
Stable versus Layered Logic Program Semantics

Luís Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. For practical applications, the use of top-down query-driven proof-
procedures is convenient for an efficient use and computation of answers using
Logic Programs as knowledge bases. Additionally, abductive reasoning on de-
mand is intrinsically a top-down search method. A 2-valued semantics for Nor-
mal Logic Programs (NLPs) allowing for top-down query-solving is thus highly
desirable, but the Stable Models semantics (SM) does not allow it, for lack of the
relevance property. To overcome this limitation we introduced in [24], and review
here, a new 2-valued semantics for NLPs — the Layer Supported Models seman-
tics — which conservatively extends the SM semantics, enjoys relevance and
cumulativity, guarantees model existence, and respects the Well-Founded Model.
In this paper we also exhibit a transformation, TR, from one propositional NLP
into another, whose Layer Supported Models are precisely the Stable Models of
the transform, which can then be computed by extant Stable Model implemen-
tations, providing a tool for the immediate generalized use of the new semantics
and its applications.
In the context of abduction in Logic Programs, when finding an abductive solu-
tion for a query, one may want to check too whether some other literals become
true (or false) as a consequence, strictly within the abductive solution found, that
is without performing additional abductions, and without having to produce a
complete model to do so. That is, such consequence literals may consume, but
not produce, the abduced literals of the solution. To accomplish this mechanism,
we present the concept of Inspection Point in Abductive Logic Programs, and
show, by means of examples, how one can employ it to investigate side-effects of
interest (the inspection points) in order to help choose among abductive solutions.
Keywords: Stable Models, Layer Supported Models, Relevance, Layering, Ab-
duction, Side-effects, Program Transformation.

1 Introduction and Motivation
The semantics of Stable Models (SM) [14] is a cornerstone for the definition of some of
the most important results in logic programming of the past two decades, providing an
increase in logic programming declarativity and a new paradigm for program evalua-
tion. When we need to know the 2-valued truth value of all the literals in a logic program
for the problem we are modeling and solving, the only solution is to produce complete
models. Depending on the intended semantics, in such cases, tools like SModels [19] or
DLV [7] may be adequate because they can indeed compute whole models according to
the SM semantics. However, the lack of some important properties of language seman-
tics, like relevance, cumulativity and guarantee of model existence (enjoyed by, say,
Well-Founded Semantics [13] (WFS)), somewhat reduces its applicability in practice,

namely regarding abduction, creating difficulties in required pre- and post-processing.
But WFS in turn does not produce 2-valued models, though these are often desired, nor
guarantees 2-valued model existence.

SM semantics does not allow for top-down query-solving precisely because it does
not enjoy the relevance property — and moreover, does not guarantee the existence
of a model. Furthermore, frequently there is no need to compute whole models, like
its implementations do, but just the partial models that sustain the answer to a query.
Relevance would ensure these could be extended to whole models.

Furthermore, with SM semantics, in an abductive reasoning situation, computing
the whole model entails pronouncement about every abducible whether or not it is rel-
evant to the problem at hand, and subsequently filtering the irrelevant ones. When we
just want to find an existential answer to a query, we either compute a whole model
and check if it entails the query (the way SM semantics does), or, if the underlying
semantics we use enjoys the relevance property — which SM semantics do not — we
can simply use a top-down proof-procedure (à la Prolog), and abduce by need. In this
second case, the user does not pay the price of computing a whole model, nor the price
of abducing all possible abducibles or their negations, and then filtering irrelevant ones,
because the only abducibles considered will be those needed to answer the query.

To overcome these limitations we developed in [24] (reviewed here) a new 2-valued
semantics for NLPs — the Layer Supported Models (LSM) — which conservatively
extends the SMs, enjoys relevance and cumulativity, guarantees model existence, and
respects the Well-Founded Model (WFM) [13]. We say a semantics is a conservative
extension of another one if it gives the same semantics to programs as the latter, when-
ever the latter is defined, and also provides semantics to programs for which the latter
does not.

The LSM semantics builds upon the foundational step of the Layered Models se-
mantics presented in [27] by imposing a layered support requirement resulting in WFM
consonance. In [27], neither layered support nor WFM respect are required. Intuitively,
a program is conceptually partitioned into “layers” which are subsets of its rules, pos-
sibly involved in mutual loops. An atom is considered true if there is some rule for it
at some layer, where all the literals in its body which are supported by rules of lower
layers are also true. Otherwise that conclusion is false. That is, a rule in a layer must, to
be usable, have the support of rules in the layers below.

Although Stable Models is a great semantics with a simple definition, it nevertheless
fails to provide semantics for all normal programs. LSM coincides with Stable Models
whenever the latter is defined (no odd loops ou infinite chains), — [12] — and thus
can afford the same simple definition in that class of programs. The definition for the
class of all programs necessarily requires a more complex definition, essentially resting
on a required generalization of stratification — the layering — and then simply using
minimal models on successive layers.

The core reason SM semantics fails to guarantee model existence for every NLP is
that the stability condition it imposes on models is impossible to be complied with by
Odd Loops Over Negation (OLONs). An OLON is a loop with an odd number of default
negations in its circular call dependency path. In fact, the SM semantics community uses

that inability as a means to impose Integrity Constraints (ICs), such as a ← not a,X ,
where the OLON over a prevents X from being true in any model.

The LSM semantics provides a semantics to all NLPs. In the a← not a,X example
above, wheneverX is true, the only LSM is {a,X}. For LSM semantics OLONs are not
ICs. ICs are implemented with rules for reserved atom falsum, of the form falsum←
X , where X is the body of the IC we wish to prevent being true. This does not prevent
falsum from being in some models. From a theoretical standpoint this means that the
LSM semantics does not include an IC compliance enforcement mechanism. ICs must
be dealt with in two possible ways: either by 1) a syntactic post-processing step, as a
“test phase” after the model generation “generate phase”; or by 2) embedding the IC
compliance in a query-driven (partial) model computation, where such method can be a
top-down query-solving one a la Prolog, since the LSM semantics enjoys relevance. In
this second case, the user must conjoin query goals with not falsum. If inconsistency
examination is desired, like in the 1) case above, models including falsum can be
discarded a posteriori. This is how LSM semantics separates OLON semantics from IC
compliance.

After notation and background definitions, we summarize the formal definition of
LSM semantics and its properties. Thereafter, in a section that may be skipped without
loss of continuity, we present a program transformation, TR, from one propositional
(or ground) NLP into another, whose Layer Supported Models are precisely the Stable
Models of the transform, which can be computed by extant Stable Model implementa-
tions, which also require grounding of programs. TR’s space and time complexities are
then examined. TR can be used to answer queries but is also of theoretical interest, for
it may be used to prove properties of programs, say. Moreover, TR can be employed in
combination with the top-down query procedure of XSB-Prolog, and be applied just to
the residual program corresponding to a query (in compliance with the relevance prop-
erty of Layer Supported Models). The XSB-XASP interface then allows the program
transform to be sent for Smodels for 2-valued evaluation. Thus, for existential query an-
swering there is no need to compute total models, but just the partial models that sustain
the answer to the query, or one might simply know a model exists without producing it;
relevance ensures these can be extended to total models.

In its specific implementation section we indicate how TR can be employed, in
combination with the top-down query procedure of XSB-Prolog, it being sufficient to
apply it solely to the residual program corresponding to a query (in compliance with
the relevance property of Layer Supported Model). The XSB-XASP interface allows
the program transform to be sent for Smodels for 2-valued evaluation. Implementation
details and attending algorithms can be found in [25].

Next, issues of reasoning with logic programs are addressed in section 7 where,
in particular, we look at abductive reasoning and the nature of backward and forward
chaining in their relationship to the issues of query answering and of side-effects exam-
ination within an abductive framework. In section 8 we then introduce inspection points
to address such issues, illustrate their need and use with examples, and provide for them
a declarative semantics. The touchstone of enabling inspection points can be construed
as meta-abduction, by (meta-)abducing an “abduction" to check (i.e. to passively verify)
that a certain concrete abduction is indeed adopted in a purported abductive solution. In

section 8.2 we surmise their implementation, the latter’s workings being fully given and
exemplified in [23]. We have implemented inspection points on top of already existing
3- and 2-valued abduction solving systems — ABDUAL and XSB-XASP — in a way
that can be adopted by other systems too.

Our semantics can easily be extended to deal with Disjunctive Logic Programs (Dis-
jLPs) and Extended Logic Programs (ELPs, including explicit negation), by means of
the shifting rule and other well-known program transformations [1, 10, 15], thus provid-
ing a practical, comprehensive and advantageous alternative to SMs-based Answer-Set
Programming. Conclusions and future work close the paper.

2 Background Notation and Definitions
Definition 1. Logic Rule. A Logic Rule r has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm where H , the Bi and the Cj are atoms.

We callH the head of the rule — also denoted by head(r). And body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r. Throughout this
paper we will use ‘not ’ to denote default negation. When the body of the rule is empty,
we say the head of rule is a fact and we write the rule just as H . A Logic Program (LP
for short) P is a (possibly infinite) set of ground Logic Rules of the form in Definition 1.
In this paper we focus mainly on NLPs, those whose heads of rules are positive literals,
i.e., simple atoms; and there is default negation just in the bodies of the rules. Hence,
when we write simply “program” or “logic program” we mean an NLP.

3 Layering of Logic Programs
The well-known notion of stratification of LPs has been studied and used for decades
now. But the common notion of stratification does not cover all LPs, i.e., there are some
LPs which are non-stratified. The usual syntactic notions of dependency are mainly fo-
cused on atoms. They are based on a dependency graph induced by the rules of the
program. Useful these notions might be, for our purposes they are insufficient as they
leave out important structural information about the call-graph of P . To cover that in-
formation we also define below the notion of a rule’s dependency. Indeed, layering puts
rules in layers, not atoms. An atom B directly depends on atom A in P iff there is at
least one rule with head B and with A or not A in the body. An atom’s dependency is
just the transitive closure of the atom’s direct dependency. A rule directly depends on
atom B iff any of B or not B is in its body. A rule’s dependency is just the transitive
closure of the rule’s direct dependency. The Relevant part of P for some atom A, rep-
resented by RelP (A), is the subset of rules of P with head A plus the set of rules of P
whose heads the atom A depends on, cf. [9]. Likewise for the relevant part for an atom
A notion [9], we define and present the notion of relevant part for a rule r. The Relevant
part of P for rule r, represented by RelP (r), is the set containing the rule r itself plus
the set of rules relevant for each atom r depends on.

Definition 2. Parts of the body of a rule. Let r = H ← B1, . . . , Bn, not C1, . . . , not Cm
be a rule of P . Then, rl = {Bi : Bi depends on H} ∪ {not Cj : Cj depends on H}.
Also, rB = {Bi : Bi ∈ (body(r) \ rl)}, and rC = {Cj : not Cj ∈ (body(r) \ rl)}.

Definition 3. HighLayer function. The HighLayer function is defined over a set of
literals: its result is the highest layer number of all the rules for all the literals in the
set, or zero if the set is empty.

Definition 4. LowLayer function. The LowLayer function is defined over a set of
literals: its result is the lowest layer number of all those rules in a loop for all the
literals in the set, or zero if the set is empty.

Definition 5. Layering of a Logic Program P . Given a logic program P a layering
function L/1 is just any function defined over the rules of P ′, where P ′ is obtained from
P by adding a rule of the form H ← falsum for every atom H with no rules in P ,
assigning each rule r ∈ P ′ a positive integer, such that:

– L(r) = 0 if falsum ∈ body(r), otherwise
– L(r) ≥ max(LowLayer(rl), HighLayer(rB), (HighLayer(rC) + 1))

A layering of program P is a partition P 1, . . . , Pn of P such that P i contains all rules
r having L(r) = i, i.e., those which depend only on the rules in the same layer or layers
below it.
This notion of layering does not correspond to any level-mapping [16], since the later is
defined over atoms, and the former is defined over rules. Also, due to the definition of
dependency, layering does not coincide with stratification [3], nor does it coincide with
the layer definition of [28]. However, when the program at hand is stratified (according
to [3]) it can easily be seen that its respective layering coincides with its stratification.
In this sense, layering, which is always defined, is a generalization of the stratification.

Amongst the several possible layerings of a program P we can always find the least
one, i.e., the layering with least number of layers and where the integers of the layers
are smallest. In the remainder of the paper when referring to the program’s layering we
mean such least layering (easily seen to be unique).

Example 1. Layering example. Consider the following program P , depicted along
with the layer numbers for its least layering:

c← not d, not y, not a Layer 3
d← not c
y ← not x b← not x Layer 2
x← not x b← not b e← e f Layer 1
a← falsum Layer 0

Atom a has no rules, so we now create its unique rule a← falsum and place it in
Layer 0. Atom f has a fact rule rf1 : its body is empty, and therefore allLowLayer(rlf1),
HighLayer(rBf1), andHighLayer(rCf1) are 0 (zero). Hence, L(rf1) = max(0, 0, (0+
1)) = max(0, 0, 1) = 1, where rf1 is the fact rule for f , placed in Layer 1. The
unique rule for x, rx is also placed in Layer 1 in the least layering of P because
LowLayer(rlx) = L(rx), HighLayer(rBx) = 0, and HighLayer(rCx) = 0. So,
L(rx) = max(L(rx), 0, (0 + 1)) = max(L(rx), 0, 1) = 1, in the least layering.
Consider rule rb1 = b ← not b. rlb1 = {not b}, rBb1 = ∅, and rCb1 = ∅; so rb1
is placed in the max(LowLayer({not b}), 0, 1) which is LowLayer({not b}) = 1.

There is another rule rb2 = b ← not x for b, but that one is placed in a higher layer.
This example shows the rule rb1 does not need to be in the same layer, or above that
of, the other rules for b, such as rb2 . Since rlb2 = ∅, rBb2 = ∅, and rCb2 = {not x},
L(rb2) = max(0, 0, 1 + L(rx)) = 1 + L(rx) = 1 + 1 = 2. y’s rule layer must be
exactly the same as rb2 . The unique rule re = e ← e for e has rle = {e}, rBe = ∅,
and rCe = ∅; so L(re) = max(LowLayer({e}), 0, 1) = 1. The unique rule for c,
rc is placed in Layer 3 because HighLayer(rCc) = 2, HighLayer(rBc) = 0, and
LowLayer(rlc) = LowLayer(rld) = 3. By the same token, rd is placed in the same
Layer 3. This program has two LSMs: {b, c, f, x}, and {b, d, f, x}.
If we were to add to P the rule x ← y, it would go into Layer 2 and the LSMs would
be the same because x← not x stays in Layer 1.

The complexity of computing the Layering of a given ground NLP is conjectured
to be in the same order as that of the Tarjan’s Strongly Connected Components detec-
tion Algorithm, which is known to be linear in the number of nodes and edges on the
dependency graph: O(|N |+ |E|).

4 Layer Supported Models Semantics
The Layer Supported Models semantics we now present is the result of the two new
notions we introduced: the layering, formally introduced in section 3, which is a gen-
eralization of stratification; and the layered support, as a generalization of classical
support. These two notions are the means to provide the desired 2-valued semantics
which respects the WFM, as we will see below.

An interpretation M of P is classically supported iff every atom a of M is classi-
cally supported in M , i.e., all the literals in the body of some rule for a are true under
M in order for a to be supported under M .

Definition 6. Layer Supported interpretation. An interpretation M of P is layer sup-
ported iff every atom a of M is layer supported in M , and this holds iff a has a rule r
where all literals in (body(r) \ rl) are true in M . Otherwise, it follows that a is false.

Theorem 1. Classical Support implies Layered Support. Given an NLP P , an inter-
pretation M , and an atom a such that a ∈M , if a is classically supported in M then a
is also layer supported in M .

Proof. Trivial from the definitions of classical support and layered support. ut

In programs without odd loops layered supported models are classically supported too.

Example 2. Layered Unsupported Loop. Consider program P :
c← not a a← c, not b b

The only rule for b is in the first layer of P . Since it is a fact it is always true in
the WFM. Knowing this, the body of the rule for a is false because unsupported (both
classically and layered). Since it is the only rule for a, its truth value is false in the WFM,
and, consequently, c is true in the WFM. This is the intuitively desirable semantics for
P , which corresponds to its LSM semantics. LM and the LSM semantics differences
reside both in their layering notion and the layered support requisite of Def. 6. In this
example, if we used LM semantics, which does not exact layered support, there would

be two models: LM1 = {b, a} and LM2 = {b, c}. {b} is the only minimal model for
the first layer and there are two minimal model extensions for the second layer, as a is
not necessarily false in the LM semantics because Def. 6 is not adopted. Lack of layered
support lets LM semantics fail to comply with the WFM. Note that adding a rule like
b ← a would not affect the semantics of the program, according to LSM. This is so
because, such rule would be placed in the same layer with the rules for a and c, but
leaving the fact rule b in the strictly lower layer.

Intuitively, the minimal layer supported models up to and including a given layer,
respect the minimal layer supported models up to the layers preceding it. It follows triv-
ially that layer supported models are minimal models, by definition. This ensures the
truth assignment to atoms in loops in higher layers is consistent with the truth assign-
ments in loops in lower layers and that these take precedence in their truth labeling. As
a consequence of the layered support requirement, layer supported models of each layer
comply with the WFM of the layers equal to or below it. Combination of the (merely
syntactic) notion of layering and the (semantic) notion of layered support makes the
LSM semantics.

Definition 7. Layer Supported Model of P . Let P 1, . . . , Pn be the least layering of
P . A layer supported interpretation M is a Layer Supported Model of P iff

∀1≤i≤nM |≤i is a minimal layer supported model of ∪1≤j≤i P
j

where M |≤i denotes the restriction of M to heads of rules in layers less or equal to i:
M |≤i ⊆M ∩ {head(r) : L(r) ≤ i}

The Layer Supported semantics of a program is just the intersection of all of its
Layer Supported Models.

Example 3. Layer Supported Models semantics. Consider again the program from
example 1. Its LS models are {b, c, f, x}, and {b, d, f, x}. According to LSM seman-
tics b, f and x are true because they are in the intersection of all models. c and d are
undefined, and a, e and y are false.

Layered support is a more general notion than that of perfect models [30], with sim-
ilar structure. Perfect model semantics talks about “least models” rather than “minimal
models” because in strata there can be no loops and so there is always a unique least
model which is also the minimal one. Layers, as opposed to strata, may contain loops
and thus there is not always a least model, so layers resort to minimal models, and these
are guaranteed to exist (it is well known every NLP has minimal models).

The simple transformation step adding a rule of the form a← falsum for atoms a
with no rules in P enforces compliance with the Closed World Assumption (CWA).

The principle used by LSMs to provide semantics to any NLP — whether with
OLONs or not — is to accept all, and only, the minimal models that are layer supported,
i.e., that respect the layers of the program. The principle used by SMs to provide se-
mantics to only some NLPs is a “stability” (fixed-point) condition imposed on the SMs
by the Gelfond-Lifschitz operator.

In [27] the authors present an example (7) where three alternative joint vacation so-
lutions are found by the LM semantics, for a vacation problem modeled by an OLON.

The solutions found actually coincide with those found by the LSM semantics. We
recall now a syntactically similar example (from [29]) but with different intended se-
mantics, and show how it can be attained in LSM by means of ICs.

Example 4. Working example [29].
tired← not sleep sleep← not work work ← not tired

As in the example 7 of [27], the LSM semantics would provide three solutions for
the above program: {work, tired}, {work, sleep}, {sleep, tired}. Although some (or
even all!) of these solutions might be actually plausible in a real world case, they are not,
in general, the intended semantics for this example. With the LSM semantics, the way to
prune away some (or all) of these solutions is by means of ICs. For example, to eliminate
the {work, sleep} solution we would just need to add the IC falsum← work, sleep.
Again, an IC compliance mechanism, such as conjoining not falsum to the query,
must be employed by the user in order to eliminate the undesired models.

Example 5. Jurisprudential reasoning. A murder suspect not preventively detained
is likely to destroy evidence, and in that case the suspect shall be preventively detained:

likely_destroy_evidence(murder_suspect)←
not preventively_detain(murder_suspect)

preventively_detain(murder_suspect) ←
likely_destroy_evidence(murder_suspect)

There is no SM, and a singleLSM = {preventively_detain(murder_suspect)}.
This jurisprudential reasoning is carried out without need for a murder_suspect to
exist now. Should we wish, LSM’s cumulativity (cf. below) allows adding the model
literal as a fact.

Example 6. Program with depth-unbound layering. A typical case of an infinitely
ground program (actually the only one with real theoretical interest, to the best of our
knowledge) was presented by François Fages in [12]. We repeat it here for illustration
and explanation.

p(X)← p(s(X)) p(X)← not p(s(X))

Ground (layered) version of this program, assuming there only one constant 0 (zero):

p(0)← p(s(0)) p(0)← not p(s(0))
p(s(0))← p(s(s(0))) p(s(0))← not p(s(s(0)))

p(s(s(0)))← p(s(s(s(0)))) p(s(s(0)))← not p(s(s(s(0))))
...←

...
...←

...

The only layer supported model of this program is {p(0), p(s(0)), p(s(s(0))) . . .}
or, in a non-ground form, {p(X)}. The theoretical interest of this program lies in that,
although it has no OLONs it still has no SMs either because no rule is supported (under
the usual notion of support), thereby showing there is a whole other class of NLPs to
which the SMs semantics provides no model, due to the notion of support used.

5 Properties of the Layer Supported Models semantics
Although the definition of the LSMs semantics is different from the LMs of [27], this
new refinement enjoys the desirable properties of the LMs semantics, namely: guaran-
tee of model existence, relevance, cumulativity, ([9]) and being a conservative extension
of the SMs semantics. Guarantee of existence ensures all normal programs have a se-
mantics; relevance allows for simple top-down querying concerning truth in a model
(like in Prolog) and is essential for abduction by need; and cumulativity means that
atoms true in the semantics can be added as facts without changing it — none of these
properties are enjoyed by Stable Models. A semantics is a conservative extension of
another one if it gives the same semantics to programs as the latter, whenever the latter
is defined, and also provides semantics to programs for which the latter does not, that is
the models of the semantics being extended are kept.

Moreover, and this is the main contribution of the LSMs semantics, it respects the
Well-Founded Model. It is not hard to recognize that the LM semantics [27] is the con-
servative generalization LSM semantics one obtains by removing the layered support
condition on interpretations prescribed in Definition 7.

The complexity analysis of this semantics is left out of this paper. Nonetheless, a
brief note is due. Model existence is guaranteed for every NLP, hence the complexity of
finding if one LSM exists is trivial, when compared to SMs semantics. Brave reasoning
— finding if there is any model of the program where some atom a is true — is an
intrinsically NP-hard task from the computational complexity point of view. But since
LSM semantics enjoys relevance, the computational scope of this task can be reduced
to consider only RelP (a), instead of the whole P . From a practical standpoint, this
can have a significant impact in the performance of concrete applications. Cautious
reasoning (finding out if some atom a is in all models) in the LSM semantics should
have the same computational complexity as in the SMs, i.e., coNP-complete.

5.1 Respect for the Well-Founded Model

Definition 8. Interpretation M of P respects the WFM of P . An interpretation M
respects the WFM of P iff M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P .

Theorem 2. Layer Supported Models respect the WFM. Let P be an NLP, and P≤i

denote
⋃

1≤j≤i P
j , where P j is P ’s j layer. Each LSM M |≤i of P≤i, where M ⊇

M |≤i, respects the WFM of P i ∪M |<i.

Proof. By hypothesis, each M |≤i is a full LSM of P≤i. Consider P 1. Any M |≤1 con-
tains the facts of P , and their direct positive consequences, since the rules for all of
these are necessarily placed in the first layer in the least layering of P . Hence, M |≤1

contains all the true atoms of the WFM of P 1. Layer 1 also contains whichever loops
that do not depend on any other atoms besides those which are the heads of the rules
forming the loop. Any such loops having no negative literals in the bodies are determin-
istic and, therefore, the heads of the rules forming the loop will be all true or all false
in the WFM of P 1, depending on whether the bodies are fully supported by facts in the
same layer, or not, and, in the latter case, if the rules are not involved in other types of
loop making their heads undefined. In any case, an LSM of this layer will by necessity

contain all the true atoms of the WFM of P 1. On the other hand, assume there is some
atom b which is false in the WFM of P 1. b being false in the WFM means that either b
has no rules or that every rule for b has an unsatisfiable body in P 1. In the first case, by
definition 7 we know that b cannot be in any LSM. In the second case, every unsatisfi-
able body is necessarily unsupported, both classically and layered. Hence, b cannot be
in any LSM of P 1. This means that any LSM contains no atoms false in the WFM of
P 1, and, therefore, that they must respect the WFM of P 1.

By hypothesis M |≤i+1 is an LSM of P≤i+1 iff M |≤i+1 ⊇ M |≤i, for some LSM
M |≤i of P≤i, which means the LSMsM |≤i+1 of P≤i+1 are exactly the LSMsM |≤i+1

of P i+1 ∪M |≤i. Adding the M |≤i atoms as facts imposes them as true in the WFM of
P i+1 ∪M |≤i. The then deterministically true consequences of layer i + 1 — the true
atoms of the WFM of P i+1 ∪M |≤i — become necessarily present in every minimal
model of P i+1 ∪M |≤i, and therefore in its every LSM M |≤i+1. On the other hand,
every atom b false in the WFM of P i+1 ∪M |≤i has now unsatisfiable bodies in all its
rules (up to this layer i+1). Hence, b cannot be in any LSM of P i+1∪M |≤i. Therefore,
every M |≤i+1 respects the WFM of P i+1 ∪M |≤i. Hence, more generally, every M |≤i
respects the WFM of P i ∪M |<i

ut

5.2 Other Comparisons

We next argue informally that the LSMs and the Revised Stable Models (RSMs) defined
in [21] are the same. The equivalence is rather immediate. Take Definitions 2 and 3 of
[21] characterizing the RSMs:

Definition 9. Sustainable Set (Definition 2 in [21]). Intuitively, we say a set S is
sustainable in P iff any atom a ∈ S does not go against the well-founded consequences
of the remaining atoms in S, whenever, S \ {a} itself is a sustainable set. The empty
set by definition is sustainable. Not going against means that atom a cannot be false in
the WFM of P ∪ S \ {a}, i.e., a is either true or undefined. That is, it belongs to set
ΓP∪S\{a}(WFM(P ∪ S \ {a})). Formally, we say S is sustainable iff
∀a∈SS \ {a} is sustainable⇒ a ∈ ΓP∪S\{a}(WFM(P ∪ S \ {a}))

where ΓP (I) is just the Gelfond-Lifschitz program division of P by interpretation I .

Definition 10. Revised Stable Models and Semantics (Definition 3 in [21]).
Let RAAP (M) ≡M \ ΓP (M). M is a Revised Stable Model of a NLP P , iff:

– M is a minimal classical model, with not interpreted as classical negation, and
– ∃α≥2 such that ΓαP (M) ⊇ RAAP (M)
– RAAP (M) is sustainable

The first item goes without saying for both semantics. For the third item, it is ap-
parent that sustainable models respect the WFS as required of LSM models; vice-versa,
LSM models are sustainable models. Finally, for the 2nd item, consider its justification
provided after Def. 3 of [21]. It should be clear, after due consideration, that the 2nd
item holds for LSMs and, vice-versa, that RSMs, because they comply with it, will com-
ply with the minimal models at each LSM layer, which always resolve the odd loops
that may be present in it.

Only recently, we became aware of the work of Osorio et. al [20]. Their approach,
couched in argumentation terms, addresses the same semantic concerns as our own, ap-
parently with similar results for the case of finite propositional normal programs, though
the paper does not produce a proof of respecting the WFS. In [22] we also address the
same concerns in argumentation semantics terms having providing the Approved Mod-
els semantics. The latter can be made to respect the WFS only if desired, by means of
an appropriate condition, and so appears to be more general than that of [20]. Moreover,
Approved Models is conjectured to result, in that case, in a semantics equivalent to the
RSMs [21] and the LSMs.

6 Program Transformation
The program transformation we now define (which can be skipped without loss of con-
tinuity) provides a syntactical means of generating a program P ′ from an original pro-
gram P , such that the SMs of P ′ coincide with the LSMs of P . It engenders an expedite
means of computing LSMs using currently available tools like Smodels [19] and DLV
[7]. The transformation can be query driven and performed on the fly, or previously
preprocessed.

6.1 Top-down transformation

Performing the program transformation in top-down fashion assumes applying the trans-
formation to each atom in the program in the call-graph of a query. The transformation
involves traversing the call-graph for the atom, induced by its dependency rules, to de-
tect and “solve” the OLONs, via the specific LSM-enforcing method described below.
When traversing the call-graph for an atom, one given traverse branch may end by find-
ing (1) a fact literal, or (2) a literal with no rules, or (3) a loop to a literal (or its default
negation conjugate) already found earlier along that branch.

To produce P ′ from P we need a means to detect OLONs. The OLON detection
mechanism we employ is a variant of Tarjan’s Strongly Connected Component (SCC)
detection algorithm [34], because OLONs are just SCCs which happen to have an odd
number of default negations along its edges. Moreover, when an OLON is detected, we
need another mechanism to change its rules, that is to produce and add new rules to the
program, which make sure the atoms a in the OLON now have “stable” rules which do
not depend on any OLON. We say such mechanism is an “OLON-solving” one. Trivial
OLONs, i.e. with length 1 like that in the Introduction’s example (a ← not a,X), are
“solved” simply by removing the not a from the body of the rule. General OLONs, i.e.
with length ≥ 3, have more complex (non-deterministic) solutions, described below.

Minimal Models of OLONs In general, an OLON has the form
R1 = λ1 ← not λ2, ∆1

R2 = λ2 ← not λ3, ∆2

...
Rn = λn ← not λ1, ∆n

where all the λi are atoms, and the ∆j are arbitrary conjunction of literals which we
refer to as “contexts”. Assuming any λi true alone in some model suffices to satisfy any

two rules of the OLON: one by rendering the head true and the other by rendering the
body false.

λi−1 ←∼ λi, ∆i−1, and
λi ←∼ λi+1, ∆i

A minimal set of such λi is what is needed to have a minimal model for the OLON.
Since the number of rules n in OLON is odd we know that n−1

2 atoms satisfy n − 1
rules of OLON. So, n−1

2 + 1 = n+1
2 atoms satisfy all n rules of OLON, and that is the

minimal number of λi atoms which are necessary to satisfy all the OLON’s rules. This
means that the remaining n− n+1

2 = n−1
2 atoms λi must be false in the model in order

for it to be minimal.
Taking a closer look at the OLON rules we see that λ2 satisfies both the first

and second rules; also λ4 satisfies the third and fourth rules, and so on. So the set
{λ2, λ4, λ6, . . . , λn−1} satisfies all rules in OLON except the last one. Adding λ1 to
this set, since λ1 satisfies the last rule, we get one possible minimal model for OLON:
MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}. Every atom in MOLON satisfies 2 rules of
OLON alone, except λ1, the last atom added. λ1 satisfies alone only the last rule of
OLON. The first rule of OLON — λ1 ← not λ2, ∆1 — despite being satisfied by
λ1, was already satisfied by λ2. In this case, we call λ1 the top literal of the OLON
under M . The other Minimal Models of the OLON can be found in this manner sim-
ply by starting with λ3, or λ4, or any other λi as we did here with λ2 as an example.
Consider the MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}. Since ∼ λi+1 ∈ body(Ri) for
every i < n, and ∼ λ1 ∈ body(Rn); under MOLON all the R1, R3, R5, . . . , Rn will
have their bodies false. Likewise, all the R2, R4, R6, . . . , Rn−1 will have their bodies
true under MOLON . This means that all λ2, λ4, λ6, . . . , λn−1 will have classically sup-
ported bodies (all body literals true), namely via rules R2, R4, R6, . . . , Rn−1, but not
λ1 — which has only layered support (all body literals of strictly lower layers true).
“Solving an OLON” corresponds to adding a new rule which provides classical support
for λ1. Since this new rule must preserve the semantics of the rest of P , its body will
contain only the conjunction of all the “context” ∆j , plus the negation of the remaining
λ3, λ5, λ7, . . . , λn which were already considered false in the minimal model at hand.

These mechanisms can be seen at work in lines 2.10, 2.15, and 2.16 of the Transform
Literal algorithm below.

Definition 11. Top-down program transformation.
The TR transformation consists in performing this literal transformation, for each

individual atom of P . The Transform Literal algorithm implements a top-down, rule-
directed, call-graph traversal variation of Tarjan’s SCC detection mechanism. More-
over, when it encounters an OLON (line 2.9 of the algorithm), it creates (lines 2.13–
2.17) and adds (line 2.18) a new rule for each literal involved in the OLON (line 2.11).
The newly created and added rule renders its head true only when the original OLON’s
context is true, but also only when that head is not classically supported, though being
layered supported under the minimal model of the OLON it is part of.

In the worst case, the whole P is a set of intricate OLONs. In such case there are
exponentially many combinations of literals of P forming all the possible contexts, and
for each of them TR adds a new rule. Hence, the complexity of TR is conjectured to be

input : A program P
output: A transformed program P’

context = ∅1.1
stack = empty stack1.2
P’ =P1.3
foreach atom a of P do1.4

Push (a, stack)1.5
P’ =P’ ∪Transform Literal (a)1.6
Pop (a, stack)1.7

end1.8

Algorithm 1: TR Program Transformation

exponential in the number of atoms of P . Since the main purpose of this transformation
is to be used for top-down query-solving, only the relevant atoms for the query are
explored and their respective new rules produced. This way, the transformation can be
applied on a “by need” basis.

Example 7. Solving OLONs. Consider this program, coinciding with its residual:
a← not a, b b← c c← not b, not a

Solving a query for a, we use its rule and immediately detect the OLON on a. The
leaf not a is removed; the rest of the body {b} is kept as the Context under which the
OLON on a is “active” — if b were to be false there would be no need to solve the
OLON on a’s rule. After all OLONs have been solved, we use the Contexts to create
new rules that preserve the meaning of the original ones, except the new ones do not
now depend on OLONs. The current Context for a is now just {b} instead of the original
{not a, b}.

Solving a query for b, we go on to solve c — {c} being b’s current Context. Solving
c we find leaf not b. We remove c from b’s Context, and add c’s body {not b, not a}
to it. The OLON on b is detected and the not b is removed from b’s Context, which
finally is just {not a}. As can be seen so far, updating Contexts is similar to performing
an unfolding plus OLON detection and resolution by removing the dependency on the
OLON. The new rule for b has final Context {not a} for body. I.e., the new rule for
b is b ← not a. Next, continuing a’s final Context calculation, we remove b from a’s
Context and add {not a} to it. This additional OLON is detected and not a is removed
from a’s Context, now empty. Since we already exhausted a’s dependency call-graph,
the final body for the new rule for a is empty: a will be added as a fact. Moreover, a
new rule for b will be added: b← not a. The final transformed program is:

a← not a, b a b← c b← not a c← not b, not a
it has only one SM = {a} the only LSM of the program. Mark layering is respected
when solving OLONs: a’s final rule depends on the answer to b’s final rule.

Example 8. Solving OLONs (2). Consider this program, coinciding with its residual:
a← not b, x b← not c, y c← not a, z x y z

Solving a query for a we push it onto the stack, and take its rule a ← not b, x. We
go on for literal not b and consider the rest of the body {x} as the current Context under

input : An literal l
output: A partial transformed program Pa’

previous context =context2.1
Pa’ =P2.2
atom =atom a of literal l; //removing the eventual not2.3
if a has been visited then2.4

if a or not a is in the stack then2.5
scc root indx =lowest stack index where a or not a can be found2.6
nots seq = sequence of neg. lits from (scc root indx +1) to top indx2.7
loop length = length of nots seq2.8
if loop length is odd then2.9

nots in body = (loop length−1)
2

2.10
foreach ‘not x’ in nots seq do2.11

idx = index of not x in nots seq2.12
newbody = context2.13
for i=1 to # nots in body do2.14

newbody = newbody ∪2.15
{nots seq ((idx + 2 ∗ i) mod loop length)}2.16

end2.17
newrule = x←newbody2.18
Pa’ =Pa’ ∪{newrule }2.19

end2.20

end2.21

end2.22

else // a has not been visited yet2.23
mark a as visited2.24
foreach rule r = a← b1, . . . , bn, not bn+1, . . . , not bm of P do2.25

foreach (not)bi do2.26
Push ((not)bi, stack)2.27
context =context ∪{b1, . . . , (not)bi−1, (not)bi+1, . . . , not bm}2.28
Transform Literal ((not)bi)2.29
Pop ((not)bi, stack)2.30
context =previous context2.31

end2.32

end2.33

end2.34

Algorithm 2: Transform Literal

which the OLON on a is “active”. Push not b onto the stack and take the rule for b. We
go on to solve not c, and add the y to the current Context which now becomes {x, y}.
Once more, push not c onto the stack, take c’s rule c ← not a, z, go on to solve not a
and add z to the current Context which is now {x, y, z}. When we now push not a onto
the stack, the OLON is detected and it “solving” begins. Three rules are created and
added to the program a← not c, x, y, z, b← not a, x, y, z, and c← not b, x, y, z. To-
gether with the original program’s rules they render “stable” the originally “non-stable”
LSM {a, b, x, y, z}, {b, c, x, y, z}, and {a, c, x, y, z}. The final transformed program is:

a← not b, x b← not c, y c← not a, z x y z
a← not c, x, y, z b← not a, x, y, z c← not b, x, y, z

6.2 Implementing the TR transformation

The XSB Prolog system1 is one of the most sophisticated, powerful, efficient and versa-
tile implementations, with a focus on execution efficiency and interaction with external
systems, implementing program evaluation following the WFS for NLPs. The XASP
interface [4] (standing for XSB Answer Set Programming), is included in XSB Prolog
as a practical programming interface to Smodels [19], one of the most successful and
efficient implementations of the SMs over generalized LPs. The XASP system allows
one not only to compute the models of a given NLP, but also to effectively combine
3-valued with 2-valued reasoning. The latter is achieved by using Smodels to compute
the SMs of the so-called residual program, the one that results from a query evaluated in
XSB using tabling [32]. A residual program is represented by delay lists, that is, the set
of undefined literals for which the program could not find a complete proof, due to mu-
tual dependencies or loops over default negation for that set of literals, detected by the
XSB tabling mechanism. This coupling allows one to obtain a two-valued semantics of
the residual, by completing the three-valued semantics the XSB system produces. The
integration also allows to make use of and benefit from the relevance property of LSM
semantics by queries.

In our implementation, detailed below, we use XASP to compute the query rele-
vant residual program on demand. When the TR transformation is applied to it, the
resulting program is sent to Smodels for computation of stable models of the relevant
sub-program provided by the residue, which are then returned to the XSB-XASP side.

Residual Program After launching a query in a top-down fashion we must obtain the
relevant residual part of the program for the query. This is achieved in XSB Prolog
using the get_residual/2 predicate. According to the XSB Prolog’s manual “ the
predicate get_residual/2 unifies its first argument with a tabled subgoal and its
second argument with the (possibly empty) delay list of that subgoal. The truth of the
subgoal is taken to be conditional on the truth of the elements in the delay list”. The
delay list is the list of literals whose truth value could not be determined to be true nor
false, i.e., their truth value is undefined in the WFM of the program.

It is possible to obtain the residual clause of a solution for a query literal, and in turn
the residual clauses for the literals in its body, and so on. This way we can reconstruct

1 XSB-Prolog and Smodels are freely available, at: http://xsb.sourceforge.net and
http://www.tcs.hut.fi/Software/smodels.

the complete relevant residual part of the KB for the literal — we call this a residual
program or reduct for that solution to the query.

More than one such residual program can be obtained for the query, on backtrack-
ing. Each reduct consists only of partially evaluated rules, with respect to the WFM,
whose heads are atoms relevant for the initial query literal, and whose bodies are just
the residual part of the bodies of the original KB’s rules. This way, not only do we get
just the relevant part of the KB for the literal, we also get precisely the part of those
rules bodies still undefined, i.e., those that are involved in Loops Over Negation.

Dealing with the Query and Integrity Constraints ICs are written as just falsum←
IC_Body. An Smodels IC preventing falsum from being true (:- falsum) is en-
forced whenever a transformed program is sent to Smodels. Another two rules are added
to the Smodels clause store through XASP: one creates an auxiliary rule for the initially
posed query; with the form: lsmGoal :- Query, where Query is the query con-
junct posed by the user. The second rule just prevents Smodels from having any model
where the lsmGoal does not hold, having the form: :- not lsmGoal.

The XSB Prolog source code for the meta-interpreter, based on this program trans-
formation, is available at http://centria.di.fct.unl.pt/∼amp/software.html

7 Abductive Reasoning with Logic Programs
Logic Programs have been used for a few decades now in knowledge representation and
reasoning. Amongst the most common kinds of reasoning performed using them, we
can find deduction, induction and abduction. When query answering, if we know that
the underlying semantics is relevant, i.e. guarantees it is enough to use only the rules
relevant to the query (those in its call-graph) to assess its truthfulness, then we need not
compute a whole model in order to find an answer to our query: it suffices to use just
the call-graph relevant part of the program. This way of top-down finding a solution to
a query, dubbed “backward chaining”, is possible only when the underlying semantics
is relevant in the above sense, because the existence of a full model is guaranteed.

Currently, the standard 2-valued semantics used by the logic programming com-
munity is Stable Models [14]. It’s properties are well known and there are efficient
implementations (such as DLV and SModels [7, 19]). However, Stable Models (SMs)
miss some important properties, both from the theoretical and practical perspectives:
guarantee of model existence for every NLP, relevancy and cumulativity. Since SMs
do not enjoy relevancy they cannot use just backward chaining for query answering.
This means that it may incur in waste of computational resources, when extra time and
memory are used to compute parts of the model which may be irrelevant to the query.

When performing abductive reasoning, we want to find, by need only (via back-
ward chaining), one possible set of conditions (abductive literals of the program to be
assumed either true or false) sufficient to entail our query. However, sometimes we also
want to know which are (some of) the consequences (side-effects, so to speak) of such
conditions. I.e., we want to know the truth value of some other literals, not part of the
query’s call graph, whose truth-value may be determined by the abductive conditions
found. In some cases, we might be interested in knowing every possible side-effect —

the truth-value of every literal in a complete model satisfying the query and ICs. In
other situations though, our focus is only in some specific side-effects of abductions
performed.

In our approach, the side-effects of interest are explicitly indicated by the user by
wrapping the corresponding goals within reserved construct inspect/1. It is advanta-
geous, from a computational point of view, to be able to compute only the truth-value
of the important side-effects instead of the whole model, so as not to waste precious
time and computational resources. This is possible whenever the underlying semantics
guarantees model existence, and enjoys relevance.

7.1 Abduction

Abduction, or inference to the best explanation, is a reasoning method whereby one
chooses the hypotheses that would, if true, best explain the observed evidence. In LPs,
abductive hypotheses (or abducibles) are named literals of the program which have no
rules. They can be considered true or false for the purpose of answering a query. Ab-
duction in LPs ([2, 8, 11, 17, 18]) can naturally be used in a top-down query-oriented
proof-procedure to find an (abductive) answer to a query, where abducibles are leafs
in the call dependency graph. The Well-Founded Semantics (WFS) [13], which enjoys
relevancy, allows for abductive query answering. We used it in the specific implemen-
tation described in section 8.2 based on ABDUAL [2]. Though WFS is 3-valued, the
abduction mechanism it employs can be, and in our case is, 2-valued.

Because they do not depend on any other literal in the program, abducibles can be
modeled in a Logic Program system without specific abduction mechanisms by includ-
ing for each abducible an even loop over default negation, e.g.,

abducible← not abducible_not. abducible_not← not abducible.

where neg_abducible is a new abducible atom, representing the (abducible) nega-
tion of the abducible. This way, under the SM semantics, a program may have models
where some abducible is true and another where it is false, i.e. neg_abducible is true.
If there are n abducibles in the program, there will be 2n models corresponding to all
the possible combinations of true and false for each. Under the WFS without a spe-
cific abduction mechanism, e.g. the one available in ABDUAL, both abducible and
neg_abducible remain undefined in the Well-Founded Model (WFM), but may hold
(as alternatives) in some Partial Stable Models.

Using the SM semantics abduction is done by guessing the truth-value of each ab-
ducible and providing the whole model and testing it for stability; whereas using the
WFS with abduction, it can be performed by need, induced by the top-down query solv-
ing procedure, solely for the relevant abducibles — i.e., irrelevant abducibles are left
unconsidered. Thus, top-down abductive query answering is a means of finding those
abducible values one might commit to in order to satisfy a query.

An additional situation, addressed in this paper, is when one wishes to only pas-
sively determine which abducibles would be sufficient to satisfy some goal but without
actually abducing them, just consuming other goals’ needed and produced abductions.
The difference is subtle but of importance, and it requires a new construct. Its mecha-
nism, of inspecting without abducing, can be conceived and implemented through meta-
abduction, and is discussed in detail in the sequel.

7.2 Backward and Forward Chaining

Abductive query-answering is intrinsically a backward-chaining process, a top-down
dependency-graph oriented proof-procedure. Finding the side-effects of a set of abduc-
tive assumptions may be conceptually envisaged as forward-chaining, as it consists of
progressively deriving conclusions from the assumptions until the truth value of the
chosen side-effect literals is determined.

The problem with full-fledged forward-chaining is that too many (often irrelevant)
conclusions of a model are derived. Wasting time and resources deriving them only
to be discarded afterwards is a flagrant setback. Worse, there may be many alternative
models satisfying an abductive query (and the ICs) whose differences just repose on
irrelevant conclusions. So unnecessary computation of irrelevant conclusions can be
compounded by the need to discard irrelevant alternative complete models too.

A more intelligent solution would be afforded by selective forward-chaining, where
the user would be allowed to specify those conclusions she is focused on, and only
those would be computed in forward-chaining fashion. Combining backward-chaining
with selective forward-chaining would allow for a greater precision in specifying what
we wish to know, and improve efficiency altogether. In the sequel we show how such
a selective forward chaining from a set of abductive hypotheses can be replaced by
backward chaining from the focused on conclusions — the inspection points — by
virtue of a controlled form of abduction which, never performing extra abductions, just
checks for abducibles assumed elsewhere.

8 Inspection Points
Meta-abduction is used in abduction inhibited inspection. Intuitively, when an abducible
is considered under mere inspection, meta-abduction abduces only the intention to a
posteriori check for its abduction elsewhere, i.e. it abduces the intention of verify-
ing that the abducible is indeed adopted, but elsewhere. In practice, when we want to
meta-abduce some abducible ‘x’, we abduce a literal ‘consume(x)’ (or ‘abduced(x)’),
which represents the intention that ‘x’ is eventually abduced elsewhere in the process
of finding an abductive solution. The check is performed after a complete abductive
answer to the top query is found. Operationally, ‘x’ will already have been or will be
later abduced as part of the ongoing solution to the top goal.

Example 9. Relevant and irrelevant side-effects. Consider this logic program where
drink_water and drink_beer are abducibles.

← thirsty, not drink. % This is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← inspect(drunk).

Suppose we want to satisfy the Integrity Constraint, and also to check if we get
drunk or not. However, we do not care about the glass becoming wet — that being
completely irrelevant to our current concern. In this case, full forward-chaining or com-
putation of whole models is a waste of time, because we are interested only in a subset

of the program’s literals. What we need is a selective ersatz forward chaining mecha-
nism, an inspection tool which permits to check the truth value of given literals as a
consequence of the abductions made to satisfy a given query plus any Integrity Con-
straints.

Moreover, in this example, if we may simply want to know the side-effects of the
possible actions in order to decide (to drive or not to drive) after we know which side-
effects are true. In such case, we do not want to the IC← not unsafe_drive because
that would always impose not drink_beer. We want to allow all possible solutions for
the single IC← thirsty, not drink and then check the side-effects of each abductive
solution.

Example 10. Police and Tear Gas Issue. Consider this other NLP, where ‘tear_gas’,
‘fire’, and ‘water_cannon’ are the only abducibles. Notice that inspect is applied to
calls. ← police, riot, not contain. % this is an Integrity Constraint

contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

Notice the two rules for ‘smoke’. The first states that one explanation for smoke is
fire, when assuming the hypothesis ‘fire’. The second states ‘tear_gas’ is also a pos-
sible explanation for smoke. However, the presence of tear gas is a much more unlikely
situation than the presence of fire; after all, tear gas is only used by police to con-
tain riots and that is truly an exceptional situation. Fires are much more common and
spontaneous than riots. For this reason, ‘fire’ is a much more plausible explanation for
‘smoke’ and, therefore, in order to let the explanation for ‘smoke’ be ‘tear_gas’, there
must be a plausible reason — imposed by some other likely phenomenon. This is rep-
resented by inspect(tear_gas) instead of simply ‘tear_gas’. The ‘inspect’ construct
disallows regular abduction — only allowing meta-abduction — to be performed whilst
trying to solve ‘tear_gas’. I.e., if we take tear gas as an abductive solution for smoke,
this rule imposes that the step where we abduce ‘tear_gas’ is performed elsewhere,
not under the derivation tree for ‘smoke’. Thus, ‘tear_gas’ is an inspection point.
The IC, because there is ‘police’ and a ‘riot’, forces ‘contain’ to be true, and hence,
‘tear_gas’ or ‘water_cannon’ or both, must be abduced. ‘smoke’ is only explained
if, at the end of the day, ‘tear_gas’ is abduced to enact containment. Abductive solu-
tions should be plausible, and ‘smoke’ is plausibly explained by ‘tear_gas’ if there is a
reason, a best explanation, that makes the presence of tear gas plausible; in this case the
riot and the police. Plausibility is an important concept in science, for lending credibil-
ity to hypotheses. Assigning plausibility measures to situations is an orthogonal issue.
In this example, another way of viewing the need for the new mechanism embodied by
the inspect predicate is to consider we have 2 agents: one is a police officer and has
the possibility of abducing (corresponding to actually throwing) tear_gas; the other
agent is a civilian who, obviously, does not have the possibility of abducing (throwing)
tear_gas. For the police officer agent, having the smoke ← inspect(tear_gas) rule,
with the inspect is unnecessary: the agent knows that tear_gas is the explanation for
smoke because it was himself who abduced (threw) tear_gas; but for the civilian agent
the inspect in the smoke← inspect(tear_gas) rule is absolutely indispensable, since

he cannot abduce tear_gas and therefore cannot know, without inspecting, if that is
the real explanation for smoke.

Example 11. Nuclear Power Plant Decision Problem. This example was extracted
from [31] and adapted to our current designs, and its abducibles do not represent ac-
tions. In a nuclear power plant there is decision problem: cleaning staff will dust the
power plant on cleaning days, but only if there is no alarm sounding. The alarm sounds
when the temperature in the main reactor rises above a certain threshold, or if the alarm
itself is faulty. When the alarm sounds everybody must evacuate the power plant imme-
diately! Abducible literals are cleaning_day, temp_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm← temp_rise
sound_alarm← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true and gives us three minimal
abductive solutions: S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temp_rise, evacuate}, and
S3 = {cleaning_day, sound_alarm, faulty_alarm, evacuate}. If we pose the query
?−not dustwe want to know what could justify the cleaners dusting not to occur given
that it is a cleaning day (enforced by the IC). However, we do not want to abduce the
rise in temperature of the reactor nor to abduce the alarm to be faulty in order to prove
not dust. Any of these justifying two abductions must result as a side-effect of the
need to explain something else, for instance the observation of the sounding of the
alarm, expressible by adding the IC ← not sound_alarm, which would then abduce
one or both of those two abducibles as plausible explanations. The inspect/1 in the
body of the rule for dust prevents any abduction below sound_alarm to be made just
to make not dust true. One other possibility would be for two observations, coded by
ICs ← not temp_rise or ← not faulty_alarm, to be present in order for not dust
to be true as a side-effect. A similar argument can be made about evacuating: one thing
is to explain why evacuation takes place, another altogether is to justify it as neces-
sary side-effect of root explanations for the alarm to go off. These two pragmatic uses
correspond to different queries: ?−evacuate and ?− inspect(evacuate), respectively.

8.1 Declarative Semantics of Inspection Points

A simple transformation maps programs with inspection points into programs without
them. Mark that the Stable Models of the transformed program where each abducible(X)
is matched by the abducible X (X being a literal a or its default negation not a) clearly
correspond to the intended procedural meanings ascribed to the inspection points of the
original program.

Definition 12. Transforming Inspection Points. Let P be a program containing rules
whose body possibly contains inspection points. The program Π(P) consists of:

1. all the rules obtained by the rules in P by systematically replacing:
– inspect(not L) with not inspect(L);
– inspect(a) or inspect(abduced(a)) with abduced(a)

if a is an abducible, and keeping inspect(L) otherwise.
2. for every rule A← L1, . . . , Lt in P , the additional rule:
inspect(A)← L

′

1, . . . , L
′

t where for every 1 ≤ i ≤ t:

L
′

i =

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

The semantics of the inspect predicate is given by the generated rules for inspect

Example 12. Transforming a Program P with Nested Inspection Levels.

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Then, Π(P) is:
x ← a, inspect(y), b, c, not d
inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a)
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The abductive stable model of Π(P) respecting the inspection points is:
{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.

Note that for each abduced(a) the corresponding a is in the model.

8.2 Inspection Points Implementation

Once again, we based our inspection point practical implementation on a formally de-
fined, XSB-implemented, true and tried abduction system — ABDUAL [2]. ABDUAL
lays the foundations for efficiently computing queries over ground three-valued abduc-
tive frameworks for extended logic programs with integrity constraints, on the well-
founded semantics and its partial stable models.

The query processing technique in ABDUAL relies on a mixture of program trans-
formation and tabled evaluation. A transformation removes default negative literals (by
making them positive) from both the program and the integrity rules. Specifically, a
dual transformation is used, that defines for each objective literal O and its set of rules
R, a dual set of rules whose conclusions not (O) are true if and only if O is false in
R. Tabled evaluation of the resulting program turns out to be much simpler than for
the original program, whenever abduction over negation is needed. At the same time,
termination and complexity properties of tabled evaluation of extended programs are
preserved by the transformation, when abduction is not needed. Regarding tabled evalu-
ation, ABDUAL is in line with SLG [33] evaluation, which computes queries to normal

programs according to the well-founded semantics. To it, ABDUAL tabled evaluation
adds mechanisms to handle abduction and deal with the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that ef-
fect. These rules just add the name of the abducible to an ongoing list of current ab-
ductions, unless the negation of the abducible was added before to the lists failing
in order to ensure abduction consistency. Meta-abduction is implemented adroitly by
means of a reserved predicate, ‘inspect/1’ taking some literal L as argument, which
engages the abduction mechanism to try and discharge any meta-abductions performed
under L by matching with the corresponding abducibles, adopted elsewhere outside
any ‘inspect/1’ call. The approach taken can easily be at least partially adopted by
other abductive systems, as we had the occasion to check with the authors [6]. We have
also enacted an alternative implementation, relying on XSB-XASP and the declarative
semantics transformation above, which is reported below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with
the specific proviso of disabling new abductions during that proof. The proof for the in-
spected literal will succeed only if the abducibles needed for it were already adopted, or
will be adopted, in the present ongoing solution search for the top query. Consequently,
this check is performed after a solution for the query has been found. At inspection-
point-top-down-proof-mode, whenever an abducible is encountered, instead of adopt-
ing it, we simply adopt the intention to a posteriori check if the abducible is part of
the answer to the query (unless of course the negation of the abducible has already
been adopted by then, allowing for immediate failure at that search node.) That is, one
(meta -) abduces the checking of some abducible A, and the check consists in confirm-
ing that A is part of the abductive solution by matching it with the object of the check.
According to our method, the side-effects of interest are explicitly indicated by the
user by wrapping the corresponding goals subject to inspection mode, with the reserved
construct ‘inspect/1’.

9 Conclusions and Future Work
We have recapped the LSMs semantics for all NLPs, complying with desirable require-
ments: 2-valued semantics, conservatively extending SMs, guarantee of model exis-
tence, relevance and cumulativity, plus respecting the WFM.

In the context of abductive logic programs, we presented a new mechanism of in-
specting literals that can check for side-effects of top-down driven 2-valued abductive
solutions, enabled by a form of meta-abduction, and have provided for it a declarative
semantics that relies on the relevance property of Layer Supported Model semantics.
We implemented this inspection mechanism within the Abdual [2] meta-interpreter, as
well as within the XSB-XASP system. Its solution relies on abduction itself, making it
thus generally adoptable by other abductive frameworks.

We have also exhibited a space and time linearly complex transformation, TR, from
one propositional NLP into another, whose Layer Supported Models are precisely the
Stable Models of the transform, which can then be computed by extant Stable Model

implementations. TR can be used to answer queries but is also of theoretical interest, for
it may be used to prove properties of programs. Moreover, it can be employed in com-
bination with the top-down query procedure of XSB-Prolog, and be applied solely to
the residual program corresponding to a query. The XSB-XASP interface subsequently
allows the program transform to be sent for Smodels for 2-valued evaluation.

9.1 Coda

Prolog has been till recently the most accepted means to codify and execute logic pro-
grams, and a useful tool for research and application development in logic program-
ming. Several stable implementations were developed and refined over the years, with
plenty of working solutions to pragmatic issues, ranging from efficiency and portability
to explorations of language extensions. XSB-Prolog is one of the most sophisticated,
powerful, efficient and versatile, focusing on execution efficiency and interaction with
external systems, implementing logic program evaluation following the Well-Founded
Semantics (WFS).

The XASP interface [4, 5] (XSB Answer Set Programming), part of XSB-Prolog, is
a practical programming interface to Smodels[19]. XASP allows to compute the models
of a Normal LP, and also to effectively combine 3- with 2-valued reasoning, to get the
best of both worlds. This is achieved by using Smodels to compute the stable models of
the residual program, one that results from a query evaluation in XSB using tabling[32].
The residual program is formed by delay lists, sets of undefined literals for which XSB
could not find a complete proof, due to mutual loops over default negation in a set,
as detected by the tabling mechanism. This method allows obtaining 2-valued models,
by completion of the 3-valued ones of XSB. The integration maintains the relevance
property for queries over our programs, something Stable Model semantics does not
enjoy. In Stable Models, by its very definition, it is necessary to compute whole models
of a given program. With the XSB implementation framework one may sidestep this
issue, using XASP to compute the query relevant residual program on demand. Only
the resulting residual program is sent to Smodels for computation of its stable models,
and the result returned to XSB.

Having defined a more general 2-valued semantics for NLPs much remains to be ex-
plored, in the way of properties, complexity, comparisons, implementations, extensions
and applications, The applications afforded by LSMs are all those of SMs, plus those
where odd loops over default negation (OLONs) are actually employed for problem
domain representation, as we have shown in examples 7 and 8. The guarantee of model
existence is essential in applications where knowledge sources are diverse (like in the
Semantic Web), and wherever the bringing together of such knowledge (automated or
not) can give rise to OLONs that would otherwise prevent the resulting program from
having a semantics, thereby brusquely terminating the application. A similar situation
can be brought about by self- and mutually-updating programs, including in the learn-
ing setting, where unforeseen OLONs would stop short an ongoing process if the SM
semantics were in use.

That the LSM semantics includes the SM semantics and that it always exists and
admits top-down querying is a novelty making us look anew at 2-valued semantics
use in KRR. LSMs’ implementation, because of its relevance property, can avoid the

need to compute whole models and all models, and hence SM’s apodictic need for
complete groundness and the difficulties it begets for problem representation. Hence,
apparently there is only to gain in exploring the adept move from SM semantics to
the more general LSM one, given that the latter is readily implementable through the
program transformation TR, introduced here for the first time.

Work under way concerns an XSB engine level efficient implementation of the LSM
semantics, and the exploration of its wider scope of applications with respect to ASP,
and namely in combination with abduction and constructive negation.

One topic of future work consists in defining partial model schemas, that can pro-
vide answers to queries in terms of abstract non-ground model schemas encompassing
several instances of ground partial models. Abstract partial models, instead of ground
ones, may be produced directly by the residual, a subject for further investigation.

Yet another topic of future exploration is the definition of a Well-Founded Layer
Supported Model (WFLSM). Conceivably, the WFLSM would be defined as a partial
model that, at each layer, is the intersection of the all LSMs. Floating conclusions are
consequently disallowed. Incidental to this topic is the relationship of the WFLSM to
O-semantics [26], it being readily apparent the former extends the latter.

Finally, the concepts and techniques introduced in this paper are might be adoptable
by other logic programming systems and implementations.

10 Acknowledgements

We thank Marco Alberti, José Júlio Alferes, Pierangelo Dell’Acqua, Robert Kowalski,
Juan Carlos Nieves, Mauricio Osorio, and David Warren for their comments.

References

1. J. J. Alferes, P. M. Dung, and L. M. Pereira. Scenario semantics of extended logic programs.
In LPNMR, pages 334–348. MIT Press, 1993.

2. J.J. Alferes, L.M. Pereira, and T. Swift. Abduction in well-founded semantics and general-
ized stable models via tabled dual programs. TPLP, 4(4):383–428, July 2004.

3. K.R. Apt and H.A. Blair. Arithmetic classification of perfect models of stratified programs.
Fundam. Inform., 14(3):339–343, 1991.

4. L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with XSB and Smod-
els. http://xsb.sourceforge.net/packages/xasp.pdf.

5. L.F. Castro and D.S. Warren. An environment for the exploration of non monotonic logic
programs. In A. Kusalik, editor, Procs. WLPE’01, 2001.

6. H. Christiansen and V. Dahl. Hyprolog: A new logic programming language with assump-
tions and abduction. In ICLP, pages 159–173, 2005.

7. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and advanced frontends (system description).
In Workshop in Logic Programming, 1997.

8. M. Denecker and D. De Schreye. Sldnfa: An abductive procedure for normal abductive
programs. In Apt, editor, Procs. ICLP’92, pages 686–700, Washington, USA, 1992. The
MIT Press.

9. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta
Informaticae, XXII(3):227–255, 257–288, 1995.

10. J. Dix, G. Gottlob, and W. Marek. Reducing disjunctive to non-disjunctive semantics by
shifting operations. Fundamenta Informaticae, 28:87–100, 1996.

11. T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: semantics and complex-
ity. Theoretical Computer Science, 189(1–2):129–177, 1997.

12. F. Fages. Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science, 1:51–60, 1994.

13. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. of ACM, 38(3):620–650, 1991.

14. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

15. M. Gelfond, H. Przymusinska, V. Lifschitz, and M. Truszczynski. Disjunctive defaults. In
KR-91, pages 230–237, 1991.

16. P. Hitzler and M. Wendt. A uniform approach to logic programming semantics. TPLP,
5(1-2):93–121, 2005.

17. K. Inoue and C. Sakama. A fixpoint characterization of abductive logic programs. Journal
of Logic Programming, 27(2):107–136, 1996.

18. A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In Hand-
book of Logic in AI and LP, volume 5, pages 235–324. Oxford University Press, 1998.

19. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. In Procs. LPNMR’97, LNAI, vol. 1265, pp. 420–429,
1997.

20. J. C. Nieves, M. Osorio, and C. Zepeda. Expressing extension-based semantics based on
stratified minimal models. In Logic, Language, Information and Computation, volume 5514
of LNCS, pages 305–319. Springer, 2009.

21. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In
G. Dias et al., editor, Progress in AI, volume 3808 of LNCS, pages 29–42. Springer, 2005.

22. L. M. Pereira and A. M. Pinto. Approved models for normal logic programs. In N. Der-
showitz and A. Voronkov, editors, Procs. LPAR’07, LPAR - LNAI, Yerevan, Armenia, Octo-
ber 2007. Springer.

23. L. M. Pereira and A. M. Pinto. Inspection points and meta-abduction in logic programs. In
INAP’09, LNCS. Springer, 2009.

24. L. M. Pereira and A. M. Pinto. Layer supported models of logic programs. In
Procs. 10th LPNMR, LNCS, pages 450–456. Springer, September 2009. Long version at
http://centria.di.fct.unl.pt/∼lmp/publications/online-papers/LSMs.pdf.

25. L. M. Pereira and A. M. Pinto. Stable model implementation of layer supported models by
program transformation. In INAP’09, LNCS. Springer, 2009.

26. L.M. Pereira, J.J. Alferes, and J.N. Aparício. Adding closed world assumptions to well-
founded semantics. TCS, 122(1-2):49–68, 1994.

27. L.M. Pereira and A.M. Pinto. Layered models top-down querying of normal logic programs.
In Procs. PADL’09, volume 5418 of LNCS, pages 254–268. Springer, January 2009.

28. T. C. Przymusinski. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS, pages 11–21. ACM Press, 1989.

29. T. C. Przymusinski. Well-founded and stationary models of logic programs. Annals of
Mathematics and Artificial Intelligence, 12:141–187, 1994.

30. T.C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–1096, 1988.
31. F. Sadri and F. Toni. Abduction with negation as failure for active and reactive rules. In

AI*IA, pages 49–60, 1999.
32. T. Swift. Tabling for non-monotonic programming. Annals of Mathematics and Artificial

Intelligence, 25(3-4):201–240, 1999.
33. T. Swift and D. S. Warren. An abstract machine for slg resolution: Definite programs. In

Symp. on Logic Programming, pages 633–652, 1994.

34. R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1(2):146–160,
1972.

