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Abstract. Abduction has been on the back burner in logic programming, as it
can be too difficult to implement, and costly to perform, in particular if abductive
solutions are not tabled. If they become tabled, then abductive solutions can be
reused, even from one abductive context to another. On the other hand, current
Prolog systems, with their tabling mechanisms, are mature enough to facilitate
the introduction of tabling abductive solutions (tabled abduction) into them. We
recently published a conception of tabled abduction with its prototype, TABDUAL,
implemented in XSB Prolog. We detail here subsequent progress that has been
made on the implementation aspect of TABDUAL, towards its more practical use.
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1 Introduction

Abduction has been well studied in the field of computational logic, and logic program-
ming in particular, for a few decades by now [3, 5,6, 11]. Abduction in logic programs
offers a formalism to declaratively express problems in a variety of areas and it has
many applications, e.g. in decision-making, diagnosis, planning, belief revision, and
hypothetical reasoning [4,7, 12—14]. On the other hand, many Prolog systems have be-
come mature, and it thus makes sense to facilitate the use of abduction in them.

In abduction, finding some best explanations (i.e. abductive solutions) to the ob-
served evidence, or finding assumptions that can justify a goal, can be very costly. It
is often the case that abductive solutions found within a context are relevant in a dif-
ferent context, and thus can be reused with little cost. In logic programming, absent of
abduction, goal solution reuse is commonly addressed by employing a tabling mecha-
nism. Therefore tabling is conceptually suitable for abduction, to deal with the reuse of
abductive solutions. In practice, abductive solutions reuse is not immediately amenable
to tabling, because now solutions go together with an abductive context. It also poses a
new problem on how to reuse them in a different but compatible context, while catering
as well to all varieties of loops in logic programs, now complicated by abduction.

We recently introduced a concept of tabled abduction in abductive normal logic pro-
grams, and its prototype TABDUAL, implemented using XSB-Prolog [2], to address the
above issues [20]. It is realized via a program transformation, where abduction is sub-
sequently enacted on the transformed program. The transformation relies on the theory
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of the dual transformation [3], which allows to more efficiently handle the problem of
abduction under negative goals, by introducing their positive dual counterparts.

We report here on additional significant conceptual and technical progress of the
TABDUAL development towards its more practical use, which might be taken up by
other Prolog systems that afford tabling. First, we address the issue of heavy transfor-
mation load due to producing complete dual rules in advance of use. A natural solution
is to perform the dual transformation by need, i.e. dual rules for a predicate are only
created as their need is felt during abduction. We detail two approaches to realizing the
dual transformation by-need: tabling all dual rules as they are created for a predicate
or, in contrast, lazily generating and storing (instead of tabling) those dual rules in a
trie, as new alternatives are required. The former approach leads to an eager dual by-
need transformation, whereas the latter permits a lazy one. Second, we enhance TAB-
DUAL’s flexibility by permitting modular mixes of abductive and non-abductive parts.
The non-abductive part allows for simpler treatment of facts in programs, avoiding their
superfluous transformation, which would hinder the use of large factual data. Third, we
introduce a new TABDUAL system predicate that allows accessing ongoing abductive
solutions for dynamic manipulations, e.g. exercising preferences on abducibles.

The paper is structured as follows. Section 2 reviews basic notions of logic pro-
gramming and abduction in logic programs. The concept of tabled abduction is then
discussed, in Section 3. Section 4 details the progress made in the implementation of
TABDUAL. We broach related and future work, in Section 5, and conclude in Section 6.

2 Abduction in Logic Programs

A logic rule has the form H < By, ..., By,,not By,11,...,not B,, where n > m >
0 and H, B; with 1 < ¢ < n are atoms. In a rule, H is called the head of the rule and
By, ...,Bp,not By41, - ..,not By, its body. We use ‘not’ to denote default negation.
The atom B; and its default negation not B; are named positive and negative literals,
respectively. When n = 0, we say the rule is a fact and render it simply as H. The atoms
true and false are, by definition, respectively true and false in every interpretation. A
rule in the form of a denial, i.e. with empty head, or equivalently with false as head,
is an integrity constraint (IC). A logic program (LP) is a set of logic rules, where non-
ground rules (i.e. rules containing variables) stand for all their ground instances. We
focus on normal logic programs, i.e. those whose heads of rules are positive literals or
empty. As usual, we write p/n to denote predicate p with arity n.

Abduction, or inference to the best explanation (a common designation of one of its
uses in the philosophy of science [10, 16]), is a reasoning method, whereby one chooses
those hypotheses that would, if true, best explain the observed evidence — while meeting
any attending ICs — or that would satisfy some query. In LPs, abductive hypotheses (or
abducibles) are named literals of the program which have no rules, and whose truth
value is not initially assumed. Abducibles may have arguments, but they must be ground
on the occasion of their abduction. An abductive normal logic program is a normal
logic program that allows for abducibles to appear in the body of rules. Note that the
abducible ‘not a’ does not refer to the default negation of abducible a, as abducibles
have no rules, but instead to the explicitly assumed hypothetical negation of a.



The truth value of abucibles may be independently assumed true or false, via either
their positive or negated form, as the case may be, in order to produce an abductive
solution to a query, that is a consistent set of assumed hypotheses that support it. An
abductive solution to a query is a consistent set of abducible instances or their negations
that, when substituted by their assigned truth value everywhere in the program P, af-
fords us with a model of P (for the specific semantics used on P), which satisfies both
the query and the ICs — a so-called abductive model.

Abduction in LPs can naturally be accomplished by a top-down query-oriented pro-
cedure to find an (abductive) solution to a query (by need, i.e. as abducibles are encoun-
tered), where the abducibles in the solution are leaves in its procedural query-rooted
call-graph, i.e. the graph recursively engendered by the procedure calls from literals in
bodies of rules to heads of rules, and thence to the literals in the rule’s body. This top-
down procedure is possible only when the underlying semantics is relevant, i.e. avoids
computing a whole model in order to find an answer to a query: it suffices to use only
the rules relevant to the query (those in its procedural call-graph) to find its truth value.
The Well-Founded Semantics (WFS) [8] enjoys the relevance property, and thus per-
mits abduction to be performed by need, as induced by the top-down query-oriented
procedure. That is, it finds solely the relevant abducibles needed by the query; the value
of abducibles not mentioned in the abductive solution obtained is indifferent to the
query, assuming the ICs are satisfied. Our prototype of tabled abduction TABDUAL, im-
plemented in XSB Prolog, is underpinned by WFS with abduction theory [3]. Though
WES is three-valued, the abduction mechanism in TABDUAL enforces, by design, two-
valued abductive solutions: needed abducibles are assumed either true or false.

3 Tabled Abduction in Logic Programs

We start with the motivation for tabled abduction and subsequently show how tabled
abduction is conceptualized and realized in the TABDUAL transformation.

3.1 Motivation

Example 1. Consider program P : q <+ a. s+ b,q. t+ s,q.

where a and b are abducibles. Suppose three queries: ¢, s, and t, are individually
launched, in that order. The first query, ¢, is satisfied simply by taking [a] as the ab-
ductive solution for ¢, and tabling it. Executing the second query, s, amounts to satis-
fying the two subgoals in its body, i.e. abducing b followed by invoking g. Since ¢ has
previously been invoked, we can benefit from reusing its solution, instead of recom-
puting, given that the solution was tabled. That is, query s can be solved by extending
the current ongoing abductive context [b] of subgoal ¢ with the already tabled abductive
solution [a] of ¢, yielding [a, b]. The final query ¢ can be solved similarly. Invoking the
first subgoal s results in the priorly registered abductive solution [a, b], which becomes
the current abductive context of the second subgoal ¢. Since [a, b] subsumes the previ-
ously obtained abductive solution [a] of ¢, we can then safely take [a, b] as the abductive
solution to query ¢. This example shows how [a], as the abductive solution of the first
query g, can be reused from an abductive context of ¢ (i.e. [b] in the second query, s)



to another context (i.e. [a, b] in the third query, ). In practice the body of rule ¢ may
contain a huge number of subgoals, causing potentially expensive recomputation of its
abductive solutions and thus such unnecessary recomputation should be avoided.

Tabled abduction in TABDUAL consists of a program transformation of abductive
normal logic programs into tabled logic programs. Abduction is then enacted on the
transformed program. Example 1 indicates two key ingredients of the transformation:
(1) abductive context, which relays the ongoing abductive solution from one subgoal
to subsequent subgoals, as well as from the head to the body of a rule, via input and
output contexts, where abducibles can be envisaged as the terminals of parsing, and (2)
tabled predicates, which table the abductive solutions for predicates defined in the input
program, such that they can be reused from one abductive context to another.

3.2 The Core Transformation

We now discuss the core TABDUAL transformation employing the very idea of tabling
and of reusing abductive solutions, the dual transformation to deal with abduction under
negative goals, and how abducibles and queries are transformed. Further constructs of
the transformation, i.e. to deal with loops in a program and with programs containing
variables, which are not the focus in the present paper, are fully detailed in [22].

Tabling Abductive Solutions We show, in Example 2, how the idea described in Ex-
ample 1 can be realized by the program transformation. It illustrates how every rule
in P, is transformed, by introducing a corresponding tabled predicate with one extra
argument for the abductive solution entry, such that it can facilitate solution reuse from
one abductive context to another.

Example 2. We show first how the rule ¢ < s, ¢ in P; is transformed. It is transformed
into two rules:
tan(E) < s([],7),q(T, E). t(I,0) < tow(FE),produce(O, I, E).

Predicate ¢,;(FE) is the tabled predicate which is introduced to table the abductive so-
lution of ¢ in its argument E. Its definition, in the left rule, follows from the original
definition of ¢. Two extra arguments, that serve as input and output contexts, are added
to the subgoals s and ¢ in the rule’s body. The left rule expresses that the tabled abduc-
tive solution F of t,; is obtained by relaying the ongoing abductive solution in context
T from subgoal s to subgoal ¢ in the body, given the empty input abductive context
of s (because there is no abducible in the body of the original rule of ¢). The rule on
the right shows how the tabled abductive solution in E of t,; can be reused in a given
(input) abductive context of ¢. This rules expresses that the output abductive solution O
of ¢ is obtained from the the solution entry E of ¢,; and the given input context I of ¢,
via the TABDUAL system predicate produce(O, I, E). This system predicate concerns
itself with: whether F is already contained in I and whether there are any abducibles
from FE, consistent with I, that can be added to produce O. If E is inconsistent with [
then the specific entry ' cannot be reused with I, produce fails and another entry E is
sought. In other words, produce/3 should guarantee that it produces a consistent output
context O from [ and F.



The other two rules in P; are transformed following the same idea. The rule s < b, ¢

is transformed into:
Sab(E) < q([b], E). s(1,0) < sap(E), produce(O,1, E).
where s,,(E) is the predicate that tables, in F, the abductive solution of s. Notice
how b, the abducible appearing in the body of the original rule of s, becomes the input
abductive context of g. Finally, the rule q < a is transformed into:
Qab([a])' Q(Ivo) A Qab(E)vaOduce(Ovjv E)

where the original rule of ¢, which is defined solely by the abducible a, is simply trans-
formed into the tabled fact qg.

Abduction under Negative Goals For abducing under negative goals, the program
transformation employs the dual transformation [3], which makes negative goals ‘pos-
itive’, thus permitting to avoid the computation of all abductive solutions, and then
negating them, under the otherwise regular negative goals. Using the dual transforma-
tion, we are able to obtain one abductive solution at a time, as when we treat abduction
under positive goals. The dual transformation defines for each atom A and its set of
rules R in a program P, a set of dual rules whose head not_A is true if and only if A
is false by R in the employed semantics of P. Note that, instead of having a negative
goal not A as the rules’ head, we use its corresponding ‘positive’ one, not_A. Example
3 illustrates how the dual transformation is employed in the TABDUAL transformation.

Example 3. Consider program Ps: P a. P < q,notr. 7.
where a is an abducible.
(A) With regard to p, the transformation will create a set of dual rules for p which falsify
p with respect to its two rules, i.e. by falsifying both the first rule and the second rule,
expressed below by predicate p*! and p*2, respectively:
not_p(I,0) « p* (I,T),p**(T, O).
In the TABDUAL transformation, this rule is known as the first layer of the dual trans-
formation. Notice the addition of the input and output abductive context arguments, I
and O, in the head, and similarly in each subgoal of the rule’s body, where the interme-
diate context T is used to relay the abductive solution from p*! to p*2. The second layer
contains the definitions of p*! and p*2, where p*! and p*? are defined by falsifying the
body of p’s first rule and second rule, respectively. In case of p*!, the first rule of p is
falsified by abducing the negation of a. Therefore, we have:
p*L(I,0) + not_a(I,0).
Notice that the negation of a, i.e. not a, is abduced by invoking the subgoal not_a(I, O).
This subgoal is defined via the transformation of abducibles, as discussed below. In case
of p*2, the second rule of p is falsified by failing one subgoal in its body at a time, i.e.
by negating g or, alternatively, by negating not r.
p*2(I,0) <+ not_q(I,0). p*3(I,0) + r(I,0).
(B) With regard to ¢, the dual transformation produces the fact not_q(I, I) as its dual,
because there is no rule for ¢ in . Being a fact, the content of the context [ is just
relayed from the input to the output context, i.e. having no body, the output context
does not depend on the context of any other goals, but only on the input context.
(C) With regard to r, since it is a fact, its dual not_r(_, -) < fail may be introduced or
simply omitted in the transformed program.



In TABDUAL, every abducible (and its negation) is transformed into a rule, which
effectively updates the given abductive context with the abducible (or its negation, re-
spectively). For instance, the abducible a from Example 3 is transformed into:

a(1,0) < insert(a,I,O).
where insert(A, I, O) is a TABDUAL system predicate which inserts abducible A into
the input context I, resulting in the output context O. During the insertion, it maintains
the consistency of the context. The negation not a of the abducible a/1 is transformed
similarly, where not a is renamed into not_a in the head:
not_a(I,0) < insert(not a,I,O).

Finally, a query to a program, consequently, must be transformed too: (1) A posi-
tive goal GG is simply augmented with the two extra arguments for the input and output
abductive contexts, and (2) A negative goal not G is made ‘positive’, not_G, in addi-
tion to the two extra input and output context arguments. A query should additionally
ensure that all ICs are satisfied. With regard to ICs, when there is no IC defined in a
program, then, following the dual transformation, fact not_false(I,I) is added to the
transformed program. Otherwise, ICs, which essentially are rules with false in their
heads, are transformed just like any other rules.

Example 4. Query not p is first transformed into not_p(I, O). Then, to satisfy all ICs,
it is conjoined with not_false/2, resulting in its complete call, as a top goal:

?— not_p([],T), not_false(T,O).
where O is an abductive solution to the query, given initially an empty input context.
Note, how the abductive solution for not_p is further constrained by passing it to the
subsequent subgoal not_false for confirmation, via the intermediate context 7.

4 Further Implementing Tabled Abduction in Logic Programs

The core TABDUAL transformation has been implemented in XSB Prolog, and its im-
provement is continuing. Next, we discuss the further implementation aspect of TABD-
UAL, addressing progress that has been made to improve its earlier version in dealing
with the dual transformation and handling programs with large factual data. Moreover,
we enhance TABDUAL’s flexibility with a feature to access ongoing abductive solutions
for dynamic manipulation.

4.1 By-need Dual Transformation

The early version of TABDUAL performs a naive complete dual transformation, i.e. it
produces all (second layer) dual rules, in advance, for every defined atom in an input
program. This should be avoided in practice, as potentially massive dual rules and large
sets of them are created in the transformation, though only a few of them might be
invoked during abduction. As real-world problems typically consist of a huge number
of rules, the transformation may suffer from a heavy load and may take ages. It hinders
the subsequent abduction phase to take place next, not to mention the compile time of
the thus produced large transformed program.

One solution to this problem is to compute dual rules by need. That is, dual rules
are created during abduction, based on the need of the on-going invoked goals. The



transformed program still contains the first layer of the dual transformation, but its
second layer is defined using a newly introduced TABDUAL system predicate, which
will be interpreted by the TABDUAL system on-the-fly, during abduction, to produce the
concrete definitions of the second layer.

Example 5. Recall Example 3. The by-need dual transformation contains the same first
layer: not_p(I,0) «+ p**(I,T),p**(T,O). The second layer now contains, for each
ie€{1,2}: p*(I,0) <« dual(i,p,I,0).

The newly introduced system predicate dual/4 facilitates the by-need construction of
generic dual rules (i.e. without any context attached to them) from the i-th rule of p/1,
during abduction. It will also instantiate the generic dual rules with the provided argu-
ments and contexts, and subsequently invoke the instantiated dual rules.

Extra computation load that may occur during the abduction phase, due to the by-
need construction of dual rules, can be reduced by memoizing the already constructed
generic dual rules. Therefore, when such dual rules are later needed, they are available
for reuse and their recomputation avoided. We discuss two approaches for memoizing
generic dual rules; each approach influences how generic dual rules are constructed.

Tabling Generic Dual Rules The straightforward choice for memoizing generic dual
rules is to use tabling. The system predicate dual/4 is defined as follows (abstracting
away irrelevant details):
dual(N, P, I,0) < dual_rule(N, P, Dual), call_dual(P, 1,0, Dual).

where dual_rule/3 is a tabled predicate that constructs a generic dual rule Dual from
the N-th rule of atom P, and call_dual/4 instantiates Dual with the provided argu-
ments of P (in case P is a non-nullary predicate) and the input context / and invokes
the instantiated dual rule to produce the abductive solution in O.

Though predicate dual/4 helps realize the construction of dual rules by need, i.e.
only when a particular p** is invoked, this approach results in the eager construction of
dual rules because of tabling (assuming XSB’s local table scheduling is in place, rather
than its alternative, in general less efficient, batched scheduling). For instance, in Exam-
ple 3, when p*2(I, O) is invoked, which subsequently invokes dual_rule(2,p, Dual),
all two alternatives of dual rules from the second rule of p, i.e. p*2(I, O) <+ not_q(I,0)
and p*?(1,0) <« r(I,0) are constructed before call_dual/4 is invoked. This is a bit
against the spirit of a full by-need dual rules construction, where only one alternative
dual rule is constructed at a time, i.e. generic dual rules are to be constructed lazily.

As mentioned earlier, the reason behind this eager by-need construction is the local
table scheduling strategy, that is employed by default in XSB. This scheduling strat-
egy may not return any answers out of a strongly connected component (SCC) in the
subgoal dependency graph, until that SCC is completely evaluated [26]. Alternatively,
batched scheduling is also implemented in XSB. It allows returning answers outside of
a maximal SCC as they are derived: in terms of the by-need dual rules construction,
this means dual_rule/3 will construct only one generic dual rule at a time before it is
instantiated and invoked. Since the choice between the two scheduling strategies can
only be made via a new XSB installation, i.e. one XSB instance for one scheduling
strategy, which is inconvenient for general purpose, we shall consider another approach
to implement a lazy dual rules construction.



Storing Generic Dual Rules in a Trie XSB offers a mechanism for facts to be directly
stored and manipulated in tries. It provides predicates for inserting terms into a trie,
unifying a term with terms in a trie, and other trie manipulation predicates, both in
the low-level and high-level API. Generic dual rules can be represented as facts; thus
once they are constructed, they can be memoized in a trie and later can be retrieved
and reused. A fact of the form d(N, P, Dual, Pos) is used to represent a generic dual
rule Dual from the N-th rule of P with the additional tracking information Pos, which
informs the position of literal used in constructing the latest dual rule. In the current
TABDUAL implementation, we opt for the low-level API trie manipulation predicates,
as they can be faster than the higher-level API.

Using this approach, the system predicate dual/4 is defined as follows (abstracting
away irrelevant details):

1. dual(N,P,I,0) <« trie_property(T,alias(dual)),dual(T, N, P,I,0).
2a. dual(T, N, P,1,0) « trie_interned(d(N, P, Dual, ), T),
call_dual(P, 1,0, Dual).
2b. dual(T,N, P,I,0) < current_pos(T, N, P, Pos),
dualize(Pos, Dual, NextPos),
store_dual(T, N, P, Dual, NextPos),
call_dual(P, 1,0, Dual).

Assuming that a trie T with alias dual has been created, predicate dual/4 (line 1) is
defined by an auxiliary predicate dual/5 with an access to the trie T, the access being
provided by the trie manipulation predicate trie_property/2. Lines 2a and 2b give the
definition of dual /5. In the first definition (line 2a), an attempt is made to reuse generic
dual rules, which are stored already as facts d/4 in trie T'. This is accomplished by
unifying terms in 7" with d(N, P, Dual, Lits), one at a time through backtracking, via
the trie manipulation predicate trie_interned/2. Predicate call_dual/4 then does the
job as before. The second definition (line 2b) constructs generic dual rules lazily. It
finds, via current_pos/4, the current position Pos of the literal from the N-th rule of
P, which can be obtained from the last argument of fact d(N, P, Dual, Pos) stored
in trie T'. Using this Pos information, a new generic dual rule Dual is constructed by
means of dualize/3. It additionally updates the position of the literal, NextPos, for
the next dualization. The dual rule Dual, together with the tracking information, is then
memoized as a fact d(N, P, Dual, NextPos) in trie T, via store_dual/5. Finally, the
just constructed dual Dual is instantiated and invoked using call_dual /4.

Whereas the first approach constructs generic dual rules by need eagerly, the second
approach does it lazily. But this requires memoizing dual rules to be carried out explic-
itly, and the help of additional tracking information to pick up on dual rule generation
at the point where it was last left. This approach affords us a simulation of batched table
scheduling for dual/5, within the overall local table scheduling.

4.2 Transforming Facts

TABDUAL by its specification transforms facts as any other rules in the program. For
instance, fact p(1) will be completely transformed into:



Pab(1,[]). p(X,1,0) + pup(X, E), produce(O, I, E).
not_p(X,I,0) + p*(X,I,0). p*(X,I,I)+ X # 1.

Similar transformed rules are produced for all other facts on p/1, e.g. p(2),p(3),.. ..
This is clearly superfluous as facts do not induce any abduction and the transformation
would be unnecessarily heavy for programs with large factual data, which is often the
case in many real world problems.

A predicate, say p/1, comprised of just facts, can be much more simply transformed.
The transformed rules p,/2 and p/3 can be substituted by a single rule:

p(X, 1, 1) < p(X).
and their negations, rather than using dual rules, can be transformed to a single rule:
not_p(X,I,I) < not p(X).
independently of the number of facts are there for p/1. Note that the input and output
context arguments are added in the head, and the input context is just passed intact to
the output one. All facts of predicate p/1 can be defined in the non-abductive part of
the input program, thus allowing modular mixes of abductive and non-abductive parts.
The non-abductive part is indicated by the begin Prolog and end Prolog identifiers and
any program between them will not be transformed, i.e. it is treated as a usual Prolog
program. For facts p(1), p(2), and p(3), we simply list them as follows:
beginProlog. p(1). p(2). (3). endProlog.

Though this new transformation for facts seems trivial, it considerably improves the
performance, in particular if we deal with abductive logic programs having large factual
data. In this case, not just the whole TABDUAL transformation time and space can be
reduced, but the abduction time itself.

4.3 Accessing Abductive Solutions

TABDUAL encapsulates the ongoing abductive solution in an abductive context, which
is relayed from one subgoal to another. In many problems, it is often the case that one
needs to access the ongoing abductive solution in order to manipulate it further, e.g. to
filter abductive solutions using preferences, or eliminate so-called nogood combinations
(those known to violate constraints). But since it is encapsulated in an abductive context,
and such a context is only introduced in the transformed program, the only way to
accomplish it would be to modify directly the transformed program rather than the
original problem representation. This is inconvenient and clearly unpractical when we
deal with real world problems with a huge number of rules.

We overcome this issue by introducing a new system predicate abd@(P) that allows
to access the ongoing abductive solution and to manipulate it using the rules of P. This
system predicate is transformed by unwrapping it and adding an extra argument to P
for the ongoing abductive solution.

Example 6. Suppose program Ps contains the rules:

q < r,abdQ(s),t. $(X) + v(X).
along with some other rules. Note that, though predicate s within system predicate
wrapper abd(@ /1 has no argument, its rule definition has one extra argument for the on-
going abductive solution. The tabled predicate g, in the transformed program would be
qab(E) < r([],T1),s(T1,11,12), t(To, E). That is, s/3 now gets access to the ongoing



abductive solution 7 from r/2, via its additional first argument. It still has the usual
input and output contexts, 77 and 75, respectively, in its second and third arguments.
Rule s/1 in P; is transformed like any other rules.

The new system predicate abd@/1 also permits modular mixes of abductive and
non-abductive program parts. For instance, the rule of s/1 in P; may be defined by
some predicates from the non-abductive program part, e.g. the rule of s/1 can be de-
fined instead as s(X) < prolog(preferred(X)), where preferred(X) defines, in the
non-abductive program part, some preference rule on a given solution X. The predi-
cate wrapper prolog/1 is a general TABDUAL system predicate employed to execute
Prolog calls to predicates, in its argument, that are not transformed by TABDUAL (e.g.
Prolog built-in predicates, or those defined in the non-abductive program part, like pre-
ferred(X) in this example).

5 Discussion

TABDUAL deals additionally with a variety of loops in abductive normal logic programs
as well as programs with variables; the details can be found in [20]. There have been a
plethora of work on abduction in logic programming, cf. [5, 11] for a survey on this line
of work. But, with the exception of ABDUAL [3], we are not aware of any other efforts
that have addressed the use of tabling in abduction for abductive normal logic programs,
which may be complicated with loops. Like ABDUAL, we use the dual transformation
and rely on the same theoretic underpinnings, but ABDUAL does not allow variables
in rules. Tabling also has only been employed there limitedly, i.e. to table its meta-
intepreter, which in turn allows abduction to be performed in the presence of loops in
a program. It does not address at all the issues raised by the desirable reuse of tabled
abductive solutions. Tabling has also been used in the context of statistical abduction
[21,25], but it concerns itself with probabilistic logic programs, whereas TABDUAL with
abductive normal logic programs.

We have evaluated TABDUAL in practice, detailed elsewhere [23], using examples
from constraint satisfaction and declarative debugging problems [17, 18], to better un-
derstand its performance and scalability with respect to its main features. The result
is promising, that TABDUAL indeed benefits from tabling ongoing abductive solutions:
as constraints become more complex, its performance consistently surpasses that of its
non-tabling counterpart. Other work (cf. [24]) details the preliminary use of TABDUAL
in decision making.

Our preliminary experiment to compare the eager and the lazy by-need dual trans-
formation yields that the lazy computation returns the first solution much faster than
the eager one. When all solutions are aggregated (e.g. using predicate findall), the ea-
ger one performs slightly better than the lazy one. But aggregating all solutions may
not be a realistic scenario in abduction as one cannot wait indefinitely for all solutions,
whose number might even be infinite. Instead, one chooses a solution that satisfices so
far, or is interesting enough, and may continue searching for more if needed, just like
Prolog does. In that case, it seems reasonable that the lazy computation may be com-
petitive with the eager one. Nevertheless, the two approaches may become options of
TABDUAL customization. A more thorough comparison between the two approaches



is earmarked for future work. We shall also evaluate TABDUAL in real-world applica-
tions, e.g. in modeling cell signaling and the effect of external drugs on them in the
context of chemoprevention [15], in which we may compare TABDUAL with the new
implementation of the A-system [1] used therein.

TABDUAL is part and parcel of our research plan: in the near future it will be re-
fined, integrated with other features (e.g. program updates, side-effect inspection, un-
certainty), and employed for moral reasoning; a field which has recently gained atten-
tion and a resurgence of interest from Al community, and on which we work [9, 19].

6 Conclusion

We have argued the need for tabled abduction, in a way that abductive solutions can be
reused, even from one abductive context to another. We detailed how it is conceptualized
and realized in TABDUAL using a program transformation. The core transformation
employs the dual transformation for empowering abduction under negative goals, which
allows obtaining one abductive solution at a time, instead of computing all alternative
abductive solutions and negating their disjunction.

We also discussed some progress made on improving TABDUAL towards its more
practical use. First, we fostered two approaches for constructing dual rules by need, the
eager and the lazy ones. Second, the transformation for a predicate comprised of just
facts is made much simpler, which also allows modular mixes between abductive and
non-abductive parts. Third, accessing ongoing abductive solutions are made possible in
order to dynamically manipulate them.

Abduction is by now a staple feature of hypothetical reasoning and non-monotonic
knowledge representation. It is already mature enough in its deployment, applications,
and proof-of-principle, to warrant becoming a run-of-the-mill ingredient in a Logic Pro-
gramming environment. We hope this work will lead, in particular, to an XSB System
that can provide its users with specifically tailored tabled abduction facilities.
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