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1 Introduction

Logic programs, deductive databases, and more generally non-monotonic theo-
ries, use various forms of default negation, not F , whose major distinctive feature
is that not F is assumed “by default”, i.e., it is assumed in the absence of suffi-
cient evidence to the contrary. The meaning of “sufficient evidence” depends on
the specific semantics used. For example, in Reiter’s Closed World Assumption,
CWA [32], not A is assumed for atomic A if A is not provable, or, equivalently,
if there is a minimal model in which A is false. On the other hand, in Minker’s
Generalized Closed World Assumption, GCWA [18, 16], or in McCarthy’s Cir-
cumscription, CIRC [17], not A is assumed only if A is false in all minimal
models. In Clark’s Predicate Completion semantics for logic programs [7], this
form of negation is called negation-as-failure because not A is derivable whenever
attempts to prove A finitely fail.

The more recent semantics proposed for logic programs and deductive
databases, such as the stable semantics [14], well-founded semantics [34], partial
stable or stationary semantics [27] and static semantics [30], propose even more
sophisticated meanings for default negation, closely related to more general non-
monotonic formalisms such as Default Logic, DL [33], AutoEpistemic Logic, AEL
[19], and AutoEpistemic logic of Beliefs, AEB [29]. Under all of these semantics,
however, default negation “not ” significantly differs from classical negation “¬”.
For example, the formula charged(x) ∧ ¬guilty(x) ⊃ acquitted(x) says that a
person charged with a crime should be acquitted if he or she is actually proven
to be not guilty. On the other hand, the formula charged(x) ∧ not guilty(x) ⊃
acquitted(x) says that one should be acquitted of any charges by default unless
sufficient evidence of that person’s guilt is demonstrated.

1.1 Default negation does not suffice

Although default negation proved to be quite useful in various domains and
application frameworks, there are at least two important reasons why it is not
the only form of negation that is needed (in addition to classical negation) in
non-monotonic formalisms:
? Partially supported by JNICT-Portugal
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– While default negation not A of an atomic formula A is always assumed “by
default”, we often need to be more careful before jumping to negative con-
clusions. For example, it would make little sense to say not innocent(x) ⊃
guilty(x) to express the fact that being guilty is the opposite of being in-
nocent because it would imply that people should be considered guilty “by
default”. Similarly, we would not want to say: crossing(x),not train(x) ⊃
drive(x) to express the fact that one may safely cross a railway track if (s)he
first makes sure that there is no train approaching, because such a clause
would imply that (s)he should cross the railway even if (s)he did not bother
to look around at all.

– Although negation not A is always assumed “by default” for atomic
formulae A, the same is not true for negated atoms F = ¬A and
thus default negation does not treat literals A and ¬A symmetrically.
For example, even though GCWA (or circumscription) applied to the
theory {charged(tom); charged(x) ∧ guilty(x) ⊃ convicted(x)} im-
plies not convicted(tom) this is no longer the case if we perform a
simple syntactic substitution of ¬innocent for guilty thus obtaining
{charged(tom); charged(x) ∧ ¬innocent(x) ⊃ convicted(x)} because the
new theory has minimal models in which convicted(tom) is true.
As we can see, a simple syntactic substitution of ¬innocent for guilty turns
out to have a significant impact on the semantics of the resulting theory. As a
consequence, default negation, not F , is heavily dependent on the syntactic
form of the formula F , and, in particular, it is not invariant under the
equivalence or renaming of predicates.

1.2 Classical negation does not solve the problem

One can argue that the above features of default negation were intentionally
chosen to distinguish default negation not F from classical negation ¬F and
therefore if not F does not work in some particular context then ¬F should
be used instead4. While the first part of this statement is certainly correct the
second is not:

– Classical negation ¬F satisfies the so called “law of the excluded mid-
dle”, F ∨ ¬F , for every formula F . While it is a natural axiom in the
domain of formal logic and mathematics, it is not suitable for common-
sense reasoning where we are often faced with situations in which some
things are true, some others are false and yet some others are not (perhaps,
yet) determined to be either true or false. For example, an employer may
be faced with some candidates who are clearly qualified for the job, and
thus should be hired, some others who are clearly not qualified, and thus
should be rejected, and yet some other candidates whose qualifications are

4 In fact, real classical negation ¬F is not part of the language of standard logic
programs and deductive databases and thus it is not immediately available without
an appropriate extension of their languages and semantics, such as the one proposed
in [30].



not clear and who therefore should be interviewed in order to determine
their suitability for the job (see [13]). However, if we attempt to describe
the first two statements using real classical negation “¬” in the clauses:
{qualified(x)⊃hire(x); ¬qualified(x)⊃reject(x)} then, by virtue of the
law of the excluded middle, we will immediately conclude that every can-
didate must either be hired or rejected without leaving any room for those
who need to be further interviewed.
The either/or character of the law of the excluded middle presupposes that
we have sufficient information to determine, at least in principle, whether any
given property or its opposite is true. However, when dealing with incomplete
information or with properties involving gradual change we often encounter
“gray areas” in which neither the property nor its opposite seem to hold.
Moreover, the law of the excluded middle leads to highly unintuitive results
when used with reference to non-existing or non-applicable properties or
objects, e.g., in statements like “the the pink elephant in my pocket is either
old or not old” or “The chair is either happy or unhappy”.
Moreover, the law of the excluded middle is highly non-constructive and thus
does not fit well within the somewhat vague “spirit” of logic programming
and deductive databases which seems to rely heavily on “directional rea-
soning”, i.e., on first establishing the validity of premises of a clause before
deducing its consequents and not the other way around. As a result of its
non-constructive character, the law of the excluded middle is also computa-
tionally expensive and thus difficult to implement.

– As we pointed out before, classical literals A and ¬A are not treated symmet-
rically by default negation. While, in the absence of evidence to the contrary,
default negation not A of positive literals (atoms) A is always assumed, the
same does not apply to negative literals ¬A. Often times, however, we would
like to apply negation by default not symmetrically to both positive and neg-
ative literals. For instance, in the preceding example, given no information
about Tom’s qualifications we would like to conclude that Tom was neither
found qualified nor unqualified, i.e., that both not (qualified(Tom)) and
not (¬qualified(Tom)) hold. This would tell us that Tom has to be inter-
viewed. This is not possible with classical negation “¬” because the law of
the excluded middle forces A to be true if ¬A is not true and vice versa.

1.3 Symmetric negation

Based on the preceding discussion, we conclude that, in addition to the classical
negation, “¬”, and the default negation, “not ”, we need a new negation, which
we will denote by “∼”, which has the following properties:

– As opposed to default negation, the negation ∼A is not assumed by default;
– As opposed to classical negation, the negation “∼” does not satisfy the law

of the excluded middle, F ∨ ∼F ;
– The negation “∼” is treated symmetrically by the default negation “not”,

i.e., in the absence of evidence to the contrary, both not (A) and not (∼A)



are assumed. More generally, the semantics of belief theories is invariant
under the renaming of any predicates from A to ∼A and vice versa.

We will call negation “∼” with the above properties symmetric negation.
Gelfond and Lifschitz [15] were the first to point out the need for such nega-

tion in logic programming and they also proposed a specific semantics for such
negation for logic programs with the stable semantics. Somewhat unfortunately,
they called their negation “classical negation”5. Subsequently, several researchers
proposed different, often incompatible, forms of symmetric negation for various
semantics of logic programs and deductive databases [11, 21, 23, 28, 30, 35]. To
the best of our knowledge, however, no systematic study of symmetric negation
in non-monotonic reasoning was ever attempted in the past6. In this paper we
conduct such a systematic study of symmetric negation:

– We introduce and discuss two natural, yet different, definitions of symmetric
negation: one is called strong negation and the other is called explicit nega-
tion. For logic programs with the stable semantics, both symmetric negations
coincide with Gelfond-Lifschitz’ “classical negation”.

– We study properties of strong and explicit negation and their mutual rela-
tionship as well as their relationship to default negation “not ” and classical
negation “¬”.

– Rather than to limit our discussion to some narrow class of non-monotonic
theories, such as the class of logic programs with some specific semantics, we
conduct our study so that it is applicable to a broad class of non-monotonic
formalisms, which includes the well-known formalisms of circumscription,
autoepistemic logic and all the major semantics recently proposed for logic
programs (stable, well-founded, stationary, static and others).

– In order to achieve the desired level of generality, we define the notion of sym-
metric negation in the knowledge representation framework of AutoEpistemic
logic of Beliefs, AEB , introduced by Przymusinski in [29], which was shown
to isomorphically contain all of the above mentioned formalisms as special
cases. As a result, we automatically provide the corresponding notions of
symmetric negation for all formalisms embeddable into AEB .

The paper is organized as follows. In Section 2 we introduce strong negation,
the first form of symmetric negation, and discuss its basic properties. Then we
introduce explicit negation (the second form of symmetric negation), we establish
its basic properties, compare it to strong negation, and in Section 4 we discuss
applications of explicit negation to knowledge representation. We conclude with
some final remarks. In Appendix we briefly recall the basic definition of the
Autoepistemic Logic of Beliefs, AEB . A full account can be found in [29, 30, 31].

5 Independently, in [22] the authors also pointed out the need for such a negation
in logic programs. They called it “strong” negation, due to the desired similarities
with Nelson’s strong negation [20]. However their “strong” negation should not be
confused with the strong negation defined in this paper.

6 For logic programs, an extensive study was carried out in [3].



2 Strong Negation

In the Introduction we concluded that in addition to default negation, not F ,
non-monotonic reasoning requires a new type of negation which is similar to
classical negation ¬F , in the sense that it is not assumed by default, and yet
does not satisfy the law of the excluded middle and allows a symmetric treatment
of positive and negative information. In this section we define the so called strong
negation, –F , and argue that it is a natural candidate for such a negation. We
study properties of strong negation and its relationship to default negation and
classical negation.

We introduce strong negation within the broad framework of the Autoepis-
temic Logic of Beliefs, AEB . As a result, the definition of strong negation applies
to all non-monotonic formalisms embeddable into AEB , including circumscrip-
tion, autoepistemic logic and all the major semantics recently proposed for logic
programs. The definition is patterned after the original definition given in [15]
and therefore, when applied to logic programs with stable semantics, strong
negation coincides with Gelfond-Lifschitz’ so called “classical negation” .

Strong negation is introduced to belief theories T in the Autoepistemic Logic
of Beliefs, AEB, by:

(1) augmenting the objective language L with a set Ŝ = {–A : A ∈ S} of new
objective propositional symbols, called strong negation atoms, where S is any
fixed set of propositional symbols from L. As a result we obtain an extended
objective language L̂ and an extended language of beliefs L̂AEB .

(2) adding to the belief theory T the following strong negation constraint:
(SA) A ∧ –A ⊃ ⊥ or, equivalently, –A ⊃ ¬A,

for every strong negation atom –A that occurs in T .

The strong negation constraint SA states that A and –A cannot be both true
and thus ensures that the intended meaning of strong negation –A is “–A is the
opposite of A”. For example, a proposition A may describe the property of being
“qualified” while the proposition –A describes the property of being “unqualified”.
The strong negation constraint states that a person cannot be both qualified and
unqualified. We do not assume, however, that everybody is already known to be
either qualified or unqualified.

We want to emphasize that rather than modifying the logic AEB itself by
including strong negation constraints in the logical closure operator CnAEB we
instead make strong negation constraints part of any belief theory in which they
occur. As a result, theories which do not contain strong negation atoms are not
affected by these constraints in any way. In the sequel, we will implicitly assume
that the strong negation constraint SA is part of any belief theory T which
contains the atom –A.

For the sake of readability, instead of using somewhat cumbersome names,
like –good teacher, to denote the strong negation of the predicate good teacher,
we use more readable names, such as bad teacher.

Furthermore, even though we only consider propositional languages, we often
use variables as a shortcut for all ground instantiations of a given formula.



Example 1. 7 Consider a university that periodically evaluates faculty members
based on their research and teaching performance. Faculty members who are
known to be strong researchers and who are believed to be good teachers (as we
all know, it is difficult to objectively evaluate teaching) receive positive evalua-
tion. On the other hand, those who are believed not to be strong researchers as
well as those that are believed to be poor teachers receive negative evaluation.
Anyone who received a teaching award is considered to be a good teacher and
anyone who published at least 10 reviewed papers during the evaluation period
is considered a good researcher. The individuals whose evaluation status is not
yet determined undergo some further (unspecified) review process. This leads us
to the following belief theory in AEB :

good researcher(x) ∧ B good teacher(x) ⊃ good evaluation(x)
B¬good researcher(x) ⊃ bad evaluation(x)
B bad teacher(x) ⊃ bad evaluation(x)
teaching award(x) ⊃ good teacher(x)
many publications(x) ⊃ good researcher(x).

The predicates bad teacher, bad evaluation and bad researcher are intended
to represent strong negation of the predicates good teacher, good evaluation
and good researcher, respectively, and, therefore, we need to add to our theory
strong negation constraints (SA) for each one of them:

good researcher(x) ∧ bad researcher(x) ⊃ ⊥
good teacher(x) ∧ bad teacher(x) ⊃ ⊥
good evaluation(x) ∧ bad evaluation(x) ⊃ ⊥.

Suppose that both Ann and Tom published at least 10 papers. Suppose, further,
that Ann is a good teacher, both Mary and Keith received teaching awards but
Tom is considered to be a bad teacher. Moreover, Keith and Paul have a lot of
joint publications so at least one of them must be a good researcher:

many publications(Ann) many publications(Tom) good teacher(Ann)
teaching award(Mary) teaching award(Keith) bad teacher(Tom)
good researcher(Keith) ∨ good researcher(Paul).

The resulting belief theory has one consistent static expansion in which Ann
receives a positive evaluation because she is a good researcher and is believed
to be a good teacher. Tom receives a negative evaluation because even though
he is a good researcher, he is also believed to be a bad teacher. Mary receives
a negative evaluation as well because even though she is a good teacher, there
is no evidence of good research work in her file (i.e., B¬good researcher(Mary)
holds).

Keith’s and Paul’s status is not yet clear and thus they will have to be further
reviewed. Indeed, none of them individually has been shown to be a strong
researcher so they are not eligible for positive evaluation. At the same time none
of them is believed to be a bad teacher and there is some evidence supporting
each one of them being a good researcher (i.e., neither B¬good researcher(Paul)
7 The correctness of the examples discussed in this section has been veri-

fied by using the interpreter for static semantics developed by Stefan Brass
based on the results obtained in [6]. The interpreter is available from
ftp://ftp.informatik.uni-hannover.de/software/static/static.html via FTP
and WWW.



nor B¬good researcher(Keith) is true) and therefore they are not subject to
negative evaluation, either. Observe, however, that if we later find out that
Paul is in fact a lousy researcher, bad researcher(Paul), then Paul will receive
a negative evaluation and we will conclude (by virtue of the strong negation
constraint) that Keith is a good researcher and thus Keith will receive a positive
evaluation. ut

Even though strong negation –F is defined so far only for atomic objective
formulae F , we can easily extend it to all objective formulae F of the extended
language L̂. The following definition is recursive and F and G are assumed to
be objective formulae:

–(–F ) ≡ F –(¬F ) ≡ F –(F ∨G) ≡ –F ∧ –G –(F ∧G) ≡ –F ∨ –G.
The above extension preserves the basic property of strong negation, namely,
the fact that it is stronger than classical negation:

Proposition 1 Strong Negation is Stronger than Classical Negation.
Suppose that T is a belief theory and F is an objective formula such that T
includes the strong negation constraint SA, for every atom A that occurs in F .
Then: T |= (–F ⊃ ¬F ).

From the above Proposition one easily derives an important relationship
between strong negation and beliefs:

Proposition 2 Strong Negation vs. Beliefs. Suppose that T is a belief the-
ory. All static autoepistemic expansions T � of T are closed under the inference
rule:

–F
B¬F

,

where F is any objective formula such that T includes the strong negation con-
straint SA, for every atom A that occurs in F .

Observe that for any objective positive formula F , both F and –F are as-
sumed false by default, i.e., both B¬F and B¬(–F ) are true, because, in the
absence of any other information, F and –F are false in all minimal models.

However, one can easily ensure that one of the formulae, F or –F , is true
by default , and thus only the other one is minimized, by assuming one of the
following default axioms: B¬F ⊃ –F or B¬(–F ) ⊃ F
which say that if we disbelieve F (respectively, –F ) then –F (respectively, F ) can
be assumed to be true. For example, the first default axiom causes –F to be true
by default thus forcing strong negation to behave in a way that is similar (but
not identical) to classical negation. This will prove useful when applying strong
negation to theory and interpretation update [5].

One can also prevent any minimization of F and –F by assuming the law of
the excluded middle, F ∨–F , for this particular formula F , which causes precisely
one of F or –F to be true at all times.

As we mentioned in the Introduction, non-monotonic formalisms based on
some form of predicate minimization, such as CWA, circumscription and most



semantics of logic programs, do not treat atomic formulae A and their classical
negations ¬A symmetrically and thus they are not invariant under a simple
renaming substitution replacing atoms by their negations and vice versa.

The Autoepistemic Logic of Beliefs, a superset of such formalisms, naturally
suffers from the same problem. For example, the belief theory B¬A ⊃ C has
a unique static expansion in which C is true, and, yet, after substituting A′

for ¬A, the resulting theory BA′ ⊃ C has a unique expansion which no longer
contains C. However, since strong negation atoms –A are introduced as regular
objective atoms and since renaming of atoms has no effect on the semantics,
we immediately conclude that beliefs in AEB are invariant under renaming of
any predicates from A to –A and vice versa. The next proposition illustrates the
most basic difference between classical and strong negation.

Proposition 3 Strong Negation is Symmetric. Static semantics of belief
theories in AEB is invariant under the renaming of any predicates from A to
–A and vice versa.

More precisely, suppose that S is a subset of the set of all objective predicates
from L and let Ψ be the operator simultaneously replacing all occurrences of the
atom –A by A and all occurrences of the atom A by –A, for all atoms A in S.
Then T � is a static expansion of a belief theory T in AEB if and only if Ψ(T �)
is a static expansion of the theory Ψ(T ). ut

2.1 Strong Negation and Logic Programming

Since logic programs under major semantics, including stable semantics [14],
well-founded semantics [34], partial stable or stationary semantics [27] and static
semantics [30], can be translated into belief theories in AEB via the embedding
TB¬(P ) defined in [30, 31]8, the introduction of strong negation into belief the-
ories immediately introduces strong negation into logic programs with these
semantics.

In particular, it follows from [15, 27] that stable semantics augmented with
strong negation is equivalent to stable semantics with the so called “classical
negation”, originally introduced by Gelfond and Lifschitz [15].

Theorem 4 Strong Negation Extends “Classical” Negation. There is a
one-to-one correspondence between stable models M of a logic program P with
“classical negation” and consistent static autoepistemic expansions T � of its
translation TB¬(P ) into belief theory that satisfy the condition BA ∨ B¬A, for
all objective atoms A. We assume here that “classical negation” of an atom A
is translated into its strong negation –A. ut
8 According to TB¬(P ), a logic programming rule:

A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bm ∧ not C1 ∧ . . . ∧ not Cn.

is translated into: B1 ∧ . . . ∧Bm ∧ B¬C1 ∧ . . . ∧ B¬Cn ⊃ A1 ∨ . . . ∨Ak.



From Proposition 2 and the fact that default negation, not F is translated
into B¬F , one immediately derives an important relationship between strong
negation and default negation in logic programs:

Proposition 5 Strong Negation vs. Default Negation. Suppose that P is
a logic program. The inference rule –F

not F
is satisfied by all semantics of P

obtained by the embedding of P into AEB via the translation TB¬(P ) and for all
objective formulae F such that P includes the strong negation constraint SA, for
every atom A that occurs in F . ut

It is also worth noting that, for atomic objective formulae A, the default
axioms discussed above have a particularly simple translation into logic pro-
gramming rules: –A ← not A and A ← not –A.

3 Explicit Negation

In this section we introduce an alternative notion of symmetric negation in the
Autoepistemic Logic of Beliefs, which we call explicit negation. The resulting
extension of AEB , called the Autoepistemic Logic of Beliefs with Explicit Nega-
tion, AEBX , demonstrates the flexibility of the AEB framework in expressing
different forms of negation.

After providing motivation and formal definitions, we show that static ex-
pansions in AEBX are sufficiently expressive to characterize the well-founded
semantics with explicit negation, WFSX , a semantics of logic programs intro-
duced earlier in [23]. We then contrast explicit negation with strong negation.
Section 4 illustrates an application of explicit negation showing how belief revi-
sion in AEBX can directly capture the contradiction removal techniques used
for logic programs [4].

3.1 The Issue of Relevance

In logic programming, clauses are seen as inference rules rather than material
implications. However, for definite and normal programs this distinction is im-
material. Due to the absence of negative facts in such programs, the addition
of a contrapositive ¬Head→ ¬Body of a program rule Head← Body has no
bearing on the rest of the program.

On the other hand, in normal logic programs extended with a symmetric
negation (hereafter, simply called extended logic programs or ELPs) some care
is needed if one wants to preserve the procedural reading of logic program rules.
According to this reading, as in a procedure, the truth value of the head of a rule
is solely determined by the truth value of its body. Thus, the procedural reading
indicates that computing the truth value of a literal can be done by relying solely
on the procedural call graph implicitly defined by the rules for literals. In other
words, literals that are not (transitively) called by the rules for another literal
should not influence its truth value. This well-known property, called relevance



[10], is essential to guarantee the availability of (strictly) top-down evaluation
procedures for a semantics. It is worth noting that the well-founded semantics for
normal logic programs [12] obeys relevance (cf. [10]). On the other hand, neither
the Stable Models Semantics, nor AEB when applied to theories resulting from
logic programs with the strong negation constraints, satisfy this principle.

One paramount motivation for introducing AEBX is the desire to capture
those semantics of logic program that satisfy relevance and thus permit efficient,
top-down implementations. As shown in Example 2, queries for non-relevant se-
mantics cannot, in general, be evaluated in a top-down fashion using standard
logic programming implementation procedures, i.e., by simply following the pro-
gram’s call graph. The other was the desire to ensure that AEBX is more ex-
pressive than AEB by providing a meaningful semantics to those programs that
appear to have a well-defined intended meaning and yet do not have a consistent
semantics when strong negation is used (see Example 3).

Example 2. Take the following theory T and corresponding logic program P :
B¬–god exists ⊃ god exists god exists ← not –god exists
B¬god exists ⊃ –god exists –god exists ← not god exists
B¬god exists ⊃ –go to church –go to church ← not god exists
go to church go to church

where the first two rules represent two conflicting default axioms, which read
“I conclude God exists if I disbelieve Its non-existence” and “I conclude God
doesn’t exist if I disbelieve Its existence”. The third rule states that “If I disbe-
lieve the existence of God then I do not go to church”, and the fourth that “I go to
church”. If – is understood as strong negation, i.e. if strong negation constraints
are added to T , then the theory has one expansion, where god exists because I go
to church. Indeed, go to church ⊃ ¬–go to church (strong negation constraint),
which by contraposition of the third clause entails ¬B¬god exists. Therefore,
since –god exists only appears in the second clause, ¬–god exists holds in all
minimal models, and by necessitation rule (N), B¬–god exists. Hence, by the
first clause of T , god exists holds in all expansions of the theory. Note that this
conclusion is not relevant. Looking at the program P makes it clear that only
the first two rules are (transitively) called by god exists. However, the reader
may check that the theory consisting solely of the first to clauses, does not have
god exists in all its expansions. With explicit negation (to be defined below)
we have different conclusions, and the corresponding least expansion includes
{go to church,B¬–go to church} but not god exists nor B¬–god exists (cf. Ex-
ample 4). ut

Example 3. Take now the following theory and corresponding logic program:
B¬shave(x, x) ⊃ shave(John, x) shave(john, X) ← not shave(X, X)
shave(y, x) ⊃ go dine out(x) go dine out(X) ← shave(Y, X)
–shave(Peter, Peter) –shave(peter, peter)
–go dine out(John) –go dine out(john)

The first rule states that “John shaves everyone not believed to shave them-
selves”. The second says that “If x has been shaved (by anyone) then x will
go out to dine”. The third states that “Peter does not shave himself”, and the



fourth that “John has not gone out to dine”. We would like to know whether
we believe John has shaved himself given that he has not gone out to dine. Note
that believing he has not shaved himself leads to a contradiction, and that the
conclusion that he has shaved himself is not true in all minimal models.

If the strong negation constraints are added to this theory then AEB as-
signs no consistent meaning to it (there is no consistent expansion). On the
contrary, if explicit negation, to be defined below, is used instead the theory has
one expansion that includes: {–go dine out(john),B¬go dine out(john)} but
not shave(john, john). The absence of consistent expansions by using strong
negation is brought about by the use of the contrapositive ¬go dine out(X) ⊃
¬shave(X,X) to conclude ¬shave(john, john),B¬shave(john, john), and
shave(john, john) (contradiction). ut

As we have seen, the reason strong negation does not directly capture any
semantics for extended logic programs complying with relevance, such as WFSX,
is because of its very definition. Strong negation constraints, –A ⊃ ¬A, state that
strongly negated facts or conclusions entail classically negated ones, thereby
permitting the use of the contrapositives of the material implications resulting
from the translation of the logic program rules.

What the above two paradigmatic examples have in common is the back
propagation of truth values by strong negation, against the logic program rule
arrow, into a loop of otherwise undefined literals (i.e., such that neither L nor
not L hold). In the Example 2 we have an even loop over default negation, and
in the Example 3 an odd one. In the first example, the back propagation decides
the loop one way, and in the second it comes up against the impossibility of
resolving the loop by imposing a truth value. However, as we shall see below,
explicit negation does not affect either loop.

To conclude, because of its use of classical negation contrapositives, strong
negation leads both to logic programs without a semantics and to logic pro-
gram theories with unwarranted (non-relevant) conclusions, i.e. conclusions not
solely based on the procedural call graph of the logic program. To be able to
capture relevant logic program semantics a weaker notion of symmetric negation
is needed. Theories with explicit negation which are translatable into extended
logic programs can be efficiently queried by the top-down procedural implemen-
tation technology of logic programs [2].

3.2 Introducing Explicit Negation

Explicit negation is added to AEB by means of an explicit negation operator F ,
thus defining the Autoepistemic Logic of Beliefs with Explicit Negation, AEBX.
Specifically, this is accomplished by:

– Augmenting the original objective language L with new objective proposi-
tional symbols A, called dual or explicit negation atoms, resulting in a new
objective language L̂ and the new language of beliefs L̂AEB. The extension
of explicit negation to arbitrary positive objective formulae can be done in
the same way as for strong negation.



– Extending the logical closure operator CnAEB with the following Coherence
inference rule, for every objective propositional symbol A9

A

B¬A
.

A Coherence inference rule says that if one derives the dual, one has to believe
its negation, i.e. “A serves as evidence against A”. Since the Coherence inference
rules have no effect on belief theories that do not include explicit negation atoms,
in the sequel we will assume them as part of the operator CnAEB without further
mention, whenever explicit negation is used.

Example 4. The details of this example show the essence of how explicit negation
treats both previous examples, and the way it differs from strong negation.

The theory T � = CnAEB(T ∪ {Bgtc,B¬gtc}) is, with the obvious abbrevia-
tions, an expansion of the AEBX theory in Example 2 (where strong negation
is replaced by explicit negation).

This example illustrates why explicit negation does not affect the theory’s
even loop and, for the same reason, why it does not affect the odd loop of Exam-
ple 3. Indeed, in the general case, the explicit negation of the head of a program
rule may be true even though its body is undefined (i.e., such that neither BBody
nor B¬Body hold in an expansion). In other words, explicit negation allows the
overriding to false of a rule’s head when its body is undefined. Because of this
feature, there is no backward propagation of falsity of the head to the rule’s
body. On the other hand, when the rule’s body is true, then its head must nec-
essarily be true, which, however, represents a forward, rather than backwards,
propagation of truth values. ut

The definition of explicit negation, contrary to that of strong negation, does
not prevent the existence in a model of both A and A, for some atom A. However,
this kind of “paraconsistency” in models does not spill over to AEBX expansions:

Proposition 6. Let T � be a consistent expansion of a belief theory T in AEBX.
Then, for no atom A: T � |= A ∧A

The following result shows that the relevant logic program semantics WFSX
(defined in [23]) is embeddable in AEBX. This embeddability result requires,
besides the translation defined in [30, 31], a preliminary WFSX -semantics pre-
serving transformation of the logic program. This transformation consists in the
complete elimination of objective literal goals from rule bodies by means of un-
folding, that is by successively replacing them by their various alternative rule
definitions. The obtained programs are said to be in “semantic kernel form”.

Theorem 7 Explicit Negation and WFSX. Let P be an extended logic pro-
gram in the semantic kernel form. There is a one-to-one correspondence between
the partial stable models M of P , as defined in [23], and the consistent static
autoepistemic expansions T � of its translation TB¬(P ) into an AEBX belief the-
ory, where “explicit negation” of an atom A is translated into A. ut
9 If A = F then we have F

B¬F
.



Up to now, we have mainly considered AEBX theories resulting from the
translation of (non-disjunctive) logic programs. This is so because we have mo-
tivated explicit negation by contrast with strong negation on such programs.
Nevertheless, there is motivation to extend AEB with explicit negation to gen-
eral theories, and not just logic programs.

The theory of Example 1, with strong negation replaced by explicit negation
everywhere, illustrates such general use. In fact, the results will be the same,
except when later one adds good researcher(Paul), expressing that there is ev-
idence against Paul being a good researcher10. As shown in Example 1, by using
strong negation, one additionally concludes that Paul will receive a negative
evaluation, and that Keith is a good researcher and so receives a positive eval-
uation. When explicit negation is used instead, we still conclude that Paul will
receive a negative evaluation, but we no longer surmise that Keith is a good
researcher. Instead, a milder conclusion follows, that Keith is believed to be a
good researcher. This conclusion is not enough to give Keith a good evaluation.
See Example 5, for a detailed explanation of how these results are obtained.

3.3 Explicit and Strong Negation Compared

Explicit and strong negation share some similarities. The (derived) inference rule
from strong negation to beliefs shown in Proposition 2, also holds for explicit
negation. Explicit negation is in fact characterized by taking this inference rule
as primitive, since it is no longer derivable in the absence of the strong negation
axiom.

Another important similarity between both regards the symmetry between
atoms and their negations. The result of Proposition 3 still holds if strong nega-
tion is replaced by explicit negation. In other words, explicit negation is also
symmetric.

Because of the similarities, strong and explicit negation are even equivalent
for the class of theories whose expansions capture the semantics of logic programs
under Stable Models. Indeed, the result in Theorem 4 remains true regardless of
whether “classical” negation is translated into strong or into explicit negation.

For logic programs, explicit negation can be seen as an approximation to
strong negation, in the sense that all the relevant consequences of a belief theory
with strong negation remain true in AEBX after strong negation is replaced
everywhere by explicit negation:

Proposition 8. Let Ts be a AEB theory with strong negation obtained from
an extended logic program P via the translation described in Section ??, Tx be
the AEBX theory obtained from Ts by replacing strong by explicit negation and
deleting all the strong negation constraints in Ts, and let T �s be an expansion of
Ts. Then there exists an expansion T �x of Tx such that, for every objective atom
A, BA ∈ T �s if and only if BA ∈ T �x , and B¬A ∈ T �s if and only if B¬A ∈ T �x . ut
10 In Example 1 we added instead bad researcher(Paul), standing for

–good researcher(Paul).



Corollary 9 Explicit Negation Approximates Strong Negation. Let Ts

and Tx be as in Proposition 8. If some formula F of the form BL, where L
is either an objective atom A or its negation ¬A, holds in every expansion of Tx,
then F also holds in every expansion of Ts. ut

Consequently, query evaluation procedures for explicit negation in logic pro-
grams can be used as sound query evaluation procedures for strong negation in
logic programs11. However those procedures are not complete for strong negation
since, as shown by Examples 2 and 3, the converse of Corollary 9 is not true in
general. Another result contrasting explicit and strong negation is:

Theorem 10 Explicit Negation Extends Strong Negation. There is a
one to one correspondence between expansions of a theory Ts with strong nega-
tion and expansions of the AEBX theory Tx obtained by replacing in Ts strong
by explicit negation, and by adding, for every atom A, the clause: A ⊃ ¬A. ut

Disjunctive Syllogism is a derived inference rule applicable to classical and
strong negations, but which is not enjoyed by explicit negation. This rule typi-
cally allows one to conclude A on the strength of A ∨B and ¬B (or –B).

Example 5. Consider the theory:

good researcher(Paul) good researcher(Keith) ∨ good researcher(Paul)

stating that “there is evidence against Paul being a good researcher”, and that
“at least one of Keith or Paul is a good researcher”.

Whereas with strong negation good researcher(Keith) follows from
the theory by virtue of the Disjunctive Syllogism, with explicit nega-
tion it is not so. Instead, a milder conclusion obtains: First, note that
good researcher(Keith) ∨ good researcher(Paul) is equivalent to the for-
mula ¬good researcher(Paul) ⊃ good researcher(Keith). Now, apply-
ing Necessitation, B(¬good researcher(Paul) ⊃ good researcher(Keith)).
By then applying axiom (K), we conclude B¬good researcher(Paul) ⊃
Bgood researcher(Keith). Since the premise of this implication follows from
good researcher(Paul) by Coherence, we extract the milder conclusion
Bgood researcher(Keith).

Intuitively, having evidence against Paul being a good researcher does not
ensure that John is not a good researcher, and so does not warrant Keith being
a good researcher. However, this information is enough for believing Paul is not
a good researcher, and consequently to believe Keith is. Contrast this reading
with the one of strong negation, where –good researcher(Paul) means “John is
a bad researcher”. In this case, and knowing that either Paul or Keith is a good
researcher, it is expected that Keith is a good researcher. ut

11 See [2] for a description of such evaluation procedures.



4 Application of Explicit Negation

Applications of the logic programming semantics WFSX have been studied in
various domains, including hypothetical reasoning [24], model-based diagnosis
[26], and declarative debugging of logic programs [25]. Many of these applications
require belief revision methods, via contradiction removal techniques [4]. Here we
show how to capture belief revision in AEBX and we illustrate how to extend the
above mentioned applications from the class of logic programs to the significantly
broader class of belief theories.

Unlike normal programs, extended logic programs with symmetric negation
may be contradictory, i.e., may not have a (consistent) semantics. While for some
programs this seems reasonable (e.g., for a program with the two facts a and a),
for some others this may not be justified:

Example 6. Consider the program P = {runs ← not broken; runs} stating
that “if we assume that a car is not broken, then it runs”, and that “the car
does not run”.

None of the logic programming semantics mentioned in this paper assigns
a consistent meaning to this program. Indeed, since there are no rules in the
program for broken, all of the semantics assume not broken true (¬broken is
true in all minimal models of the corresponding AEB theory), and so both
runs and runs hold. If runs in the logic program is understood as the strong
negation of runs then, since runs ∧ –runs ⊃ ⊥, no consistent expansion of the
corresponding belief theory exists. The same happens if runs is understood as
the explicit negation of runs, cf. Proposition 6.

But one can argue that, since the car does not run, it follows by “reductio
ad absurdum” that our assumption that the car is not broken must be incorrect
and thus has to be revised. ut

The Contradiction Removal with Explicit Negation (CRSX ) technique of [4]
removes contradiction from logic programs under WFSX (wherever possible), by
revising any default assumption that would otherwise lead to contradiction. To
do so, it adds to programs a rule of the form L← not L, for each such assumption
not L, with the effect that no model of the program can now contain not L. The
alternative minimal contradicition removing sets of such “inhibition rules” can
be added to the original program in order to obtain the alternative minimally
revised programs.

Example 7. The only revision of the program in Example 6, is obtained by adding
to it broken ← not broken. The revised program is no longer contradictory: its
WFSX is {runs,not runs}. Furthermore, this addition is minimal. ut

The addition of inhibition rules can be allowed for only some pre-designated
set of literals – the revisables. These are the literals that can be independently
revised. Other literals may have their truth value revised but only as a con-
sequence of changes in the revisables. Restricting the revisables is crucial for
controlling the causal level at which assumption withdrawal may be performed.



Indeed, in an application domain such as diagnosis, revising the functional nor-
mality assumption about a component may be conditional upon revising the
functional normality assumption about some subcomponent. Conversely, it may
suffice to hypothesize the abnormality of a subcomponent to put in question the
normality of the component containing it. We will deal with both issues.

Example 8. Consider now the (contradictory) program:

runs ← not broken broken ← flatT ire
runs broken ← badBattery

If addition of inhibition rules is allowed for any literal, then one such minimal
addition removing the contradiction is {broken← not broken}. This revision can
be seen as a diagnosis of the car simply stating the car might be broken. However,
in this case one would like the diagnosis to delve deeper into the car’s functional
structure, and obtain two minimal diagnoses: one suggesting a possible problem
with a flat tire, and another suggesting a possible problem with a bad battery.
This is achieved by declaring as revisables only badBattery and flatT ire. ut

This declaration of revisables is akin to the declaration of abducible literals
in abductive logic programming. There, a solution to an abductive query is
obtained by minimally, and consistently, adding to the theory facts needed in
order to prove the abductive query literal. Moreover, addition of facts is only
allowed for literals declared as abducibles12.

Example 9. Consider the program obtained from Example 8 by removing the fact
runs, i.e. the program {runs← not broken; broken← flatT ire; broken←
badBattery}. If every literal is abducible, then one abductive solution for
not runs is {broken} (i.e., this is one possible explanation of the fact that the car
is not running). To obtain only the deeper diagnosis of the car, simply declare
as abducibles {flatT ire, badBattery}: the abductive solutions to that query are
then {flatT ire} and {badBattery}. ut

This technique can easily be imported into AEBX. Define the revisions
of a theory T which has no expansions (a contradictory theory), as the non-
contradictory theories obtained by minimally adding clauses of the form B¬L ⊃
L, which disallow (consistent) expansions in which B¬L is true13.

Note that, as opposed to logic programs, in AEBX there is no need for
recourse to a meta-linguistic declaration of revisables. The language itself is
sufficiently expressive to handle the definition of revisables. To realize this let us
get back to the car example, which in AEBX is rendered as the belief theory T :

B¬broken ⊃ runs badBattery ⊃ broken
runs flatT ire ⊃ broken

12 A formal comparison of contradiction removal and abduction in logic programs can
be found in [9].

13 An expansion with B¬L would also contain L and BL, since expansions are closed
under necessitation, and would thus be inconsistent.



where broken is non-revisable. In CRSX this declaration of non-revisability
means that broken may have its truth value revised only indirectly, as a conse-
quence of changes in the revisables, but never directly on account of the addition
of an inhibition rule for it. In AEBX it means that beliefs about broken may
change only indirectly, as a consequence of changes in beliefs about revisables,
but never directly because of the addition of an inhibition clause for it. To achieve
this, we must require that belief changes about broken be solely determined by
the belief changes about the revisables, so that adding a single inhibition clause,
for broken only, is insufficient because the resulting theory has no consistent
expansions. By Necessitation and the axiom (K), the closure of T contains:

BflatT ire ∨ BbadBattery ⊃ Bbroken.
Thus, belief in the truth of broken follows from belief in flatT ire or belief in
badBattery. For the falsity of belief in broken to be determined by the falsity
of beliefs in flatT ire and badBattery we need an additional statement, which
ensures that if both flatT ire and badBattery are disbelieved then broken must
be disbelieved as well, i.e.:

B¬flatT ire ∧ B¬badBattery ⊃ B¬broken (1)

Example 10. The belief theory T , augmented with clause (1) has two revisions:

T ∪ {B¬badBattery ⊃ badBattery} and T ∪ {B¬flatT ire ⊃ flatT ire}
each corresponding to one of the desired deeper diagnoses.

Observe that T ′ = T ∪ {B¬broken ⊃ broken} is not a revision. Indeed,
all minimal models of the theory have ¬flatT ire and ¬badBattery, because
there are no clauses defined for neither flatT ire nor badBattery. Thus every
expansion of T ′ must contain {B¬flatT ire,B¬badBattery}. Now, by clause (1),
every expansion of T ′ has B¬Broken, and thus, by the inhibition clause for
broken and necessitation, is inconsistent. ut

Notice the similarity between clause (1) and Clark’s completion [7] of broken.
The latter implies that if both flatT ire and badBattery are false then broken is
false, whilst (1) states the same about the corresponding beliefs. For this reason
(1) is called the belief completion clause for broken. The formal definition of
belief completion rules can be found in [1].

The specification of revisables is captured in the language of AEBX by adding
for each literal which is not a revisable the corresponding belief completion
clause. This language level declarative specification achieves the same effect as
the declaration of revisables for logic programs, which in the latter case can only
be made meta-linguistically. Though not detailed here, it can also be used to
explain the intuitive notion that a literal is abducible unless the rules defining it
are closed by a completion clause. Moreover it has greater generality, by allowing
conditions to be added to belief completion clauses. For example, if instead of
simply stating that broken is not a revisable, we want to say that broken is not
revisable only if the atom deeper is a consequence of the theory. In such a case
we would just add:

deeper ∧ B¬flatT ire ∧ B¬badBattery ⊃ B¬broken.



This allows for flexible control over the level of revision: adding the fact deeper,
or concluding it, results in only causally deeper faults being obtained. Other-
wise superficial faults can be obtained. Diverse complex diagnosis preferences
and strategies can be encoded in AEBX (see [8] to find out how this can be
accomplished by changing the revisables in logic programs).

We conclude by remarking that either one of symmetric negation in AEB
can be used to obtain a solution to belief revision not relying on a theory trans-
formation: instead of the addition of minimal sets of inhibition rules, alternative
revisions can be obtained directly by modifying the definition of expansions
leading to the notion of Careful Autoepistemic Expansions (see [1]).

5 Concluding Remarks

We have shown that, to represent and reason about knowledge, one requires,
besides the usual default negation, another form of negation, symmetric with
respect to default negation, and that classical negation does not fulfill that rôle.

We then introduced, into the quite general framework of Autoepistoemic
Logic of Belief two types of symmetric negation, strong and explicit, and illus-
trated their application on a number of knowledge representation examples.

Although similar, in logic programs strong and explicit negation differ in the
use made of contrapositives by strong negation, and in the amenability by explicit
negation to strictly top-down querying procedures. They are alike in that they
both capture the Answer-Sets semantics [15], differ from classical negation, and
enjoy symmetry. Of the two, explicit negation is weaker and easier to implement,
and thus it can be used as an approximation to strong negation.
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A Autoepistemic Logic of Beliefs

Here we briefly recall the definition of the Autoepistemic Logic of Beliefs, AEB,
introduced by Przymusinski in [29]. Consider a fixed propositional language L
with standard connectives (∨, ∧, ⊃, ¬) and the propositional letter ⊥ (denoting
false). The language of AEB is a propositional modal language LAEB obtained
by augmenting the language L with a modal operator B, called the belief oper-
ator. The atomic formulae of the form BF , where F is an arbitrary formula of



LAEB , are called belief atoms. The formulae of the original language L are called
objective. Observe that arbitrarily deep level of nested beliefs is allowed in belief
theories. Any theory T in the language LAEB is called a belief theory.

Definition 11 Belief Theory. By an autoepistemic theory of beliefs, or just a
belief theory , we mean an arbitrary theory in the language LAEB , i.e., a (possibly
infinite) set of arbitrary clauses of the form:

B1 ∧ ... ∧Bk ∧ BG1 ∧ ... ∧ BGl ∧ ¬BF1 ∧ ... ∧ ¬BFn ⊃ A1 ∨ ... ∨Am

where k, l,m, n ≥ 0, Ais and Bis are objective atoms and Fis and Gis are
arbitrary formulae of LAEB . Such a clause says that if the Bis are true, the Gis
are believed, and the Fis are not believed then one of the Ais is true. ut

We assume the following two simple axiom schemata and one inference rule
describing the arguably obvious properties of belief atoms:

(D) Consistency Axiom: ¬B⊥.
(K) Normality Axiom: For any formulae F , G: B(F ⊃ G) ⊃ (BF ⊃ BG).
(N) Necessitation Rule: For any formula F : F

BF

Definition 12 Formulae Derivable from a Belief Theory. For any belief
theory T , we denote by CnAEB(T ) the smallest set of formulae of the language
LAEB which contains the theory T , all the (substitution instances of) the axioms
(K) and (D) and is closed under both standard propositional consequence and
the necessitation rule (N). We say that a formula F is derivable from theory T
in the logic AEB if F belongs to CnAEB(T ). A belief theory T is consistent if
the theory CnAEB(T ) is consistent. ut

Definition 13 Minimal Models. [29] By a minimal model of a belief theory
T we mean a model M of T with the property that there is no smaller model
N of T which coincides with M on belief atoms BF . If a formula F is true in
all minimal models of T then we write: T |=min F and say that F is minimally
entailed by T . ut

The intended meaning of belief atoms BF is based on the principle of predi-
cate minimization:

BF ≡ F is minimally entailed ≡ F is true in all minimal models.

Definition 14 Static Autoepistemic Expansion. [29] A belief theory T � is
called a static autoepistemic expansion of a belief theory T if it satisfies the
following fixed-point equation T � = CnAEB(T ∪ {BF : T � |=min F}), where F
ranges over all formulae of LAEB . ut
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