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Abstract. In application domains such as medicine, where a large amount of 
data is gathered, a medical diagnosis and a better understanding of the underly-
ing generating process is an aim. Recordings of temporal data often afford an 
interpretation of the underlying pattens. This means that for diagnosis purposes 
a symbolic, i.e. understandable and interpretable representation of the results 
for physicians, is needed. This paper proposes the use of definitive-clause 
grammars for the induction of temporal expressions, thereby providing a more 
powerful framework than context-free grammars. An implementation in Prolog 
of these grammars is then straightforward. The main idea lies in introducing 
several abstraction levels, and in using unsupervised neural networks for the 
pattern discovery process. The results at each level are then used to induce tem-
poral grammatical rules. The approach uses an adaptation of temporal ontologi-
cal primitives often used in AI-systems. 

1 Introduction 

In several application domains, such as medicine, industrial processes, meteorology, 
often a large amount of data is recorded over time. The main aim lies in performing a 
diagnosis of the observed system. For example, consider an EEG recording to diag-
nose different sleep stages, or a chemical plant that goes through different process 
states, or the development of hail cells that possibly originate severe hailstorms, and 
so on. In all these cases, several types of processes are observed and problem specific 
diagnoses are searched for. Human beings, after a training phase, often develop the 
ability to recognise complex patterns in multivariate time series. The reason lies in 
their background knowledge, and in their experience to deal with standard and non-
standard situations, thereby being able to make a diagnosis analysing the time series at 
different time scales. 

The identification of complex temporal patterns is very hard to handle with techni-
cal systems. Classical approaches in the field of pattern recognition (PR) are very use-
ful for feature extraction, where no temporal context has to be considered [5,21]. In 
order to interpret temporal patterns in time series, temporal dependencies between the 
primitive patterns (features) have to be taken into account. Syntactic PR views com-



plex patterns as sentences of primitive patterns. Thus, techniques for syntactic PR 
strongly rely on the theory of formal languages [6]. New approaches in adaptive PR 
and neurocomputing have recently been developed [3, 18], and enable a connection 
between the two approaches. In this paper we will show a way to extend adaptive PR-
methods with Artificial Intelligence (AI) techniques. 

Complex patterns in time series, as considered here, have to be seen in a temporal 
context. This requires context sensitive knowledge. And it means that context-free 
grammars are not powerful enough to parse context dependency in temporal series 
languages. Therefore, a powerful extension of context-free grammars, the so called 
definitive clause grammars (DCGs), is suitable. The advantage of DCGs, besides their 
context-dependency, lies in an easy implementation of their rules as logic statements 
[22]. Such an implementation enables an efficient parsing using a theorem prover like 
Prolog, or better still, XSB-Prolog, which can handle left recursion by means of ta-
bling. 

In section 2 related work is presented. Section 3 describes the main properties of 
DCGs and introduces the inference mechanism. An example in medicine to illustrate 
the extracted rules is given in section 4. Conclusions are presented in section 5. 

2 Related work 

Approaches for the extraction of a rule-based description from time series in the form 
of grammars or automata usually employ a pre-classification of the signals, i.e. the 
time series are segmented and transformed into sequences of labeled intervals. The 
approaches differ in the way segmentation is performed or how rules are induced from 
the labeld time series.  

Concerning the segmentation problem, approaches have been proposed where the 
main patterns in the time series are pre-defined, for instance already having a classifi-
cation of P-waves or QRS-complexes of an ECG signal [14], or otherwise classified 
using simple algorithms, like the simple waveform detection operations of local mini-
mum or negative slope [2], or of zero-crossings in the first derivatives, in order to 
segment the time series into increasing/decreasing and convex/concave parts [12], or 
of frequent episodes from a class of episodes [16]. Other approaches use more elabo-
rate methods for segmentation, such as information-theoretic neural networks with 
changeable number of hidden layers, associated with different values of the corre-
sponding input attribute applied to [15]. The connections represent associations rules 
between conjunctions of input attributes and the target attribute. 

A strongly related approach that also uses SOMs in combination with recurrent 
neural networks for the generation of automata is presented in [7]. It was used to 
predict daily foreign exchange rates. One-dimensional SOMs are used to extract 
elementary patterns form the time series. This approach, however, is limited to 
univariate time series. SOMs are again used for knowledge discovery of time series 
satellite images [13]. The images are classified by a two-stage SOM and described in 
regard to season and  relevant features, such as typhoons or high-pressure masses. 
Time-dependent association rules are then extracted using a method for finding 



frequently co-occurring term-pairs from text. The rules are stored in a database, which 
then allows for high-level queries. 

3 Inferring Definitive Clause Grammars from Multivariate Time 
Series at distinct Abstraction Levels 

The induction of grammatical rules is an important issue in pattern recognition. It 
comprehends extraction, identification, classification, and description of patterns in 
data gathered from real and simulated environments. In pattern recognition this is 
handled at different levels, by handling primitive and complex patterns differently.  

Primitive patterns are characterised and described by features. They are regarded as 
a whole and associated to a given class. Complex patterns always consist in a struc-
tural and/or hierarchical alignment of primitive patterns. In statistical pattern recogni-
tion, primitive patterns are identified using statistical methods [5, 21], and recently 
neural networks are also used [3,18]. No temporal constraints are considered here. 
This means pattern recognition is performed at a low-level, a data processing level.  

Syntactical pattern recognition approaches, however, assume that primitive patterns 
have already been identified and thus are represented at a symbolic level. Primitive 
patterns are also building blocks of complex patterns. Here, the main goal lies in iden-
tifying and describing structural or hierarchical, and in our case temporal, relations 
among the primitive patterns. Methods from the theory of formal languages in com-
puter science are suitable for this task, through regarding complex patterns as words 
and primitive patterns as characters of the language. The main aim is always to de-
scribe a large amount of complex patterns using a small number of primitive patterns 
and grammatical rules.  

Definitive clause grammars (DCGs) are a powerful extension of context-free (cf-) 
grammars and therefore suitable for inducing temporal relations. Most applications of 
DCGs have been for many years in natural language parsing systems [4]. A good in-
troduction to this formalism can be found in [20]. The use of DCGs for time series 
was for the first time proposed in [10].  

Basically, DCGs are built up from cf-rules. In order to provide context-
dependency, a DCG extends a cf-grammar by augmenting non-terminals with argu-
ments. DCGs extend cf-grammars in three important ways [20]: 
• DCGs provide context-dependency in a grammar, such that a word category in a 

text may depend on the context in which that word occurs in the text.  
• DCGs allow arbitrary tree structures that are built up in the course of parsing, pro-

viding a representation of meaning of a text. 
• DCGs allow extra conditions. 

The advantage of DCGs in dealing with context-dependency lies in their efficient 
implementation of DCG-rules as logic statements by definitive clauses or Horn 
clauses. Now the problem of parsing a word of a language is reduced to a problem of 
proving a theorem in terms of a Prolog interpreter. In DCGs nonterminals are written 
as Prolog atoms and terminals as facts.  



Inducing DCGs for multivariate time series not only affords a hierarchical and tem-
poral decomposition of the patterns at different abstraction levels, but also an explicit 
temporal knowledge representation. At distinct levels, special unsupervised neural 
networks in an hierarchical alignment [9] allow for a successive and step-wise mining 
of the patterns, such that the obtained results can be converted into grammatical rules 
more easily. In this paper only a brief description of the abstraction levels is given. 
For a more detailed description of the method see [11]. 

The input to our system are multivariate time series sampled at equal time steps. As 
a result, we obtain the discovered temporal patterns as well as a linguistic description 
of the patterns (see Fig. 1), which can be transformed into a definite-clause grammar 
employed for parsing. Next, a description of the different abstraction levels is given. 

Features The feature extraction process exercises a pre-processing of all time se-
ries. Pre-processing can be applied to one (e.g. FFT) or more then one time series (e.g. 
cross correlation). A feature is then the value of a function applied to a selection of 
time series with a time lag. 

Primitive patterns Each primitive pattern (pp) is associated with a single point in 
time, forming an inseparable unit. pp´s are identified by clustering algorithms or unsu-
pervised neural networks using features as input, and without taking time into consid-
eration. A pp is then assigned to one of the clusters, i.e. a pp-class. Time points not as-
sociated with a pp-class are a kind of  transition points or transition periods if they last 
long between succeeding pp´s of the same pp-class. A pp-channel is the allocation of 
the whole time lag with pp´s and transitions periods (i.e. a sequence of characters).  

We want to point out that it is possible and even desirable to perform several fea-
ture selections for the generation of several pp-channels. The selection depends highly 
on the application and reduces strongly the complexity, since not all time series are 
considered at the same time.  

Successions Temporally succeeding pp´s of the same pp-class are successions, 
each having a specific duration. The concept of duration and temporal relation is in-
troduced here for the first time. 

Events Here the concept of approximate simultaneity, i.e. states ocurring more or 
less at the same time, is introduced. An event is identified by temporal overlapping 
sequences at distinct pp-channels. Recurring events then belong to the same event 
class. Regions not associated with an event-class are regarded as transitions periods. 
Since the duration of events belonging to the same class may differ, event classes have 
a minimal and a maximal duration in the context of a sequence.  

Sequences Recurrent sequences of events are the main structures in the time series, 
and describe a temporal order over the whole multivariate time series. Transition peri-
ods between sequences occur just as well, and also having a minimal and a maximal 
duration. Probabilistic automata can be used for the identification of sequences of 
events, where transition probabilities between events are identified and described.  

Temporal patterns Finallly, the concept of similarity results in the identification 
of temporal patterns. Similar sequences are sequences with a small variation of events 
in different sequences. This aggregation enables once again a simplification of the 
DCGs. String exchange algorithms are suitable for the identification of temporal pat-
terns. Temporal patterns are the final result of the whole temporal mining process and 
describe the main temporal structures in the multivariate time series.  



 

Fig. 1. A method with several abstraction levels for temporal pattern detection and for inferring 
Definite-Clause Grammars at distinct levels 

Using the terminology of formal languages, primitive patterns can be regarded as  
characters used for forming words, or even complex words, in our case forming suc-
cessions of characters or single ones, representing events. Sequences and temporal 
patterns are then composed by a sequence of events, like words form a sentence in a 
natural or a computer language.  

As mentioned before, ML-algorithms are used to induce a rule-based and symbolic 
description of the pp´s. A parser for these rules can easily be implemented in Prolog 
[23]. A grammatical specification of events, sequences and temporal patterns presup-
poses that temporal dependences can be grammatically described, thus leading to the 
use of DCGs at higher abstraction levels. Before starting the induction process, how-
ever, an explicit temporal knowledge representation is needed. In AI a temporal refer-
ence is usually made up of a set of temporal elements, called ontological primitives 
(op). The main concepts for op´s are time points [17], time intervals [1], or a combi-
nation of both. For an overview to the main concepts on temporal reasoning, concern-
ing logical formalisms in time in AI, ontological primitives, and concepts related with 
reasoning about action, see [24].  
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In this approach, a representation formalism related to Allen´s interval calculus is 
proposed. In the context of semi-automatic temporal pattern extraction Allen´s con-
ception, with its 14 precedence relations, however, is far too complex and strict. For 
our purposes, a simpler forrmalism to describe an approximate simultaneity of events 
is needed, subsuming 10 of Allen´s precedence relation into a single one. Conse-
quently, just a few op´s are needed to give a full description of the main concepts re-
lated to temporal patterns in multivariate time series. This leads to a simple and con-
cise representation formalism built up by the following op´s:  
• and for inclusion of features describing a primitive pattern 
• is more or less simultaneous with describing an approximate simultaneity of suc-

cessions 
•  followed by describing directly succeeding events  
• followed by … after describing succeeding events after a transition period 
•  or for alternative (temporal) sequences 

4 An example 

This approach was applied to a sleep disorder with  high prevalence, called sleep-
related breathing disorders (SRBDs). For the diagnosis of SRBDs the temporal dy-
namics of physiological parameters such as sleep-related signals (EEG, EOG, EMG), 
concerning the respiration (airflow, ribcage and abdominal movements, oxygen satu-
ration, snoring) and circulation related signals (ECG, blood pressure), are recorded 
and evaluated. Since the main aim is to identify different types of sleep related breath-
ing disorders, mainly apnea and hypopnea, only the signals concerning the respiration 
have been considered [19]. Severity of the disorder is calculated by counting the num-
ber of apnea and hypopneas per hour of sleep, named respiratory disturbance index 
(RDI). If the RDI exceeds 40 events per hour of sleep, the patient has to be referred to 
therapy. 

The different kinds of SRBDs are identified through the signals ´airflow´, ´ribcage 
movements´ and ´abdominal movements´, ´snoring´ and ´oxygen saturation´, as shown 
in Fig. 2, where a distinction between amplitude-related and phase-related distur-
bances is made. Concerning the amplitude-related disturbances, disturbances with 
50%, as well as disturbances with 10-20%, of the baseline signal amplitude may oc-
cur. Phase-related disturbances are characterised by a lag between ´ribcage move-
ments´ and ´abdominal movements´. An interruption of ´snoring´ is present at most 
SRBDs as well as a drop in ´oxygen saturation´.  

For this experiment, 25 Hz sampled data have been used from three patients having 
the most frequent SRBDs. One patient even exhibited multiple sleep disorders. 
In this paper we present an excerpt of the grammatical rules extracted from the results 
of the self-organizing neural networks at distinct abstraction levels, in order to demon-
trate how the algorithm for the generation of DCGs works. These rules can be trans-
formed into Prolog rules and parsed at a symbolic level with a Prolog interpreter. 



Fig. 2. Identified temporal pattern from a patient with SRBDs 

For the extraction of primitive pattern rules, the ML-algorithm sig* [23] was used, 
which generates rules for each class based on its most significant features. For in-
stance, 

a pp-class is a ’A4’ if 
        ’strong airflow’ ∈ [0.37, 1] 
  and   ’airflow’ = 0 
  and   ’snoring intensity’ ∈ [0.15, 1] 
a pp-class is a ‘B6’ if 
        ’intense abdominal movements’ ∈ [0.19, 1] 
  and   ’reduced ribcage movements’ ∈ [0, 0.84] 
  and   ’intense ribcage movements’ ∈ [0, 1]  
 

These pp-classes were named A4: strong airflow with snoring and B6: intense ribcage 
and abdominal movements. For the other pp-classes rules were extracted as well, and 
meaningful names were given. These names can be used at the next level for the de-
scription of the event-classes. For instance, 

an event-class is a ’Event5 ’if 
         (’strong airflow with snoring’  
    or    ’reduced airflow with snoring’ 
    or    ’transition period’) 
  is more or less simultaneous with 
        ’intense ribcage and abdominal movements’ 
 

This event was named strong breathing without snoring. The names of the event-
classes are then used at the next level for the descriptions of the sequences or temporal 
patterns. 

a sequence is a ’Sequence1’ [40 sec, 64 sec] if 
       ’Event2’: ’no airflow with no chest and abdominal wall   
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        movements and without snoring’ [13 sec, 18 sec] 
  followed by 
       ’Event3’: ’no airflow with reduced chest and no  
       abdominal wall movements and without snoring’ [20 sec,  
       39 sec] 
  followed after [0.5 sec, 5 sec] by 
       ’Event5’:’strong breathing with snoring’ [6 sec,  
       12 sec] 
 

The rules are simple and understandable for domain experts, since they provide a lin-
guistic description of their domain. Experts can stay with their thought pattern. The 
domain expert can identify the above mentioned sequence as an mixed apnoe and 
Event5 as an hypopnoe. Other temporal patterns were identified, namely obstructive 
hypopnoe, mixed obstructive apnoe, and obstructive snoring. 

Next, a small excerpt of the DCG for the above mentioned temporal pattern is 
given. Rules 

succession(S,D) --> succ(S), op, duration(D), cp. 
… 
transition(T,D) --> trans(T), op, duration(D), cp. 
… 
succes(’E5’,D1) --> succession(’A4’,D) ; succession(’A1’,D) ; 
                  transition(T,D). 
succes(’E5’,D2) --> succession(’B6’,D). 
… 
event(’E5’,D) --> succes(’E5’,D1), simultaneity,   
               succes(’E5’,D2),range(’E5’,LR,UR),  
               {D is (D1+D2)/2, D<UR, D>LR}. 
… 
sequence(’S1’,D) --> event(’S1’,D1), followedby,  
            event(’S1’,D2),  
            followedafter, transition(T,D3),  
            event(’S1’,D4),{uplimit(’S1’,UD),  
            lowlimit(’S1’,LD), D is D1+D2+D3+D4, D<UD, D>LD}. 
… 
duration(D) --> [D],{number(D)}. 
range(D) --> [D],{number(D)}. 
uplimit('S1',<value>). 
lowlimit('S1',<value>). 
… 
Facts 
trans(T) --> [transition,period]. 
op --> [’[’].  
cp --> [’]’,sec]. 
and --> [and]. 
or --> [or]. 
followedafter --> [followed,after]. 
followedby -->  [followed,by]. 
simultaneity --> [is,more,or,less,simultaneous,with]. 
succ(’A4’) --> [strong,airflow,with,snoring]. 
succ(’A1’) --> [reduced,airflow,with,snoring]. 
succ(’B6’) --> [intense,ribcage,and,abdominal,movements]. 

 

A structured and complete evaluation of the discovered temporal knowledge at the 
different abstraction levels was made by questioning an expert. All events and tempo-
ral patterns presented to the physician described the main properties of SRBDs. All of 
the four discovered temporal patterns described very well the domain knowledge. For 
one of the patterns new knowledge was even found. 



5 Conclusion  

The recognition of temporal patterns in time series requires the integration of several 
methods, as statistical and signal processing pattern recognition, syntactic pattern rec-
ognition as well as new approaches like AI-methods and special neural networks. The 
main idea of this approach lies in introducing several abstraction levels, such that a 
step-wise discovery of temporal patterns becomes feasible. The results of the unsuper-
vised neural networks are used to induce grammatical rules. Special grammars, named 
DCGs, have been used here, since they are a powerful extension of context-free 
grammars. The main advantage in using DCGs lies in augmenting non-terminals with 
arguments, such as temporal constraints, as required here. 

If no temporal relations have to be considered, for instance for the generation of a 
rule-based description of the primitive patterns, then Machine Learning algorithms 
can be used straightforwardly. The main advantage of our approach lies in the genera-
tion of a description for multivariate time series at different levels. This permits a 
structured interpretation of the final results, where an expert can navigate between 
rules at the same level and, if needed, zoom in to a rule at a lower level or zoom out to 
a rule at a higher level. This procedure provides an understanding of the underlying 
process, first at a coarse and later on at more and more finer granulation.  
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