A PROLOG IMPLEMENTATION OF
A LARGE SYSTEM ON A SMALL MACHINE

por

Luis Moniz Pereira & Antonio Porto

UNL - 6/82 Marco &2

A Prolog implementation of
a large system on a small machine

Luis Moniz Pereira & Anténio Porto

Departanmento de Informética
Universidade Nova de Lisboa
Quinta da Torre
2825 Monte da Caparica
Portugal

Abstract

This paper describes @ patural-lancuagze question-answering system for aiding in the planning

of rescarch investment which was completely written in Prolog (database included) and runs oo a
microcomputer.

We emphasize the techniques emploved to get such a system Lo run ou a swall machine.

2 2. The natural language interpreter

Introduction

The system we describe here is a natural language (Portuguese) question-answering system for
aiding in the planning of research investment in Portugal. It knows about interactions between scicntific
disciplines and development goals, interactions among sciences themselves and interactions among goals.
The data was gathered en several nationwide meetings, following a procedure recommended by UNESCO

1
[1}15].

This system was iinplemented using a slightly modified version of Edinburgh's RT-11 Prolog
(sce [2]) on a small machine with a LSI-11/03 processor, 64K byles of central memory and dual single-
density Hoppy disks. This hardwzre restriction strongly influenced the design considerations, but a
working system was nevertheless built which is rcasonably performant.

The system is madc up of two main modules: the natural language interpreter and the
query evaluator.

The natural language interpreter divides itsell in two sub-modules: a lexical parser and a
joint syntactic/semantic parser. The lexical parser accepts input from a terminal and produces a
list of morphalogical tokens. which are used by the syntactic/semantic sub-module to produce a Prolog
goul expression which corresponds to the semantics of the natural language query.

The query evaluator includes the procedures nceded to compute the Prolog goal expression
coming out of the natural linguage processor. Any subgoal involving disk access is executed in two
steps: first there is a planning stage whereby a new subgoul is produced, and then this new subgoal is
exccuted —- it wili only access the relevant files, and timing of its operations has been optimized.

§1 The domain

The system deals with sciences and development goals.

Sciences are divided into main branches (eg. applied sciences), each one of these into groups
(eg. physics) and each group into individual disciplines (eg. optics).

Development goals are divided into groups {(eg. agriculture), which in turn are divided into
individual goals (eg. cercals).

There are 110 scicntific disciplines and 78 individual development goals.

The system is supposed to know about threc types of correlations: between sciences and goals,
Y PI YT
betwecn scicnces and other sciences, and between gozls and other goals.! Any hierarchical category may
24 g
be referred, cg. the import of physics on agriculture, or the import of optics on development. Imports
) C8 P 13})
are cxpressed as percentage values.

§2 The natural language interpreter

The system’s linguistic competence is obtained by means of a lexical and syntactic/semantic
analysis, bransforming a natural language scntence into a Prolog goal expression.

The modules which perforn this task were adapled from a gencral grammar of Portuguese
initinlly developed for another application. We shall nol go here into.too much detail; for that the
reader is refered to {3].

1

«—

YCorrelations are normzily cxpressed 25 dependency of A on B or import of J8 on A {which represent the same thing).

2.2 Syntactic/semantic analysis s

2.1 Lexical analysis

Our lexical analysis replaces words in the input sentence by their corresponding lexical catego-
ries (noun, verb, preposition, ...) with syntactic and scmantic readings. This is doue by making each
word access a dictionary. If a word is not in the dictionary it is reported to the user as unknown.

Since RT-11 Prolog only gives us indexing on the predicate names, the dictionary consists of a
sct of single clauses for predicates whose names are the actual words we want to access the dictionary.

To cach accepted word, then, is associated a dictionary clause containing all the information
we will need concerning that word — lexical category, deep and surface morphology, gender, number,
etc.

In general to cach word corresponds a lexical entity, but sometimes several words are grouped
to form a single entity, like applied sciences which will constitute a single noun. Then, besidcs having
the mentioned one-word clauses we have other clauses for a single predicate which will check if a given
word is [ollowed by others that together will form a multi-word name. We could have transformed the
one-word clauses to do this checking, but two extra arguments are needed — the list containing the rest
of the input string and the returned sublist -—— which used in all dictionary clauses would take too much
space given the size of the dictionary. (The whole dictionary must be accessible in memory for usc.)

The system’s vocabulary may be divided in two parts: a core vocabulary and a specific one.

The core vocabulary is independent of the system’s particular domain, and divides into linguis-
tic and metalinguistic parts. The linguistic part contains determiners, prepositions, their contractions,
common verbs, relative and interrogative pronouns, phrase and sentence conncctors and prelocutory ex-
pressions. The metalinguistic vocabulary contains words used to inquire the system about its linguistic
capabilities.

The specific vocabulary contains all the names of the scientific disciplines and development
goals, as well as nouus, verbs and adjectives used to express their relationships.

2.2 Syntactic/scmantic analysis

The syntactic/semantic analysis is realized by means of a core grammar containing context-
free and scnsitive rules (through the definite clause grammar formalism) with syotactic and semantiz
controls. These rules handle the fundamental structures of Portuguese, in particular:

— yes-no questions;
- wh- questions;
~ commands;
- alRirmative, negative, relative, prepositional, coordinate, extraposed and elliptic clauses;
- complex noun complementation and adjunction;
- universal, existencial, numeral, definite and indefiniie determiners;
- common verbs;
~ mnouns and verbs refering to the linguistic terminology.
(allowing to ask questions about the system’s linguistic competence.)

We have devoted a large energy to incorporate elliptic and extraposed structures because
they are essential to a natural language interaction.

This core grammar is independent of its application and transportable to any domain, where
it.1s completed by a specific grammar containing structures (noun and verb phrases essencially) and
semarntic controls refering to the particular domain.

Syntactic controls verify number and gender agrecinents, pointing out any faults to the user.

4 3. The database

The syntactic and semantic analysis are not separated but blended. This solution is best to
stop the parsing short as soon as a semantic error is detected, as is the case, for example, when a wrong
compleruent for a verb is encountered; in that case, the system always informs the user what the trouble
is. It also provides for a morc compact grammar, which is important in this implementation

§3 The database

The system database has two distinctive parts. Onc contains information on the hicrarchical
divisions of sciences and development goals, and the other one contains the information on correlations.

3.1 Hierarchical description

Each hierarchical definition is a clause of the form
<code>(<number>, [<pnamel>, <name2>,...1).

<code> is the internal code of some science or development group, <number>> is the number
of clements in that group, and <namel>, <name2>, ... arc their names.

<code> is used as a predicale name instead of as an argument of a general predicate for
cfficiency reasons, alrcady explained in the Jexical analysis discussion.

The choice of internal codes was the following: s is the code for sciences, s2 is the code for
the 2°¢ main branch of scicnces (applied scicnces), and 821 is the code for the 15¢ group within applied
sciences (physics); d is the code for development and d1 is the code for the 15t group of development
goals (agriculture).

A hicrarchical description clause as the one above serves two purposes: it can be used to get,
through <number>, the codes of the elemcents of the group, or it can be used in the output phase to
get names [rom codes.

The file containing the hierarchical description is consulted into central memory just prior to
the query evaluation, and remains there until an answer has been produced.

3.2 Correlations

Handling of information about correlations was crilical in terms of system feasability and
performance, involving both space and time considerations.

The basic information available consisted of three arrays SD, SS and DD, containing respec-
tively the imports of Scientific disciplines on individual Development goals, the imports of Scientific
disciplines on other Scientific disciplines and the imports of individuzl Development goals on other
individual Development goals. Each import value was given as an integer from the set {0,1,2,4}.

Given the size of those arrays (110X 78, 110X 110 and 78X 78) and each of its clements having
to be represented as a clause, there was no question of having at any one time all that information
available in central memory. It was therefore necessary to split up the arrays into sub-arrays that could
be individually consulted; the natural choice was to split them along the boundaries between groups of
elements, and so it is that we bave, for example, a file containing the imports of the disciplines of physics
on the individual goals of agriculture. "

In order to consult suck a file when necded, its name should be related to the names of the two
groups whosc elements’ correlations the file conlains. In fact, we chose to use the name obtained by just
appending the codes of those two groups — s21d1 is the name of the physics/agriculture file.

3.2 Corrclations 5

What exactly does such a file contain?
First there is a clause defining the dimensions of the sub-array: -
dim(s214d1,7,9) .

Then there is a clause relating a gencral correlation predicate cor to a particular correlation
predicate used only in the file (having the same name as the file):

\ cor(s21d1,X,Y,N/4) :- s21d1(X,Y,N).

When this clause is actually used X is bound to an integer representing one elemecen: of 821, and
Y is likewise bound to an integer representing one element of d1. Notice that the obtained corrclation
value is in the form N/4, where N will be an integer in the sct {0,1,2,4}; in fact all correlation values will
be represented internally by a termy N/D, although D may not always be 4, and only on output will such
a term be converted to a percentage.

Next in the file comc s21d1 clauses for particular non-zero correlation values, like
£€21d1(4,7,2) - 1.

The cut is nceded because of the last clause of the file, which is
821d1(.,_,0) :- !,

Here the cut is not necessary, but provides a uniform pattern for retracting 821d1 clauses.

This arrangement allows a considerable saving of disk space, since the most common correlation
value in the arrays is zero. The main advantage of linking cor to s21d1, instead of just using cor, is
that clauses for cor have four arguments instead of three, and so we are further gaining space both on
disk and in central memory when the filc is consulted.

This technique of splitting the arrays solves the spacc problem for correlations, but not the
time problem. To see why, let us have a look at how correlations are computed.

The correlation between two basic elements (eg. optics and cereals) is found by a simple lookup
of a clause after consulting the appropriate file.

To find the corrclation between a basic element and a group (eg. optics and agriculture) one
must consult the corresponding file, get the correlations between the basic element and each element of
the group, and then compute their mean value. This involves a call to the predicate all, which computes
all solutions satisfying some goal [4].

Now to find the correlation between two groups (eg. physics and sciences), baving consulted the
relevant file one would have to find, for each element of one group, the correlation between that elecment
and the other group, and then work out the final value. This involves calling all within all, which
already takes some time. Worse is to find the correlation between a basic element and 2 super-group
(eg. cereals and applied sciences), because inside the outer all we bave, belore the inner all, to consult
a different file cach time. Still worse cases are easily imagined.

The way out is to do some pre-processing of correlations once and for all, and keep those results
in some files which the system knows how to sccess.

Having every single correlation pre-computed was zbsolutely out of the question, so one had
to decide which correlations to pre-compuic. Fortunately the regular hierarchical nature of the domain
lends itself to neat and efficient solution.

Let us say that an element’s level is 0if it is a basic element, 1 if a group of basic elements, etc.
Then the solution is to have a file for cvery two groups whose level difference is even. This guarantees
that for any simple correlation computation only one filc will be consulted and no more than one call to
all will be exccuted. {Of course complex questions may involve several simple correlation computations.)

6 5. System performance

The initial files already agree with this definition, and so no file has to receive special treatment
from the system. We just have to gencrate the remaining files from the initial files. Two special “groups”
have hawever to be considered, one having sciences as its unique element and the other one having
development as its unique element. We named them respectively x and y. As an example, the file 8y
contains the correlations between the main branches of sciences and the development.

§4 Query evaluation

The goal expression which comes out of the natural Janguage procesor eventually contains calls
to evaluatle correlations. All such calls are of the form ’

correlation(X,Y,V)

where X and Y define what are the elements whose correlation is wanted and V expects its value (in the
form N/D).

As we said belore, the evaluation of correlation proceeds first through a planning stage
before actually consulting the relevant files and getting the correlation value (using cor).

The general philosophy herc is to compute first everything which is deterministic, except calls
which must wait for instantiations in its paramecters (eg. arithmetic calls), and then proceed to the
evaluation of postponed goals, having set the optimal order of execution among them.

Three main tasks are carried out in the planning stage:

Getting the names of files to be consulted — this is roughly done by looking at the names
of the elements whose correlation one wants to compute: they allow us to compute the corresponding
levels, the level difference shows what type of file is needed, and, accordingly, the names one has to
append to get the file name are either the names of the clements or those of their groups, which are
easily computed from theirs.

»

Getting goals to generate the elements of a group — if the predicate all is going to be used
there will be the need for this; from the hierarchical description clause for the group, or from the dim
clause of a file involving the group, one can access the number N of elements in the group, this being
the only information needed to construt a goal generating integers from 1 to N, which will represent the
elements of the group within cor.

| 4

Setting the right order of execution among goals — of the goals to be postponed the system
knows which ones produce instantiations to be tised by others, so it can preview the future optimal
execution and set up the goal expression for doing so.

These three tasks are done concurrently. Far from using a general query planner we just wrote
clauses for correlation which perforin the planning in a highly optimized way for the tasks at hand.

§5 System performance

To get the system to run with the small amount of central memory available one had to resort
to the techuique of chaining various modules (which arc thus separate programs), using a disk file
to pass information from module to module. This was casily achieved by making RT-11's procedure
for chaining programs available inside Prolog.— the goal chain(<savlile>, <consultfile>) launches
<Tsavlile> which is a Prolog pregram that initially consults <consultfile>.

-

Three modules aee chuined: e lexieal parser 6[)*1';:\:3(' of the size of the dictionary), the
sy nlactic/gemantic parser and the qQuery evaluntor, which chains again Lo the lexical parsee for
the next gquery.,

The main consequence is that a great part of the time required for the system Lo answer a
query is lostin the chaining process of loading the next module from disk.

A typical 100 character query Lakes about 16 sceonds Lo be answered, thus distributed:

Lexicalamalysis . 0 0 0 0 0 0 0y
Chadning e .4
Syntactic/semantic aualysis . .2

Cliaining e
Query evaluation (1 file consulted) .

_— e

The system will ultimately be instalied on a PDP-11/23, where extended memory, faster
processor and better disk access will certainly boost the current performance. In parlicular, chained
wodules will be permancntly in mcmory, making chaining virtually instantanecous.

Acknowledgements

This work was donc under contract with the Junta Nacional de Investigagao Cientifica e Tecnoldgica
(INICT).

We thank John McCarthy for providing the occasiou and facilities to prepare this manuscript
at Stanford University.

References

[

(1] Caraga, JM.G. ; Pinheiro, J.D.R.S. — Prioridades em ciéncia ¢ tecuologia —— Ideutificagio de

dreas prioritdrias para 1&€D ;
Junta Nacioual de Investigacio Cicntilica e Tecnolégica 1981

[2] Clocksin, W. F. ; Mellish, C. §. — Programming in I"ro!og
Springer-Verlag 1981

13 Percira, L.M. ; Oliveira, E. ; Sabatier, . P. — An expert systemn for environmental resource
evaluation through natural languase B

submitted to First Talernational Confercnce on Logic Programming, Marseille, 1982
[4] Pereira, L. M. Porto, A. —— All Solutions
Logie Urogruainiag Newsletter, n. 2, Autumn 1981

{o! UNERCO - Mdthode de détermination des priorités dans le downaine de la scienice et de la
tecliologic

Fludes el documents dee politique scientifique n. 40, UNESCO 1977

