
EMERGENCE OF COOPERATION THROUGH
MUTUAL PREFERENCE REVISION

Pedro Santana
�

and Luı́s Moniz Pereira
�

�

IntRoSys S.A.
�

Universidade Nova de Lisboa,
Quinta da Torre, Campus FCT-UNL

2829-516 - Portugal

Abstract. This paper proposes a method allowing an agent to perform in a so-
cially fair way by considering other agents’ preferences. Such a balanced action
selection process is based on declarative diagnosis, which enables the removal of
contradictions arising as all agents’ preferences are confronted within the decid-
ing agent. Agents can be negatively affected when some of their preferences are
not respected for the sake of a global compromise. The set of preferences to be
yielded by agents in order to remove all contradictions in a balanced way (i.e.
the diagnosis that better manages how each agent is to be affected) is determined
by minimising a cost function computed over application independent features.
By respecting the resulting non-contradictory preferences set, the deciding agent
acts cooperatively.
Key words: Preference revision, multi-agent systems, cooperative behaviour.

1 INTRODUCTION

Preference criteria are subject to be modified when new information is brought to the
knowledge of the individual, or aggregated when we need to represent and reason about
the simultaneous preferences of several individuals. As a motivating example, suppose
you invite three friends Karin, Leif and Osvald to go and see a movie. Karin prefers
thrillers to action movies. Leif, on the other hand, prefers action movies to thrillers.
Finally, Osvald is like Leif and prefers action movies to thrillers. Suppose you need to
buy the tickets. Which movie do you choose?

One way to consider preferences in Multi-Agent scenarios, is to devise a strategy for
removal of contradictions, which may arise when the preferences of all agents are put
together. For instance, if agent A prefers a to b and agent B the other way around, then
we have a contradiction (a synonym of conflict in this context). Removing the referred
contradiction is another way of saying that at least one of the agents will have to relax
its own preferences so a trade-off is achieved.

This paper proposes a methodology along this line of reasoning, that can be used
as an agent mental process to allow the agent to perform in a fair manner. For instance,
an agent engaged in a task that requires to make some choices, like selecting a TV pro-
gramme, may choose to act fairly by considering others’ preferences as well. Another
possible application for the method set forth herein is to help a broker (i.e. an agent

responsible for distributing work) to allocate agents to those tasks that better suit them;
in this case preferences can involve skills as well.

Other work on preferences revision can be found in [1, 2], where the authors study
the preservation of properties by different composition operators of preference relations
definable by first-order formulas. In terms of preferences aggregation [3] handles differ-
ent types of relationships that take into account the relative importance of the interacting
agents, whereas [4] extended CP nets to handle preferences of several agents based on
the notion of voting. In [5], a stimulating survey of opportunities and problems in the
use of preferences, reliant on AI techniques, is presented.

2 APPROACH OVERVIEW

This paper presents some of the concepts presented in [6], which proposes an adapted
version of the contradiction removal method defined for the class of normal logic pro-
grams plus integrity constraints, as proposed in [7], which transforms a given program
into its revisable form. Then, it follows that each of the stable models of the revis-
able program specifies which preferences minimally need to be yielded or added for
that program model to be consistent. Finally, from all preference revision minimal sta-
ble models, the one that is fairest (i.e. seeking highest cooperation while minimising
losses) is selected and proffered to the end-user.

The proposed method involves the following steps: (1) set the preferences for each
agent; (2) integrate all agents’ preferences into a single merged program; (3) extend
the merged program into a revisable program form; (4) determine the minimal stable
models of the revisable program so as to generate all possible revision hypotheses; (5)
from the set of minimal stable models select the most fair one, taking into account
present and past iterations; and (6) repeat the whole process as desired.

3 BACKGROUND CONCEPTS

3.1 STABLE MODELS

Let
�

be a first order language. A literal in
�

is an atom � in
�

or its default negation����� � . A Normal Logic Program (NLP) � over
�

(sometimes simply called program)
is a finite set of rules of the form �
	�� �� � ��������� ��� ������� �� ������� ��������� ��������� ,
with � ����� ! �"��# comprising positive literals � , and �%$, and default literals not �'& .�)(

denotes the language of � .
Models are 2-valued and represented as sets of those positive literals which hold in

the model. The set inclusion and set difference are with respect to these positive literals.
Minimality and maximality too refer to this set inclusion.

Definition 1. [8] Let P be a NLP and I a 2-valued interpretation. The GL-transformation
of � modulo * is the program

(+
, obtained from � by (1) removing from � all rules

which contain a default literal ����� � such that �-,.* and (2) removing from the re-
maining rules all default literals. Since

(+
is a definite program, it has a unique least

model / . Define 0 (�1* #32 / . Stable models are the fixpoints of 0 (, and they do not
always exist (namely when a finite program contains loops over an odd number default
negations).

3.2 PREFERENCE RELATION

Given a set � , a preference relation � is any binary relation on � . Given two elements� and � in � , � ��� means that � is preferred to � . We assume that � contains at
least two elements. We restrict � to satisfy the properties of a strict partial order, which
involves:

*����	�	
����������� �����	� � ������
��� � � � � ���	� � � � ��� �"!�� ��#�$ � � � �%� � �&��� ���'�	� � � �(�*) �+�,� �.-�� �) #/! �0�)

Let us call the above properties integrity constraints, which are employed to de-
tect preference contradictions (others could be added); they can be described in logic
programming as follows:

1 	32 �� � #54 1 	32 �� ��# 2 � � � #54 1 	32 �� ��# 2 � �) # ����� 2 �+�) #64
where � , � , and) are variables,

1
represents a contradiction, when present in a model

of a program, and 2 � � � # represents a preference of type � �7� . An agent � can define
its preferences by adding facts of type 2 $ �+� ��# . As previously stated, the preferences
of all agents have to be merged into a merged program. As a consequence, we have to
add the following clause to the integrity constraints set: 2 �� ��# 	32�$!�+� ��# . Thus, there
will exist a 2 predicate rule for each corresponding 2�$ predicate. If one of the integrity
constraints rules succeeds, then there is a contradiction in the merged program.

3.3 DECLARATIVE DIAGNOSIS

In this section we adopt the definitions set forth in [6]. Given a contradictory program� , i.e. with a contradictory stable model, to revise (i.e. eliminate) the contradiction
symbol (

1
) from its models we need to modify � by adding and removing rules. In

this framework, the diagnostic process reduces then to finding such combinations of
rules. To specify which rules in � may be added or removed, we assume given a set� of predicate symbols in

�98
. � induces a partition of � into two disjoint parts: a

changeable one �;: and stable one �=< . �>: contains the rules in � defining predicate
symbols in � , while �=< contains the rules in � defining predicate symbols not belonging
to � . �=: is the part subject to the diagnosis process.

Definition 2. Let � be a program and � a set of predicate symbols in
�?8

. Let @ be a
pair A&B *DC where B is a set of atoms, whose predicate symbols are in � and *FE �G: .
Then, @ is a diagnosis for � iff � �IH * #KJ BML 1

. The pair A�N�O N(O�C is called empty
diagnosis.

Intuitively, a diagnosis specifies the rules to be added and removed from the change-
able part of � to revise its contradiction

1
. In order to minimise the number of changes,

one should consider minimal diagnosis.

Definition 3. Let � be a program and @ 2 A�B *�C a diagnosis for � . Then, @ is a
minimal diagnosis for � iff there exists no diagnosis @ � 2 A&B � * � C for � such that�&B � J * � # E �&B J * # .

Let us now clarify what �=: and �>< are. �>< (the stable partition of program �) refers
to the integrity constraints and preferences that agents consider as non-negotiable (i.e.
those preferences agents do no accept to discard at the cost of rejecting further cooper-
ation). In this work we only considered negotiable preferences. On the other hand, � :
refers to the agents’ preferences that will be subject to revision (i.e. that can be yielded).
As an example, let us assume that there are two agents, one with a single preference and
another one with two preferences; these define � : :

�>: 2
�� 2 � � � � #
2 � � � ��#
2 � ��� � #

��
�=< 2

������
1 	32 �� � #1 	32 �� ��# 2 � � � #1 	32 �� ��# 2 � �) # ����� 2 �+�) #
2 �� ��# 	32 � �+� ��#
2 �� ��# 	32 � �+� ��#

�������

which contains those rules (i.e. preferences) that can be removed as well as those rules
that have been added so as to guarantee consistency. In this case, one possibility would
be to remove 2 � � � � # because it contradicts 2 � �&� ��# (non-reflexivity) whereas a rule
2 ��� ��# would be added to ensure transitivity. Another possibility, which is simpler and
so preferable, would be to remove 2 � � � ��# and no further change would be required.

Now it is necessary to extend � so it has a suitable form for contradiction removal.
To do that, we have to consider the revisable set, which includes default atoms, ����� � ,
whose CWA (Closed World Assumption) makes them initially true, can be revised by
adding � to � . By so doing, one can disable rules having such defaults in their body,
and, as a consequence, remove some contradictions. Also, the positive atom � , being
initially false, can be made true by adding it as a fact. This will enable rules with �
introduced in their body.

Definition 4. The revisables of a program � is a subset of the set of atoms � (with� �2 1 # for which there are no rules defining � in � .

Definition 5. Let � be a program and 	 a set of revisables of � . A set
 E�	 is a
revision of � with respect to 	 iff � J
 L 1

.

Definition 6. Let � be a program and � a set of predicate symbols in
�?8

. The transfor-
mation 0 that maps � into a program �� is obtained by applying to � the following two
operations: (1) add ����� � � � � ���	��� � �1� 	 � ������# to the body of each rule � 	 � ���(�
in � : and (2) add, for each predicate 2 with arity � in C, the rule 2 �+� � ������� � � # 	� � � � �D���	� � � 2 �+� � ������ � � # # .

In our example, the revisable program would be:

0 �1� # 2
��������
1 	 2 �+� � #1 	 2 �+� ��# 2 � � � #1 	 2 �+� ��# 2 � �) # ����� 2 �+�) #
2 �� ��# 	 2 � �� ��#
2 �� ��# 	 2 � �� ��#

2 � � � � # 	 ����� � � � � ���	��� � � 2 � � � � # #
2 � � � � # 	 ����� � � � � ���	��� � � 2 � �&� ��# #
2 � ��� � # 	 ����� � � � � ������� � � 2 � ��� � #!#
2 � �+� ��# 	 � � � � �����	� � � 2 � �+� ��#!#
2 � �+� ��# 	 � � � � �����	� � � 2 � �+� ��#!#

� �������

The transformation 0 preserves the truths of program � . Then, by adding instances
of � � � � ���	��� ����� , one can eliminate unsound answers of predicate rules and, by adding
instances of � � � � �����	� ����� , one can complete predicates with missing answers.

4 PROPOSED APPROACH

The proposed approach considers that, in opposition to definition 6, the � � � � �����	� �
literal is applied to 2 $ ��� instead of 2 ��� . That is to say, that those added preferences
relate to the group (i.e. 2 ���) and not to an agent � in particular. With this alteration,
the number of even loops is reduced, and as a consequence complexity as well. In
addition, the preference to be added is usually related to the group and not to an agent
in particular. Let us imagine a scenario where one agent prefers � to � whereas another
prefers � to � . So that transitivity holds in that scenario, it is necessary to state that � is
preferred to � . However, this information does not refer to any agent in particular - it
belongs to the group as a whole. If considered otherwise, the addition of a preference
could not be exploited as a metric of unhappiness; how could one assume that an agent
has been disadvantaged with the addition of a preference that might be true (i.e. the
referred agent may in fact prefer � to �)?

The stable models of 0 �1� # , minimal with respect to the revisables, that do not
lead to a contradiction are potential candidates for the best diagnosis. Let us focus
on how cooperation among agents is polarised by choosing which preferences have
to be minimally yielded by each agent, in a fair way. From the set of such minimal
stable models (i.e. in the set of possible minimal diagnoses), we have to select the best
diagnosis.

Since the entire process describes a mental process to be reiterated each time a task
and/or the environment require, we need to take into account all previous losses an
agent had in prior iterations (i.e. by recording every time some agent had to yield a
preference). Therefore, the best diagnosis will be one determined by following a crite-
rion of fairness. This is achieved by a cost function that weighs a given diagnosis in a
fair way, i.e. by taking into account previous decisions, is minimised over the whole set
of available diagnoses.

4.1 YIELDING A PREFERENCE

Let us analyse what yielding a preference formally means.

Definition 7. Let � be a program containing all preferences of all agents involved in a
given iteration, @ 2 A�B *DC a diagnosis for P, �	� E.� a program with all preferences
for agent � and 2 �+� ��# a preference of � over � . For each � � � � ���	��� � � 2 �+� ��#!# , * , an
agent � has ’yielded’ a preference if 2
� �+� ��# ,���� . For each � � � � �D���	� � � 2 �+� ��#!# ,
B , an agent � has ’yielded to add’ a preference.

Computing the number of times an agent has to yield or yield to add a preference in
a given diagnosis gives us an idea of how much displeased that agent will be with the
solution trade-off. The presence of yielding to add preferences in a given solution may
result in erroneous assumptions about others’ preferences; as such, solutions including

such assumptions are to be penalised. Still, yielding a preference and yielding to add
a preference have not the same weight in the unhappiness of the agent. Therefore, we
consider different weights for each type, ��� and ����� respectively. In the experimental
part of this paper � � 2 � and � ��� 2 � are considered; that is to say that, yielding a
preference is twice worse than yielding to add a preference, which intuitively makes
sense. The exact proportion should be subject to further analysis, but out of the scope
of this paper.

Notice the cost of yielding a preference only affects the agent in question, whereas
the cost of yielding to add a preference affects all agents in the same amount. This
means that yielding a preference increases the dispersion of unhappiness among agents,
whereas yielding to add preferences increases the average number of unhappiness.

4.2 DIAGNOSIS ASSESSMENT

The goal is to determine which diagnosis (i.e. which minimal stable model) is less
expensive in terms of the “yieldings” agents have to endorse. In order to do so, the cost
of a diagnostic @ is assessed via a cost function. Two main components are considered,
namely: the average of yieldings, � � @ # , and the dispersion of yieldings, � �@ # . The
average of yieldings is defined by � �@ # 2 �� ��� �	����
 � $����� � � @ # , where @ is the
diagnostic in question, � is the set of agents involved in the process, � is the number of
agents in � , and
 � $������ � � @ # returns the total cost of agent � in diagnosis @ .

The total cost of an agent � in a diagnosis @ is
 � $����� � � @ # 2
 � � � � � � @ #��
 ��� � � ��� � � @ # , where
 � and
 ��� are the weights of yielding and yielding to add a
preference, respectively, � ��� � @ # and � ��� � � @ # are the number of yield and yield to
add preferences respectively in diagnosis @ (see definitions 7).

The dispersion of a diagnosis @ , � �@ # 2�� �� � � �	��� ����� $����� � � @ # H � �@ # # �

,
refers to the concept of standard deviation from statistics. It is worth emphasising the
quadratic term in the standard deviation definition, which increases the cost of a diag-
nosis quadratically, in relation to its displacement from the average. Accordingly, as the
unfairness of solutions increases, their related cost increases at a faster pace.

The standard deviation concept is used to measure how much unfair a diagnosis is
for a given agent; in other words, the more disparate is the sacrifice of a given agent
when compared to the average sacrifice, the more unfair the diagnosis is. The purpose
of the cost function is to reduce the sacrifice of all agents as well as to avoid that some
agents be much more sacrificed than the average. The next formula describes the min-
imising of the cost function in order to obtain the best diagnosis of the current iteration,
� ��� ��� :

��� � ��� 2��! �"# $ �&%�$ ��'� �(� �*)+� � � � @ #,�) � � � �@ #!#�- (1)

where � %�$ � is the quantity of accumulated victories of the agent less sacrificed (i.e.
with smaller ��� $�����) in @ , �'� �(� is the quantity of accumulated victories the agent with
greater amount of accumulated victories has, and).� and) � are weights. An agent
accumulates a victory each time it is the one with smaller
 � $����� in the best diagnosis

of a given iteration. It is assumed that the preferences of agents may change between
iterations.

The
%������%��	�
� component endows the system with memory, which allows to take into

account previous iterations. This way, the selection of the best diagnosis takes into
consideration that some agents may have been more sacrificed in the past than others.
Intuitively, the possibilities of accepting the diagnosis in question as the best diagnosis,
increase if the winning agent has less victories than the one with more victories, pro-
portionally. As a result, all agents gradually converge into an homogeneous number of
victories.

5 EXPERIMENTAL RESULTS

The proposed method has been implemented in the XSB-Prolog3 using the XSB-XASP
Package4, which implements the Answer Set semantics (cf. [9] for other application
examples) and allows computing the stable models of a given program.
In this section we will briefly go over some implementation details. To do so, some
(simplified for presentation purposes) XSB-PROLOG code will be exhibited. With the
purpose of creating several scenarios that can be covered by different stable models,
it is necessary to create even loops over default negation (where � ����� is XSB-Prolog’s
tabled �����), such as:

covered(X):-tnot(uncovered(X)). incorrect(X):-tnot(correct(X)).
uncovered(X):-tnot(covered(X)). correct(X):-tnot(incorrect(X)).

where each loop allows for its two opposite stable models solutions. The integrity con-
straints have been defined as follows (a two agent scenario has been considered):

false(X,_,_) :- p(X,X). false(X,Y,_) :- p(X,Y), p(Y,X).
false(X,Y,Z) :- p(X,Y), p(Y,Z), X \= Z, tnot(p(X,Z)).

Agents’ preferences can be defined in this manner (note that � � � � ���	��� ����� literals
have already been added):

p(son,X,soaps) :- tnot(incorrect(p(son,X,soaps))).
p(son,cinema,X) :- tnot(incorrect(p(son,cinema,X))).

which states that the son prefers to see anything in the TV to soaps, and prefers cinema
to anything else. This code allows creating scenarios where new preferences are added
(i.e. where � � � � �D���	� ����� literals are inserted):

p(X,Y):-p(agent_1,X,Y). p(X,Y) :- p(agent_2,X,Y).
p(X,Y):-not p(agent_1,X,Y),not p(agent_2,X,Y),uncovered(p(X,Y)).

The following code generates several hypotheses (i.e. stable models), which are
then considered for the selection of the best diagnosis), by performing a call to the
XSB-XASP package so it computes in

� �	� the stable models with ok as the top goal;
ok succeeds only if a given scenario does not fail to cope with each integrity constraint:

3 http://xsb.sourceforge.net
4 http://xsb.sourceforge.net/packages/xasp.pdf

ok :- tnot(notok).
notok :- option(X), option(Y),option(Z), notok(X,Y,Z).
notok(X,Y,Z) :- false(X,Y,Z).
pstable_model(ok,Res,1) % Top goal call

An everyday multi-agent conflict resolution scenario is the one we can find in our
houses when all family members have to cooperate (at least it is so expected) to decide
on which TV programme they will watch. A simple version of such a scenario has been
implemented with these characteristics:

Involved Agents Father, mother, and son;
Available TV Programmes Soaps, news, cinema, and documentaries;
Weights) � 2 � and) � 2�� .) � should be greater than) � in order to guarantee

that the solutions converge to a small amount of yielded preferences. As long as
this proportion between the two parameters is kept, the final results are not very
sensitive to parameter variation.

Son’s preferences: �6� � � � �#� ; ��� � � � ��� � �����	� � � � �.�
Mother’s preferences: � �	� 2 � � � ; �5� � � � � � �	��� ; ��� � � � ��� � �����	� � � �	���
Father’s preferences: �0� � �	� 2�� ; � �	��� �#� ; � � � � � ��� � ������� � � �	���

Starting with the accumulated victories as � ����� ���
 ����� ��� � ��� #%2 � � � � # , the
selected TV program (such that no other is preferred to in the best diagnosis) is cin-
ema, the accumulated victories change to � ����� ���
 � ��� �%� � ��� #�2 � � � ��# , and the
explanation is (“inc” represents “incorrect”):

[inc(p(son,cinema,cinema)),inc(p(father,news,cinema)),
inc(p(father,news,news)),inc(p(mother,soaps,cinema)),
inc(p(mother,soaps,news)),inc(p(father,soaps,soaps)),
inc(p(mother,soaps,soaps))]

The son is the one yielding less preferences and as a result he wins. Cinema is
the only TV programme such that no other is preferred to in the best diagnosis and
so it is selected. All preferences leading to contradiction are said to be incorrect. For
instance, the son prefers cinema to anything, but he may not prefer cinema to cinema
itself (irreflexivity). The father prefers news to anything else, but since the son prefers
cinema to anything else (including news), the father has to yield the preference of news
over cinema in particular (asymmetry). Other solutions exist, such as adjusting son’s
preferences so the father could see what he most prefers. However, those solutions are
not so balanced (i.e. fair) than the selected one, in the current context.

In a subsequent iteration the selected TV programme is soaps, the accumulated
victories become � ����� �%�
 � ��� ��� � ��� # 2 � � � ��# , and the explanation is:

[inc(p(son,cinema,cinema)),inc(p(father,cinema,soaps)),
inc(p(son,cinema,soaps)),inc(p(father,news,cinema)),
inc(p(father,news,news)),inc(p(father,news,soaps)),
inc(p(father,soaps,soaps)),inc(p(mother,soaps,soaps))]

Although seeing soaps increases the total number of preferences to be yielded (i.e.
now the son has to yield two preferences), soaps is preferred because the mother was in

disadvantage in terms of victories. If the past had not been considered, at this iteration
the result would be the same as in the previous iteration. In a third iteration, the selected
TV programme is soaps, the accumulated victories become � ����� ���
 ����� ��� � ��� # 2� � � ��# and the explanation is:

[inc(p(son,cinema,cinema)),inc(p(son,cinema,news)),
inc(p(mother,cinema,news)),inc(p(son,cinema,soaps)),
inc(p(father,news,news)),inc(p(mother,soaps,cinema)),
inc(p(mother,soaps,news)),inc(p(father,soaps,soaps)),
inc(p(mother,soaps,soaps))]

A new best diagnosis is produced, which is caused by the disadvantage of the father.
From this sequence of three examples, one can observe the evolution of the solution so
as to maintain everybody happy.

In a second experiment a new son’s preference, � � � �	� 2�� , which is going to aug-
ment the displeasure in watching soaps (the father also prefers anything to soaps), has
been added. Resetting the accumulated victories to � ����� ���
 � ��� ��� � ��� #�2 � � � � #
we obtain cinema as the selected TV programme, � ����� �%�
 � ��� ��� � ��� # 2 � � � ��# as
the new accumulated victories, and the following explanation:

[inc(p(son,cinema,cinema)),inc(p(father,news,cinema)),
inc(p(father,news,news)),inc(p(mother,soaps,cinema)),
inc(p(mother,soaps,soaps)),inc(p(father,soaps,soaps)),
inc(p(son,soaps,soaps)),inc(p(mother,soaps,soaps))]

In line with the victory of the son, cinema is selected. Running a new the selected
TV program is cinema, � ����� �%�
 � ��� ��� � ��� # 2 � � � ��# is the new set of accumu-
lated victories, and the explanation is as follows:

[inc(p(son,cinema,cinema)),inc(p(father,news,cinema)),
inc(p(father,news,news)),inc(p(father,news,soaps)),
inc(p(son,news,soaps)),inc(p(mother,soaps,cinema)),
inc(p(father,soaps,soaps)),inc(p(son,soaps,soaps)),
inc(p(mother,soaps,soaps))]

This time the mother wins since she was at a disadvantage in terms of victories; nev-
ertheless, cinema is seen rather than soaps. In a last iteration we get news as the selected
programme, � ����� ���
 � ��� ��� � ��� # 2 � � � ��# as the new accumulated victories, and
the following explanation:

[inc(p(son,cinema,cinema)),inc(p(son,cinema,news)),
inc(p(mother,cinema,news)),inc(p(father,news,news)),
inc(p(mother,soaps,cinema)),inc(p(mother,soaps,news)),
inc(p(father,soaps,soaps)),inc(p(son,soaps,soaps)),
inc(p(mother,soaps,soaps))]

The father wins because he was at a disadvantage in terms of victories and, as a
consequence, news is the selected programme. This experience demonstrates that it
is not enough to be disadvantaged in terms of victories to obtain what one desires.
More concretely, the mother was at a disadvantage and, as a result, she won the second
iteration; still, soaps was not the chosen programme category. This occurred because
the son also made clear that he would prefer to see anything but soaps.

6 CONCLUDING REMARKS

A method for preference revision in a multi-agent scenario has been presented. Instead
of considering explicit priorities among agents and/or preferences, the method proposes
a dynamic approach. A cost function that considers generic features of the solution (e.g.
the quantity of preferences yielded by agents) has been employed to obtain a general
approach, avoiding parameters too application dependent. Introducing memory in the
revision process enables the emergence of cooperation as iterations unfold. Cooperation
shows up in the form of an homogeneous amount of victories amongst all agents.

Assessing which preferences one should add or remove in the way prescribed in this
paper, allows us to enact a flexible method for preference revision. If instead priorities
among preferences are to be considered as the sole method for preference revision,
intensive and tedious parameter tuning is going to be required so as to guarantee that
preferences are conveniently revised. In such a memory-less solution, the system is not
able to evolve towards cooperation as iterations unfold, resulting in fully deterministic
and static solutions. On the contrary, we consider our approach of special interest for
dynamic environments.

We have employed the two-valued Stable Models semantics to provide meaning to
our logic programs, but we could just as well have employed the three-valued Well-
Founded Semantics [10] for a more skeptical preferential reasoning. Also, we need
not necessarily insist on a strict partial order for preferences, but have indicated that
different constraints may be provided.

References

1. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database
Systems 28 (2003) 427–466

2. Andreka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference
relations. Journal of Logic and Computation 12 (2002) 13–53

3. Yager, R.R.: Fusion of multi-agent preference ordering. Fuzzy Sets and Systems 117 (2001)
1–12

4. Rossi, F., Venable, K.B., Walsh, T.: mCP nets: representing and reasoning with preferences
on multiple agents. In: Procs. of the 19th Conf. on Artificial Intelligence, LNCS 749. (2004)
729–734

5. Doyle, J.: Prospects for preferences. Computational Intelligence 20 (2004) 111–136
6. Dell’Acqua, P., Pereira, L.M.: Preference revision via declarative debugging. In Bento, C.

et al., ed.: Progress in Artificial Intelligence, Procs. 12th Portuguese Int. Conf. on Artificial
Intelligence (EPIA’05), Covilhã, Portugal, Springer, LNAI 3808 (2005)

7. Pereira, L.M., Damásio, C., Alferes, J.J.: Debugging by diagnosing assumptions. In Fritz-
son, P., ed.: Procs. of the 1st Int. Workshop on Automatic Algorithmic Debugging (AADE-
BUG’93), Springer–Verlag, LNCS 749 (1993) 58–74

8. Gelfond, M., Lifschitz., V.: The stable model semantics for logic programming. In: Procs.
of the 5th Int. Logic Programming Conf. (1998)

9. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge U.P. (2003)

10. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38 (1991) 620–650

