::
goal(G), priority(G ,P), timeout(P ,N ), frequency(P ,F )



In this rule, the goalG is established by the context, which also contains the atoms
priority, timeout andfrequency (that we assume to be suitably defined in the agent’s
knowledge base). Informally, the rule requires that a goal with timeoutN (set according
to the priorityP of the goal itself), should actually be accomplished before the timeout.
This contextual rule can be verified whenever instantiated to a specific goalg. In gen-
eral, the rule will be repeatedly checked until it either succeeds, ifg will have actually
been achieved in time, or it fails because the timeout will have elapsed.

4.3 A-IMETATEM rules with improvement

Whenever an instance of an A-IMETATEM rule succeeds, it either expresses a desirable
property or not. In the former case, some kind of “positive” action may be undertaken,
in the latter case, a repair action will in general be required. We call the corresponding
modification of the programimprovement. Program modification/evolution is accounted
for by the EVOLP semantics [2], [16].

In order to make the improvement possible (either immediately or later), we record
successful instances of A-IMETATEM rules. In fact, according to the semantic ap-
proach of [1] which encompasses lemma assertion, the representativeα of a successful
rule is recorded in the formαP : t where postfixP stands for “past”, andt is the time-
stamp of the record (which can be omitted if not useful, but is needed to distinguish
among different “versions” of the same record).

We now extend the definition of contextual A-IMETATEM rules to specify a corre-
spondingimprovementaction, that can be a repair or other according to the situation at
hand.

Definition 13. AnA-IMETATEM rule with a improvement is a rule of the form:
ρ :: χ÷ ψ, or αP ÷ ψ where:

– ρ :: χ is a contextualA-IMETATEM rule;
– αP is the recorded representative of a contextualA-IMETATEM rule;
– ψ is called theimprovement actionof the rule, and it consists of an atomψ.

the left-hand-side is called themonitoring conditionof the rule, its negation is called
thecheck conditionof the rule.

If the monitoring condition of anA-IMETATEMholds when the rule is checked
(or, symmetrically, the check condition is violated), then the improvement actionψ
is attempted. The improvement action is specified via an atom that is executed as an
ordinary logic programming goal.

Consider again the previous example which monitors the achievement of goals, but
extended to specify that, in case of violation, the present level of commitment of the
agent to its objectives has to be increased. This can be specified as:

N −NEVER (not achieved(G), dropped(G) ) ::
(goal(G), deadline(G ,T ),NOW (T1 ),T1 ≤ T )÷ inc comt(T1 )

incr comt(T ) ← level(commitment ,L),
increase level(L,L1 ),



assert(neg(commitment mod(L)),
assert(commitment mod(L1 ))

Suppose that at a certain timet the check condition

NEVER (not achieved(G), dropped(G))
is violated for some specific goalg, i.e, its negationN −NEVER holds. Upon detec-
tion of the violation, the system will attempt the improvement (in this case a repair)
action consisting in executing the goalinc comt(t). Its execution will allow the system
to perform the specified run-time re-arrangement of the program that attempts to cope
with the unwanted situation: in the example, the module defining the rules that specify
the level of commitment to which the agent obeys is retracted and substituted by a new
one, corresponding to a higher level.

Semantically, in our agent meta-model the execution of the repair action will deter-
mine the update of the current agent programPi, returning a new agent programPi+1.
The A-IMETATEM rules with improvements are to some extent similar to METATEM
rules, though here one does not state properties of the future but rather specifies actions
to be undertaken.

Based on this definition, we are able for instance to define rules that aim at detecting
various kinds of anomalous behavior of an agent (for a discussion of run-time anom-
alies see, e.g., [23]). For example, we can introduce a rule for checking an unexpected
behavior such asomission, which occur whenever an agent fails to perform the desired
action/goal. The rule:

ALWAYS (T1 ;now) :: goal(G),not achieved(G), dropped(G ,T3 ),
now > T3 , confidence(G ,now) > confidence(G ,T3 ) ÷ re − exec(G).

states how the agent has to behave in the case of a dropped goal. If, after dropping the
goal (because it has not been achieved in a given interval), the agent’s confidence in
being able to achieve the goal has increased, then the goal will be re-attempted.

To detect an anomalous behavior consisting ofduplication or incoherence, i.e., an
agent performs more than once the same action/goal when not necessary, we introduce
the following rule

FINALLY (start ,T ) :: NOW (T ), goal(G), times exec(G) > K ÷ disable(G)
with the role of checking if a goal/plan has been executed more times than a given
threshold: if so, further execution of the goal will be disabled.

The following example outlines the so-called anomaly ofintrusion , i.e., the case of
an unexpected behavior, or unwanted consequence, arisen from the execution of a goal.
Whenever the constraint defined below succeeds, as a repair a new constraint is asserted
establishing thatG cannot be further pursued, at least until a certain time has elapsed.
As soon as asserted, the new constraint will start being checked.

SOMETIMES (start ,T ) ::
NOW (T ), goal(G), executed(G), consequence(G ,C ),not desired(C )÷
assert(NEVER(T ,T1 )exec(G) :: NOW (T ), threshold(T1 ))

A-IMETATEM operators can be used to check the past behavior and knowledge of
the agent but also to influence its future behavior. The agent evolution in fact entails
also an evolution of recorded information, which in turn may affect the evaluation of
social factors such as trust, confidence, etc. Consider for instance the following exam-



ple, where the level of trust is increased for agents that have proved themselves reliable
in communication during a test interval. The increase of the level of trust is modeled
as an improvement. Notice that the improvement is determined based on recorded rep-
resentatives. I.e., each agent which will have passed the test will have its trust level
increased as soon as the rule with repair is executed.

Rel Ag(Ag) : ALWAYS (m,n; k) reliable(Ag)
Rel Ag(A)P ÷ increase trust level(A)

5 Concluding Remarks

We have introduced an approach to the definition and the run-time verification of prop-
erties of agent behavior that has elements of novelty: in fact, we adopt a temporal logic
with operators defined on intervals in order to define and verify the run-time behavior of
agents evolution; we are able to undertake suitable repairing actions based on the verifi-
cation of properties and, as the underlying abstract agent model includes meta-level(s),
these actions may imply modifications to the agent’s knowledge base.

At the moment, the implementation of the approach has not been completed yet.
Then, we do not make any claim on its performance and complexity. However, exper-
iments performed in DALI show that a timely verification of properties at a suitable
frequency not only does not worsen, but even improves, the agent performance (w.r.t.
the same checks be integrated in the base-level agent program). Future work includes a
full implementation of the approach, the development of suitable case-studies in signifi-
cant application realms such as, e.g., ambient intelligence, and theoretical developments
aimed at coping with challenging contexts, e.g., learning.

References

1. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Torroni, P., eds.: Declarative Agent Languages and Technologies. LNAI 3229.
Springer-Verlag, Berlin (2006)

2. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Logics in
Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002. LNAI 2424, Springer-
Verlag, Berlin (2002) 50–61

3. Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model. In:
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th Congress of the
Italian Association for Artificial Intelligence. LNCS 4733, Springer-Verlag, Berlin (2007)

4. Costantini, S., Dell’Acqua, P., Pereira, L.M.: A multi-layer framework for evolving and
learning agents. In M. T. Cox, A.R., ed.: Proceedings of Metareasoning: Thinking about
thinking workshop at AAAI 2008, Chicago, USA. (2008)

5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal23(1)
(2007) 61–91

6. Clarke, E.M., Lerda, F.: Model checking: Software and beyond. Journal of Universal Com-
puter Science13(5) (2007) 639–649



7. Barringer, H., Rydeheard, D., Gabbay, D.: A logical framework for monitoring and evolving
software components. In: TASE ’07: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, Washington, DC, USA, IEEE Computer
Society (2007) 273–282

8. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: MetateM: A framework for
programming in temporal logic. In: Proceedings of REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness. Volume 430 of Lecture Notes in
Computer Science., Springer-Verlag (1989)

9. Fisher, M.: Metatem: The story so far. In Bordini, R.H., Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E., eds.: PROMAS. Volume 3862 of Lecture Notes in Computer Science.,
Springer (2005) 3–22

10. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI
3229, Springer-Verlag, Berlin (2004)

11. Apt, K.R., Bol, R.: Logic programming and negation: A survey. The Journal of Logic
Programming19-20(1994) 9–71

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proc. of the Fifth Joint Int. Conf. and Symposium, MIT Press (1988) 1070–
1080

13. Fisher, M., Ghidini, C.: The abc of rational agent modelling. In: AAMAS ’02: Proceedings
of the first international joint conference on Autonomous agents and multiagent systems,
New York, NY, USA, ACM (2002) 849–856

14. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In Fikes, R., Sande-
wall, E., eds.: Proceedings of International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), Cambridge, Massachusetts, Morgan Kaufmann (1991)

15. Barklund, J., Dell’Acqua, P., Costantini, S., Lanzarone, G.A.: Reflection principles in com-
putational logic. J. of Logic and Computation10(6) (2000) 743–786

16. J.Alferes, J., Brogi, A., Leite, J.A., Pereira, L.M.: An evolvable rule-based e-mail agent. In:
Procs. of the 11th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’03). LNAI 2902,
Springer-Verlag, Berlin (2003) 394–408

17. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Global Computing: IST/FET International Workshop, Revised Selected
Papers. LNAI 3267. Springer-Verlag, Berlin (2005) 340–367

18. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proc. ECAI-2004. (2004)

19. Stathis, K., Toni, F.: Ambient Intelligence using KGP Agents. In Markopoulos, P., Eggen, B.,
Aarts, E.H.L., Crowley, J.L., eds.: Proceedings of the 2nd European Symposium for Ambient
Intelligence (EUSAI 2004). LNCS 3295, Springer Verlag (2004) 351–362

20. Tocchio, A.: Multi-Agent systems in computational logic. PhD thesis, Dipartimento di
Informatica, Universit̀a degli Studi di L’Aquila (2005)

21. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424,
Springer-Verlag, Berlin (2002)

22. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P., Sartor, G.: Mapping deontic
operators to abductive expectations. Computational & Matematical Organization Theory
12(2-3) (October 2006) 205–225

23. Costantini, S., Tocchio, A.: Memory-driven dynamic behavior checking in logical agents.
In: Electr. Proc. of CILC’06, Italian Conference of Computational Logic. (2006) URL:
http://cilc2006.di.uniba.it/programma.html.


