
Meta-axioms and Complex Preferences in
Evolving Logical Agents

Stefania Costantini1, Pierangelo Dell’Acqua2, Luı́s Moniz Pereira3, and
Francesca Toni3

1 Dip. di Informatica, Università di L’Aquila, Coppito 67010, L’Aquila, Italy
stefcost@di.univaq.it

2 Dept. of Science and Technology - ITN, Linköping University, Norrköping, Sweden
pierangelo.dellacqua@liu.se

3 Dept. de Informática, Centro de Inteligência Artificial (CENTRIA), Universidade Nova de
Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt
4 Dept. of Computing, Imperial College London, South-Kensington Campus, London, UK

ft@doc.ic.ac.uk

Abstract. In this paper, we introduce some improvements to a framework that
we have previously proposed, based upon a multi-layered general agent model,
where at each layer temporal-logic-like axioms and meta-axioms can be defined
and dynamically checked. Their violation determines suitable repair actions to be
undertaken by means of appropriate agent’s self-modifications. This in the per-
spective of a society of agents, where individuals should be able to learn and
enlarge their patterns of behavior by observing and generalizing their observa-
tions, and also by “imitating” other agents, or by “being told” by them. Here, we
extend the overall setting on the one hand by augmenting the temporal-logic-like
rules with an ordered conjunction for checking/enforcing an order on events and
actions, and on the other hand by introducing the possibility of defining and ex-
ploiting complex preferences based upon a (simplified) form of modal reasoning.

1 Introduction

In previous work (cf. [21,13,15,14]), we have introduced several elements that in our
view languages and architectures for logical agents might usefully encompass. We have
started from our experience in developing and implementing logic agent-oriented lan-
guages and architectures (namely KGP [5,27,32], DALI [18,19,33,10] and EVOLP [1])
from which we have tried to go ahead towards a comprehensive setting.

Among the many possible applications of “our” agents, we particularly envisage a
framework where agents interact with users and assist them in their tasks, especially in
situations where the user is “disabled” either physically or psychologically, in that the
environment is either unknown or for some reason difficult to cope with. In our view,
a system which is a realization of the envisaged framework will bring to a user the fol-
lowing potential advantages: the user is relieved of some of the responsibilities related
to her behavior, as directions about the “right thing” to do are constantly and punctu-
ally provided. She is assisted in situations where she perceives herself as inadequate, in



some respect, to perform her activities or tasks. She is possibly told how to cope with
unknown, unwanted or challenging circumstances. She interacts with a “Personal As-
sistant” that improves in time, both in its “comprehension” of the user needs, cultural
level, preferred kinds of explanations, etc. and in its ability to cope with the environ-
ment. This is in accordance with the vision of Ambient Intelligence as that of a digitally
augmented environment centered around the needs of humans, where appliances and
services proactively and un-intrusively provide support and assistance.

A flexible interaction with the user and with the other agents will be made easier
by adopting a multi-layered underlying agent model where there is a base level, that
we call PA for “Personal Assistant”, and one or more meta-layers, that we call MPA.
While the PA is responsible for the direct interaction with the user, the MPA is re-
sponsible for correct and timely PA behavior. Thus, while the PA monitors the user,
the MPA monitors the PA. We have introduced the agent model and its semantics, that
we summarize below, in [21,13,11]. The actions the PA will be able to undertake will
include, for instance, behavioral suggestions, appliance manipulation, enabling or dis-
abling user interventions. The actions the MPA will be able to undertake will include
the modification of the PA in terms of adding/removing knowledge (modules) in the
attempt at correcting inadequacies and generating a more appropriate agent behavior.
In our framework, both the PA and the MPA will widely base their activity upon veri-
fication of temporal-logic-like rules that describe expected and un-expected/unwanted
situations.

To this aim, in [11] we have defined A-ILTL (for “Agent-Interval LTL”), an ex-
tension to the well-known LTL logic which is tailored to the agent’s world in view
of run-time verification. The envisaged agents will try to either modify or reinforce
the rules/plans/patterns they hold, based on appropriate evaluation performed by the
internal MPA meta-control component. The evaluation might also convince the agent
to modify its own behavior by means of advanced evolution capabilities. In the gen-
eral view that we are pursuing, we consider to be necessary for an agent to acquire
knowledge from other agents, i.e. learning “by being told” instead of learning only by
experience. We treat at some length the topic of learning “by being told” in [12].

In this paper, we aim at improving and enlarging the language features that can
be profitably used both in the PA and MPA components. One the one hand we ex-
tend A-ILTL formulas by introducing an ordered conjunction which allows one to state
the required order for events/action to occur, and which should be the relationship be-
tween the respective time-stamps. On the other hand, we introduce in our framework
the possibility of defining and exploiting complex preferences in agent program’s rules.
The novel aspects of these preferences (for which we draw inspiration from, adapt and
extend some aspects discussed in [29]) w.r.t. existing approaches is their “modal” fash-
ion: preferring one alternative over others is based upon reasoning about what can be
hopefully achieved by adopting that alternative. The motivation of the proposed im-
provements lies in the experiments that we have performed in the realm of user mon-
itoring and training [13,14]. In fact, ordered conjunction allows a monitoring agent to
check/enforce that user’s actions are performed at the due time in the due order, also
with respect to events which may happen. Handling user preferences is a key feature of
all context-aware systems, to achieve an effective personalization. However, what a user



(or an agent) may prefer may vary according to the present context and objectives. To
achieve this kind of flexible preferences, we adapt and extend the approach to reasoning
about possibility and necessity in inner modules introduced in [9].

The paper is structured as follows. In Section 2 we outline the basic elements of our
previous work, namely: the underlying general agent model and its semantics; A-ILTL,
an interval temporal logic aimed at defining axioms and meta-axioms to be dynamically
checked. In Section 3 we introduce the new contributions. Finally, in Section 4 we con-
clude. We assume that the reader has basic notions of logic programming (cf., [30,2])
and Answer Set Programming (ASP, cf., [24,25,31]).

2 Envisaged Agent: Background

In this section, we recall the parts of our previous work that define some basic elements
which in our view each logic agent-oriented programming language might profitably
encompass. We outline a very general agent model, then we introduce temporal-logic-
like expressions to be checked at run-time, that allow for the definition of useful state-
ments and meta-statements for an agent self-checking and self-regulation.

2.1 Agent model: basic structure

In order to meet the vision outlined in Section 1, we consider an agent as composed of
two layers. A base layer PA (for “Personal Assistant”) in charge of giving immediate
answers to a user. We will assume that PA is a logic program, but will not commit
to a particular semantics for it (for a survey of semantics for logic programs, see e.g.
[2]). We will assume however a semantics possibly ascribing multiple models to PA, in
order to deal with “uncertainty” (as we will see later). One such a semantics might be
the answer set semantics [24]. A meta-layer MPA (for “Meta-Personal Assistant”) in
charge of: (i) supervising and checking the activity of PA, in order to ensure that on the
one hand PA does not violate basic conditions on its behavior and on the other hand that
PA behaves in a sufficiently good way. Later on we will discuss these aspects at some
length; (ii) updating PA when either no model exists according to the chosen semantics
for PA or a violation has been detected during the supervising activity. This meta-layer
relies on meta-knowledge, e.g. reporting long-term objectives about the user (like for
instance safety and good health) and some domain-dependent meta-knowledge related
to the PA. This domain-dependent knowledge may be updated by learning (by being
told) from other agents.

2.2 Agent model: operational behavior

Below we sketch the operational behavior of this agent model, which is further de-
scribed in [21]. Each agent, once created, will in general pass through a sequence of
stages, since it will be affected by the interaction with the environment, that will lead
it to respond, to set and pursue goals, to either record or prune items of information,
etc. This process, that we can call the agent life, can be understood in at least two ways:
(i) the same agent proceeding into a sequence of states, each state encoding the present



version of beliefs, desires, intentions and each state transition encoding a control step;
(ii) successive transformations of the initial agent into new agents, which are its de-
scendants where the program has changed by modifying the beliefs, desires, intentions,
and by learning and belief revision steps; each transformation is determined by the step
that has been done. Formally, an agent starts from a program that defines it, according
to the given agent model. In this paper we adopt the latter view, that of an evolution of
the initial agent into subsequent (related) ones. In this paper, for the sake of generality
and in order to propose a flexible framework adaptable to many real-world contexts, we
do not go any deeper into the feature of the agent model that we refer to simply asM.

Definition 1. An agent program PM is a tuple ⟨PA,MPA, C, CI⟩ of software com-
ponents where PA and MPA are logic programs, C is the control component and CI
is some related (optional) control information.

The control information CI is given as input to C together with PA and MPA. While
however PA and MPA are programs written in a logic agent-oriented language, CI
contains a set of directives that can affect in a relevant way the run-time behavior of an
agent. Typically, directives will state at least which are the priorities among different
events/actions the agent has to cope with and at which frequency they will be taken into
consideration. Therefore, by modifying the control information while not touching the
code, one can obtain a “lazy” agent rather that an “eager” one or affect the “interest”
that the agent will show with respect to different matters. We can take the agent program
as the initial state of the agent, where nothing has happened yet.

Definition 2. The initial agent A0 is an agent program P0M (or simply P0 whenM is
clear from the context), i.e., ⟨PA0,MPA0, C0, CI0⟩.

The operational behavior of the agent will result from the control component and the
control information, which rely on an underlying control mechanism that implements
the operational counterpart of the agent model.

Definition 3. The underlying control mechanism UM (or U in short), able to put in
operation the various components of an agent modelM, is a transformation function
operating in terms of a set of distinguishable steps, starting from A0 and transforming
it step by step into the agent programs A1, A2, . . . , given Ci and CIi as defined in
A0, A1, A2,. . . respectively.

Definition 4. Let P be an agent program. Then, ∀i ≥ 0, Ai→U(Ci,CIi)Ai+1.

This general agent model and operational semantics admits for example KGP [5,27,32]
and DALI [18,19,33] as instances.

Operationally, two different solutions are possible. In the first one U provides dif-
ferent parallel threads for the PA and MPA: therefore, MPA continuously monitors PA
and can possibly make interventions in case of problems. In the second one (where no
parallel threads are possible) the control is interleaved between PA and MPA where in
turn a series of steps is performed at the PA level and a sequence of steps is performed at
the MPA level. Control will shift up from the PA to the MPA by an act that is sometimes
called upward reflection either periodically, in order to perform constraint verification



at the meta-level, or upon some conditions that may occur. Control will shift down by
downward reflection from the MPA to the PA on completion of the MPA activities (a
general theory of reflection in logic programming languages has been developed in [3]).
How frequently and upon which conditions there will be a shift is control information
that can be encoded in CIi. For a working examples of this kind of behavior, one can
consider the internal events mechanism of DALI [20]. The MPA interventions on the
PA may encompass a modification of the PA by replacing some of its rules/components
by others.

Notice that the Ajs do not deterministically follow from A0, as there is the un-
foreseen interaction with the external environment. A full “evolutionary” declarative
semantics that is not specific to a language/approach but is rather designed to encom-
pass a variety of computational-logic based approaches, thus accounting for the agent
model proposed here, is described in [20]. However, we also intend to explore how to
express the semantics in terms of the Domain Theory proposed in [7,8].

2.3 Temporal logic rules and meta-rules

We assume that both PA and MPA include rules inspired by temporal logic, but adapted
to the agent context. As discussed above, MPA will check whether some constraints
on agent activity are respected. The checks that we consider here are not supposed
to be performed in advance in model-checking style. Instead, here we consider run-
time verification of properties: violations, if present, are treated by means of some kind
of repair, and by possibly modifying PA. As it is not possible to foresee in advance
all possible states that our agents can reach by interacting with both the user and the
environment, we do not adopt a temporal logic based on a branching time, i.e., based
on separately considering all paths that the agent may undertake. Rather, we intend
to check that some properties are verified anyway, no matter the chosen path. So we
adopt LTL [4,23,28], a “Linear Time Logic”, that implicitly quantifies universally upon
all possible paths. We have proposed in [11] an extension called A-ILTL, for “Agent-
Interval LTL”, which is tailored to the agent’s world in view of run-time verification.
Based on this new logic, we are able to enrich agent programs by means of A-ILTL
rules. These rules are defined upon a logic-programming-like set of formulas where all
variables are implicitly universally quantified. In this setting, the negation operator not
is interpreted (as usual) as negation-as-failure.

As for LTL, the semantics of A-ILTL operators is given in terms of an infinite se-
quence π : s0, s1, s2, . . . of states of a system, stating if and where each operator holds
in states of the sequence. States are often understood as subsequent time instants. We
introduce the possibility of accessing the current state (or “time”): the proposition τ(si)
is true if si is the current state. Let φ be a proposition. The A-ILTL operators are the
LTL operators plus the following ones. Xm, i.e. Xmφ means that formula φ should be
true at state sm. Fm stands for bounded eventually, i.e., Fmφ means that φ eventually
has to hold somewhere on the path from the current state to sm.Gm,n stands for always
in a given interval, i.e., Gm,nφ means that φ should become true at most at state sm
and then hold at least until state sn. G⟨m,n⟩ means that φ should become true just in sm
and then hold until state sn, and not in sn+1, where nothing is said for the remaining
states. N stands for “never”, i.e. Nφ means that φ should not become true in any future



state. Nm,n stands for “bounded never”, i.e. Nm,nφ means that φ should not be true in
any state between sm and sn, included.

In practice, run-time verification of A-ILTL properties may not occur at every state
(of the given interval). Rather, properties will be verified with a certain frequency, that
can even be different for different properties. Then, we have introduced a further exten-
sion that consists in defining subsequences of the sequence of all states: if Op is any
of the operators introduced in A-ILTL and k > 1, Opk is a semantic variation of Op
where the infinite sequence π : s0, s1, s2, . . . of states of the system is replaced by the
subsequence s0, sk1 , sk2 , . . . where for each kr, r ≥ 1, kr mod k = 0, i.e., kr = g× k
for some g.

The representation of A-ILTL operators within a logic agent-oriented programming
language can be, e.g., the one illustrated in Table 1, that we have adopted in DALI,
where m and n denote the time interval in which the formula must hold and k is the
frequency. When not needed from the context, we omit the arguments of the operator

A-ILTL Opk OP(m,n;k)
τ(t) NOW (t)

Xk NEXT (1 ; k)

Xj
k NEXT (j ; k)

F k FINALLY (1 ; k)

F k
m FINALLY (m; k)

Gk ALWAYS(1 ; k)

Gm,n
k ALWAYS(m,n; k)

G⟨m,n⟩
k ALWAYS 2 (m,n; k)

Nk NEVER(1 ; k)

Nm,n
k NEVER(m,n; k)

Table 1. A-ILTL operators

and simply write OP (instead of OP (m,n; k)).

Definition 5. Given a set S of literals (i.e., atoms and negated atoms), we write conj(S)
to indicate the set of all the conjunctions that can be formed by using literals in S.
Let m, n and k be natural numbers. Define the set Q as follows: (i) S ⊂ Q (ii)
if φ ∈ conj(Q), then OP (m,n; k)φ ∈ Q. An A-ILTL rule is any rule of the form
OP (m,n; k)φ in Q.

In many monitoring situations, one has to check that what normally should happen actu-
ally occur. The occurrence of an event is said to be “normal” when it occurs sufficiently
often, if not always. We define a new operator called USUALLY in terms of ALWAYS
that is checked at a certain frequency, say f , that reinforces “normality”.

Definition 6. Given a sentence φ and a natural number f , we let USUALLYφ =
ALWAYS (1 ; f )φ.

Notice that frequencies can possibly be specified separately, e.g., as control information
included in CI. For simplicity, both the interval and the frequency, indicated in the



definition as (m,n; k), can be omitted if not relevant to understand the context. That
is, one can write ALWAYSφ if φ has to be checked on all the future states. Some
examples of use of A-ILTL rules are presented in the following sections. To show the
potential of A-ILTL rules we define below a check for an agent that, once decided to
achieve the goal g, is blindly committed to actually obtain g within a given deadline
d. After the deadline, a resource-bounded agent can possibly drop the commitment (or
keep it, but only if possible). The fact goal(g) means that g is a goal that has been
selected to be executed. achieved(g) means that the plan for reaching the goal g has
been successfully completed. In contrast, dropped(g) means that the agent has given
up any attempt to achieve g. The following A-ILTL rule checks that an agent respects
the blind commitment to its goals.

NEVER
(goal(G), deadline(G,T ),NOW (T1), T1 ≤ T, not achieved(G), dropped(G) )

In order to fulfill their semantic specification, A-ILTL rules must be ground when they
are evaluated, i.e. no variables must occur in them. For instance, in the above exam-
ple the evaluation will involve ground instances obtained by suitably instantiating the
variables G, T and T1.

A-ILTL rules with time-related variables The syntax of A-ILTL rules defines time
instants as constants. We introduce a further extension where time instants can possibly
be variables which are instantiated by what we call an evaluation context.

Definition 7. Let OP(m,n; k)φ be an A-ILTL rule. The corresponding contextual A-
ILTL rule has the form OP(M ,N ;K )φ :: χ where:

– M , N and K can be either variables or constants;
– χ is called the evaluation context of the rule, and consists of a quantifier-free con-

junctions of literals;
– each of the M , N and K which is a variable must occur in an atom (non-negated

literal) in χ.

A contextual A-ILTL rule will be evaluated whenever ground. The context χ can
possibly instantiate not only the time instants, but also other variables occurring in
φ. More precisely, all its ground instances are subject to evaluation. In the example
below, the contextual A-ILTL rule states that the time-out for completion of a goal is
established according to its priority.

FINALLY (T ;F )G :: goal(G), priority(G ,P), timeout(P ,T ), frequency(P ,F )

A-ILTL rules with repairs During the monitoring process, each A-ILTL rule is at-
tempted at a certain frequency and with certain priorities (possibly customizable by
means of directives specified in CI). If the current state of affairs satisfies every A-
ILTL rule, then no action is required. Otherwise, some kind of repair action has to be
undertaken with respect to the violated A-ILTL rule. To this aim, we extend the defini-
tion of contextual A-ILTL rules to specify a corresponding repair action.



Definition 8. An A-ILTL rule with a repair is a rule the form: OP(M ,N ;K )φ :: χ÷ ψ,
where:

– OP(M ,N ;K )φ :: χ is a contextual A-ILTL rule;
– ψ is called the repair action of the rule, and it consists of an atom ψ.

Whenever the monitoring condition OP(M ,N ;K ) of an A-ILTL rule is violated,
the repair action ψ is attempted. The repair action is specified via an atom that is ex-
ecuted as an ordinary goal. Consider again the previous example which monitors the
achievement of goals, but extended to specify that, in case of violation, the present level
of commitment of the agent to its objectives has to be increased. This is specified as:

NEVER (not achieved(G), dropped(G) ) ::
(goal(G), deadline(G ,T ),NOW (T1 ),T1 ≤ T )÷ inc comt(T1 )

incr comt(T ) ← level(commitment, L), increase level(L,L1 ),
assert(inc comt at(T )),assert(neg(commitment mod(L)),
assert(commitment mod(L1 ))

Suppose that at a certain time-stamp t the monitoring condition that needs to be
tested is NEVER (not achieved(g), dropped(g) ) is violated for some goal g. Upon
detection of the violation, the system will attempt the repair action consisting in exe-
cuting the goal ?−inc comt(t). In turn, its execution will allow the system to perform
the specified run-time re-arrangement of the program that attempts to cope with the
unwanted situation. Semantically, the execution of the repair action will determine the
update of the current agent program Pi, returning a new agent program Pi+1.

3 Proposed Extensions

In this section we enrich the setting introduced in previous section. First, we further
improve A-ILTL rules. Second, and this is in our view the main contribution of this pa-
per, we introduce in A-ILTL rules the possibility of expressing and exploiting complex
preferences. We “import” some of our previous results, but we also propose a significant
extension in the direction of “modal” preferences.

3.1 A-ILTL rules with ordered conjunction

In an agent system, each event that occurs in the system can be time-stamped with the
time-instant in which the event has occurred. We assume that this time-stamp can be
made explicit in A-ILTL rules of the form specified above: each atomAi occurring in φ
can take the form Ai : ti, where ti is its time-stamp. The conjunction of atoms in φ can
be usefully considered to be an ordered conjunction, where an event can be required to
occur before another one, and the relationship between the respective time-stamp can
be explicitly stated.



Definition 9. An ordered conjunction is an expression of the form

A1 : t1 << ... << An : tn, L1, ..., Lk

where the Ai’s are atoms, the ti’s are constants and the Li’s are literals in which the
ti’s possibly occur as arguments.

Definition 10. An ordered A-ILTL rule is an A-ILTL rule where φ is an ordered con-
junction.

Below are some examples of the usefulness of the enhanced A-ILTL rules in the
realm of Ambient Intelligence, and in particular of agents that perform user monitoring
and training. The following rule expresses that a student has to enroll to a course before
attending it and finally (s)he can give the exam. Here the time-stamps are not made
explicit.

ALWAYS enroll(S ,C ) << attend(S ,C ) << exam(S ,C ,Grade),
student(S ), course(C )

As a second example, we have a rule where there are two actions, namely drink and
drive . The rule states, by means of a simple constraint involving the time-stamps of the
actions, that one cannot drive within one hour since when a drink has been taken.

NEVER (drink : T1 ) << (drive : T2 ),T1 − T2 < 60

Similarly, the rule below states that one should take a certain medicine before din-
ner, precisely between half-an-hour and an hour before.

ALWAYS (take medicine : T1) << (have dinner : T2),
T2− T1 ≥ 30, T2− T1 ≤ 60

3.2 Preferences

Preference is deeply related to an agent’s personal view of the world, and it drives the
actions that (s)he takes in it. In fact, preference has been studied in many disciplines,
especially in philosophy and social sciences, but also in psychology, economics (when
the need arises of formalizing some form of rational mental process that human beings
activate during decision making, possibly in presence of uncertain knowledge), and, last
but not least, in logic. The studies of the processes that support the construction or the
elicitation of preferences have historically deep roots.

In logic, [26] initiated a line of research that was subsequently systematized in [35]
which is usually taken to be the seminal work in preference logic. This line of research
continues nowadays: the works of [34] and [29], for instance, develop new modal pref-
erence logics that improve over [26] in several directions. Preferences handling in com-
putational logic has been extensively studied too. The reader may refer, e.g., to [22,6]
for recent overviews and discussion of many existing approaches to preferences.

Some of the authors of this paper have proposed approaches to preferences in agents
[15] or more generally in logic languages [16,17]. In particular, the approach defined
in [16] allows for the specification of various kinds of non-trivial preferences. These



preferences follow the quite intuitive principles first formalized in [35], and illustrated
at length, e.g., in [34]. The first two principles state that any preference relation is asym-
metric and transitive. For simplicity we stick to strict preferences, i.e., if in a certain
context one prefers ϕ to ψ, then in the same context one cannot also prefer ψ to ϕ. An
advancement of our approach over others is that preferences, as illustrated below, have
a local flavor. I.e., a preference holds in the context of the rule where it is defined, where
different (even contrasting) preferences can be expressed (and simultaneously hold) in
different contexts. The third principle states that preferring ϕ to ψ means that a state
of affairs where ϕ ∧ ¬ψ holds is preferred to a state of affairs where ψ ∧ ¬ϕ holds.
The fourth principle states that if I prefer ψ to (ϕ ∨ ζ) then I will prefer ψ to ϕ and
ψ to ζ. Finally, the last principle states that a change in the world might influence the
preference order between two states of affairs, but if all conditions stay constant in the
world (“ceteris paribus”), then so does the preference order.

We propose an example in order to illustrate the approach to preferences in logical
agents and languages that we have developed in previous work [15,16,17]. The logic
program below defines a recipe for a dessert. The construct icecream > zabaglione
is called a p-list (preference list) and states that with the given ingredients one might
obtain either ice-cream or zabaglione, but the former is preferred. This is, in the ter-
minology of [35], an “intrinsic preference”, i.e., a preference without a specific reason.
In preparing the dessert, one might employ either skim-milk or whole milk. The p-list
skimmilk > wholemilk ← diet states that, if on a diet, the former is preferred. Finally,
to spice the dessert, one would choose, by the p-set
{chocolate,nuts, coconut | less caloric}, the less caloric among chocolate, nuts, and
coconut. These are instead instances of “extrinsic preferences”, i.e., preferences which
come with some kind of “reason”, or “justification”. Notice that, in an agent, extrinsic
preferences may change even non-monotonically as the agent’s knowledge base evolves
in time, as the justification can be any conjunction of literals.

icecream > zabaglione← egg, sugar,(skimmilk > wholemilk ← diet),
{chocolate, nuts, coconut | less caloric}.

less caloric(X,Y ) ← calory(X,A), calory(Y,B), A < B.
calory(nuts, 2). calory(coconut, 3).

The above features can be smoothly incorporated in the present approach. In fact,
the evolutionary semantics presented in [20] can easily accommodate this kind of pref-
erence reasoning. Below we propose a further extension inspired by the work of [29]. In
particular, referring to agents, [29] introduces a concept of complex preference where
an agent prefers ϕ over ψ if, for any “plausible” (i.e., presumably reachable) world
where ψ holds, there exists a world which is at least as good as this world and at least
as plausible where ϕ is true. [29] writes B(ψ → ⟨H⟩ϕ) where H is a new modality,
and the reading is “Hopefully ϕ”. Semantically: if M is a preference model encom-
passing a set of worlds W and s, t ∈ W , ≤ is a reachability relation meaning “at least
as plausible” and 4 a preference relation, we have that:

M, s � H ϕ iff for all t with both s ≤ t and s 4 t : M, s � ϕ



In our setting, for defining and implementing the H operator we resort to the ap-
proach that we have introduced in [9]. There, we have proposed kinds of ASP (Answer
Set Programming) modules to be invoked by a logical agents. In particular, one kind
is defined so as to allow forms of reasoning to be expressed on possibility and neces-
sity analogous to those of modal logic. In this approach, the “possible worlds” that we
consider refer to an ASP program Π and are its answer sets. Therefore, given atom A,
we say that A is possible if it belongs to some answer set, and that A is necessary if it
belongs to the intersection of all the answer sets. Precisely, given answer set programΠ
with answer sets as M1, . . . ,Mk, and an atom A, the possibility expression P (wi, A)
is deemed to hold (w.r.t. Π) whenever A ∈ Mwi

, wi ∈ {1, . . . , k}. The possibility
operator P (A) is deemed to hold whenever ∃M ∈ {M1, . . . ,Mk} such that A ∈ M .
Given answer set program Π with answer sets M1, . . . ,Mk, and an atom A, the neces-
sity expression N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩ . . . ∩Mk).
Possibility and necessity can possibly be evaluated within a context, i.e., if E(Args) is
either a possibility or a necessity expression, the corresponding contextual expression
has the form E(Args) : Context where Context is a set of ground facts and rules.
E(Args) : Context is deemed to hold whenever E(Args) holds w.r.t. Π ∪ Context ,
where, with some abuse of notation, we mean that each atom in Context is added to Π
as a new fact. The answer set module T where to evaluate an operator can possibly be
explicitly specified, in the form: E(T,Args) : Context . In this approach, one is able
for instance to define meta-axioms, like, e.g., the following, which states that a propo-
sition is plausible w.r.t. theory T if, say, it is possible in at least two different worlds,
given context C:

plausible(T,Q,C)← P (T, I,Q) : C,P (T, J,Q) : C, I ̸= J.

Based on the above, we are able to define the H operator, explicitly stating which
is the aspect that makes a world in which ϕ holds preferable. In fact, by ϕ : H(G)
we mean that, assuming ϕ, we expect that G will hold in some reachable world, that in
our setting is an answer set of an ASP module that can be either implicit or explicitly
indicated. Thus,G is the “reason why” reachable worlds in which ϕ holds are preferred.
We can thus define the operator H by a simple adaptation of the possibility operator,
taking ϕ as the context.

Definition 11. Given an answer set program Π with answer sets M1,. . .,Mk, an atom
ϕ and an atom G, the expression ϕ : H(G) is deemed to hold (w.r.t. Π) whenever the
contextual possibility expression P (G) : ϕ holds.

We can also extend the operator to a form ϕ : H[N ](G) meaning that, given ϕ, we
expect the hoped-for property G to hold in exactly N different possible worlds.

Definition 12. Given an answer set program Π with answer sets M1,. . .,Mk, an atom
ϕ and an atom G, the expression ϕ : H[n](G) is deemed to hold (w.r.t. Π) whenever
there exist {v1, . . . , vn}, vi ∈ {1, . . . , k} such that P (vi, G) : ϕ holds, i ≤ n, and
for every P (wi, G) : ϕ which holds, wi ∈ {v1, . . . , vn}. By convention, we assume
ϕ : H[0](G) to signify that ϕ : H[n](G) holds for no n.



The answer set module T where to evaluate the operator H can possibly be explic-
itly specified, in the form ϕ : H(T,G) or, respectively, ϕ : H[N ](T,G). Whenever T
is not specified, we assume a unique underlying ASP module. The atom G occurring in
the above definitions can be easily generalized to a conjunction of atoms. We are now
able to introduce new preference expressions involving the operator H .

Definition 13. Given atoms A,B,C and answer set module T , the construct
A > B : H (T ,C ) is called an mp-list (modal preference list) meaning that A is pre-
ferred to B (i.e., we have the p-list A > B) if A : H(T,C) holds. Otherwise, any of A
or B can be indifferently chosen.

Intuitively, we prefer A to B whenever, by assuming A, a situation where C holds can
be possibly reached. We can extend the definition so as to compare A and B w.r.t. how
often a satisfactory state of affairs can be reached. That is, we compare A and B on the
basis of hoped-for condition C. We prefer A over B if we assess that if assuming A it
is more plausible to reach C, i.e., C holds in more worlds than it is if assuming B. We
prefer B over A otherwise.

Definition 14. Given atoms A,B,C and answer set module T , the construct
A > B : maxH (T ,C ) is called an mmp-list (modal max-preference list) meaning that
A is preferred to B (i.e., we have the p-list A > B) iff we have A : H[NA](T,C) and
B : H[NB](T,C), and NA ≥ NB . Otherwise, we get the p-list B > A.

The extension to preference lists with more than two elements is straightforward.
The “preference condition” C can be generalized to conjunctions. In an agent program,
atoms A and B can have several meanings, for instance they can encode plans, e.g., in
the form plan(p, a1, . . . , an) where p is the identifier of a plan consisting of a sequence
of actions a1, . . . , an. In this case, the operatorH can evaluate plans w.r.t. some wished-
for outcome.

We now provide some simple examples of use of the above-introduced preference
expressions. For instance, one may choose to prefer a certain food rather than another
one, in the hope that the preferred food is good for health:

eat(pasta) > eat(meat) : H(healthy)

A similar but stronger formulation can be the following, where one chooses to prefer a
food that in most of the situations that can “reasonably” envisaged will procure better
health, where in our setting these situations are interpreted as the answer sets of the
underlying ASP module:

eat(pasta) > eat(meat) : maxH (healthy)

where one chooses the food that is presumably healthier (i.e., it can be concluded to be
healthy in most cases).

It can be convenient to include more context in the H operator, by allowing for
A > B : Context : H (T ,C )

or, respectively,
A > B : Context : maxH (T ,C )



where Context is a conjunction of atoms, each of which will be added to the ASP
module as a new fact before evaluatingH . Formally, it is simple to extend the definitions
above so as to include Context in the evaluation of the H and maxH expressions. This
extension allows for instance for the following variation of the above example:

eat(fruit salad) > eat(cake) : diabetes : maxH (healthy)

Finally, it can also useful to introduce a generalized form of p-set, so as to allow
for instance for the representation below, which takes the varieties of food generated
by food(F ) and the context diabetes , and generates a p-list where the various kinds of
foods are ordered according to the degree of healthiness, interpreted as the value of N
in f , diabetes : H [N ]healthy for each food f .

{food(F ), eat(F ) : diabetes : H (healthy)}

Definition 15. A modal p-set (mp-set) is an expression of the form:

{p(X1 , . . . ,Xn), q(X1 , . . . ,Xn) : B : H (E )}

where p, q are predicates, X1, . . . , Xn are variables, B is a conjunction of atoms not
involving the Xis and involving terms Y1, . . . , Yv , v ≥ 0 and E is a conjunction of
atoms possibly involving theXis and the Yjs. This expression stands for the p-listA1 >
. . . > As where: the Ais are all the possible ground atoms of the form q(t1, . . . , tn)
where p(t1, . . . , tn) holds; for each Aj , Ak in this p-list, where Aj = q(g1, . . . , gn)
and Ak = q(h1, . . . , hn),Aj precedes (is preferred to) Ak iff the following expression
holds:

Aj > Ak : B : maxH (T ,E ))

The expressions shown above allows for the definition of a variety of useful meta-
statements. For instance the following A-ILTL rule states that the agent, having a dead-
line, always prefers to pursue the goal (adopt the intention) for which there exists a
plan such that the goal can with the highest possible confidence be reached within the
deadline.

ALWAYS adopt intention(G ,P),
{plan(G ,P), goal(G) : deadline(t) : H (reached(G ,P , t))}

4 Future Work

There are several future directions for the ideas that we have discussed. Up to now,
most of the proposed features have been simulated in DALI by means of the “Inter-
nal Events” construct. We have also implemented in DALI the ASP modules and the
related operators. However, we intend to fully implement an instance of the proposed
framework, starting from EVOLP, DALI and KGP agents (which are fully-defined and
fully-implemented approaches) that provide the main elements and can be exploited in
combination in an implementation. Then, we intend to experiment our setting on prac-
tical cases. Next, we aim at exploring a generalization of our setting to the multi-agent



case, allowing A-ILTL and preference expressions to be written that involve several
agents, or even the “society” (talking for instance of goals that the “society” should
hopefully reach). In this direction, we intend to design a meta-meta level for controlling
knowledge exchange. Particular attention should be dedicated to strategies involving
reputation and trust for the evaluation of exchanged knowledge.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In Logics in
Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002, LNAI 2424, pages 50–61.
Springer-Verlag, Berlin, 2002.

2. K. R. Apt and R. Bol. Logic programming and negation: A survey. The Journal of Logic
Programming, 19-20:9–71, 1994.

3. J. Barklund, P. Dell’Acqua, S. Costantini, and G. A. Lanzarone. Reflection principles in
computational logic. J. of Logic and Computation, 10(6):743–786, 2000.

4. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta Informat-
ica, 20:207–226, 1983.

5. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
G. Terreni, and F. Toni. The KGP model of agency: Computational model and prototype
implementation. In Global Computing: IST/FET International Workshop, Revised Selected
Papers, LNAI 3267, pages 340–367. Springer-Verlag, Berlin, 2005.

6. G. Brewka, I. Niemelä, and M. Truszczyński. Preferences and nonmonotonic reasoning. AI
Magazine, 29(4), 2008.

7. A. Costa and G. Dimuro. Towards a domain-theoretic model of developmental machines.
In Computation and Logic in the Real World, Proceedings of the Third Conference on Com-
putability in Europe, CiE 2007.

8. A. Costa and G. Dimuro. On the notion of developmental computing machine. In Anais do
XXXIV Seminario Integrado de Software e Hardware, Rio de Janeiro, 2007.

9. S. Costantini. Answer set modules for logical agents. In G. Gottlob, editor, Datalog 2.0,
LNCS. Springer, 2011. Forthcoming.

10. S. Costantini, S. D’Alessandro, D. Lanti, and A. Tocchio. Dali web site, download of the
interpreter, 2010. http://www.di.univaq.it/stefcost/Sito-Web-DALI/WEB-DALI/index.php.

11. S. Costantini, P. Dell’Acqua, and L. M. Pereira. A multi-layer framework for evolving and
learning agents. In A. R. M. T. Cox, editor, Proceedings of Metareasoning: Thinking about
thinking workshop at AAAI 2008, Chicago, USA, 2008.

12. S. Costantini, P. Dell’Acqua, and L. M. Pereira. Conditional learning of rules and plans by
knowledge exchange in logical agents. In RuleML 2011, 5th International Symposium on
Rules, in conjunction with IJCAI, 2011.

13. S. Costantini, P. Dell’Acqua, L. M. Pereira, and F. Toni. Towards a model of evolving agents
for ambient intelligence. In Proc. of the Symposium on ”Artificial Societies for Ambient
Intelligence (ASAmI’07), 2007.

14. S. Costantini, P. Dell’Acqua, L. M. Pereira, and F. Toni. Learning and evolving agents in
user monitoring and training. In Proc. of the AICA 2010 Italian Conference, 2010. held in
L’Aquila.

15. S. Costantini, P. Dell’Acqua, and A. Tocchio. Expressing preferences declaratively in logic-
based agent languages. In Proc. of Commonsense’07, the 8th International Symposium on
Logical Formalizations of Commonsense Reasoning, AAAI Spring Symposium Series, 2007.

16. S. Costantini and A. Formisano. Modeling preferences and conditional preferences on re-
source consumption and production in ASP. Journal of of Algorithms in Cognition, Infor-
matics and Logic, 64(1), 2009.



17. S. Costantini and A. Formisano. Weight constraints with preferences in ASP. In Proceedings
of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR2011), Lecture Notes in Computer Science. Springer, 2011.

18. S. Costantini and A. Tocchio. A logic programming language for multi-agent systems. In
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002, LNAI 2424.
Springer-Verlag, Berlin, 2002.

19. S. Costantini and A. Tocchio. The DALI logic programming agent-oriented language. In
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004, LNAI
3229. Springer-Verlag, Berlin, 2004.

20. S. Costantini and A. Tocchio. About declarative semantics of logic-based agent languages.
In M. Baldoni and P. Torroni, editors, Declarative Agent Languages and Technologies, LNAI
3229. Springer-Verlag, Berlin, 2006.

21. S. Costantini, A. Tocchio, F. Toni, and P. Tsintza. A multi-layered general agent model. In
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th Congress of the
Italian Association for Artificial Intelligence, LNCS 4733. Springer-Verlag, Berlin, 2007.

22. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey of preference
handling approaches in nonmonotonic reasoning. Computational Intelligence, 20(12):308–
334, 2004.

23. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, vol. B. MIT Press, 1990.

24. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International Conference and
Symposium on Logic Programming (ICLP/SLP’88), pages 1070–1080. The MIT Press, 1988.

25. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

26. S. Hallden. On the logic of better. Library of Theoria, No. 2, Lund: Library of Theoria.
Cambridge University Press, 1957.

27. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In
Proc. ECAI-2004, 2004.

28. O. Lichtenstein, A. Pnueli, and L. Zuch. The glory of the past. In Proc. Conf. on Logics of
Programs, LNCS 193. Springer Verlag, 1985.

29. F. Liu. Von wrights the logic of preference revisited. Synthese, 175(1):69–88, 2009.
30. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
31. V. W. Marek and M. Truszczyński. Stable logic programming - An alternative logic program-

ming paradigm. In 25 years of Logic Programming Paradigm, pages 375–398. Springer,
1999.

32. K. Stathis and F. Toni. Ambient Intelligence using KGP Agents. In P. Markopoulos,
B. Eggen, E. H. L. Aarts, and J. L. Crowley, editors, Proceedings of the 2nd European Sympo-
sium for Ambient Intelligence (EUSAI 2004), LNCS 3295, pages 351–362. Springer Verlag,
2004.

33. A. Tocchio. Multi-Agent systems in computational logic. PhD thesis, Dipartimento di Infor-
matica, Università degli Studi di L’Aquila, 2005.

34. J. van Benthem, P. Girard, and O. Roy. Everything else being equal: A modal logic for ceteris
paribus preferences. J. Philos. Logic, 38:83–125, 2009.

35. G. H. von Wright. The logic of preference. Edinburgh University Press, 1963.


