Incremental answer completion in the SLG-WAM

Terrance Swift, Alexandre Miguel Pinto, and Luis Moniz Pereira *

Centro de Inteligéncia Artificial, Universidade Nova de Lisboa

Abstract. The SLG-WAM of XSB Prolog soundly implements the Well-Founded
Semantics (WES) for logic programs, but in a few pathological cases its engine
treats atoms as undefined that are true or false in WFS. The reason for this is
that the XSB does not implement the SLG ANSWER COMPLETION operation in
its engine, the SLG-WAM - rather ANSWER COMPLETION must be performed
by post-processing the table. This engine-level omission has not proven signifi-
cant for applications so far, but the need for ANSWER COMPLETION is becoming
important as XSB is more often used to produce well-founded residues of highly
non-stratified programs. However, due to its complexity, care must be taken when
adding ANSWER COMPLETION to an engine. In the worst case, the cost of each
ANSWER COMPLETION operation is proportional to the size of a program P,
so that the operation must be invoked as rarely as possible, and when invoked
the operation must traverse as small a fragment as possible of P. We examine
the complexity of ANSWER COMPLETION; and then describe its implementation
and performance in XSB’s SLG-WAM such that the invocations of the operation
are restricted, and which is limited in scope to Strongly Connected Components
within a tabled evaluation’s Subgoal Dependency Graph.

Designers of logic programming engines must weigh the usefulness of operations
against the burden of complexity they require. Perhaps the best known example is
the occurs check in unification. Prologs derived from the WAM do not perform oc-
curs check between two terms, since its cost may be exponential in the size of the
terms. Rather, the occurs check must be explicitly invoked through the ISO predicate
unify_with_occurs_check/2 or a similar mechanism. For evaluating normal
programs using tabling, checking for certain positive loops involves similar consider-
ations. While most positive loops can be efficiently checked, positive subloops within
larger negative loops are more difficult to detect, and account for the complexity of
evaluating a program P according to WFS, which is atoms(P) X size(P), where
atoms(P) is the number of atoms of P and size(P) is the number of rules of P.

As implemented in XSB, the SLG-WAM detects positive loops between tabled sub-
goals so that answers are not added to a table unless they are true, or are involved in a
loop through negation and so are undefined at the time of their addition (termed condi-
tional answers). As shown in Theorem 1 below, this sort of evaluation can be done in
time linear in size(P). However, a situation can arise where certain conditional answers
are later determined to be true or false. This determination may break a negative loop,
which uncovers a positive loop and makes the answers false. Within SLG, this situa-
tion is addressed by the ANSWER COMPLETION operation, which is not implemented
within the currently available version of the SLG-WAM. So far, the lack of ANSWER

*tswift@cs.sunysb.edu, amp@di.fct.unl.pt, lmp@di.fct.unl.pt



COMPLETION has not proven a problem for most programs. However, the SLG-WAM
is increasingly being used to produce well-founded residues for highly non-stratified
programs for applications involving intelligent agents (e.g. [2]), where the need for
ANSWER COMPLETION is greater.

This paper examines issues involved in adding ANSWER COMPLETION to the SLG-
WAM. We illustrate the situation of a positive loop begin uncovered when a negative
loop is resolved through a concrete example, and then we provide a formal result on the
contribution ANSWER COMPLETION makes to the complexity of computing WFS. We
introduce an algorithm for efficiently performing ANSWER COMPLETION (subject to its
complexity), and discuss performance results obtained by implementing it in the SLG-
WAM. Due to space requirements, we must assume knowledge of tabled evaluation of
WES through SLG resolution [1] as well as certain data structures of the SLG-WAM [3].

Example 1. The following program is soundly, but not completely, evaluated by the
SLG-WAM, where tnot /1 indicates that tabled negation is used:

:— table p/1,r/0,s/0.
p(X):— tnot(s). p(X):— p(X).
s:— tnot(r). s:— p(X). r:— tnot(s),r.

The well founded model for this program has true atoms {s} and false atoms {r, p(X)}.
Recall that literals that do not have a proof and that are involved in loops over default
negation are considered undefined in WES. Unproved literals involved only in positive
loops, i.e., without negations, are unsupported and, hence, false in WFS. Accordingly,
p (X), whose second clause fails, is false; however, a query to p(X) in XSB indicates
that p(X) is undefined. The reason is that during evaluation the engine detects a strongly
connected component (SCC) of mutually dependent goals containing p(X), r and s,
along with negative dependencies, and no answers for any of these goals. In such a situ-
ation, the SLG-WAM delays negative literals and continues execution. Here, the literal
tnot (s) inthe rule p (X) : — tnot (s) is delayed, producing an answer p (X) : —
tnot (s) |, indicating that p (X) is conditional on a delay list, here tnot (s). That
answer is returned to the goal p (X) in the clause p (X) : = p (X) and a conditional
answer p (X) : — p (X) | is derived. Later, a positive loop is detected for r, causing its
truth value to become false. The failure of r causes s to become true, and SIMPLIFI-
CATION removes the answer p (X) : = tnot (s) |. At this stage, however, no further
simplification is possible for p (X) :— p (X) |, which is now unsupported.

The ANSWER COMPLETION operation addresses such cases by detecting positive
loops in dependencies among conditional answers. More precisely, ANSWER COMPLE-
TION marks false sets of answers that are not supported: i.e. conditional answers for
completed subgoals that contain only positive, and no negative dependencies in their
delay lists. The creation of unsupported answers are uncommon in the SLG-WAM be-
cause its evaluation is delay minimal — that is, the engine performs no unnecessary DE-
LAYING operations [4]. Delay minimality reduces the need for simplification of depen-
dencies among answers, and thereby the chances of uncovering positive loops among
answers, as with the answer p (X) : — p (X) | above.

1. Complexity



We begin by showing that queries to programs that do not need ANSWER COMPLETION
can be evaluated in O(size(P)). Such programs include stratified ones, and also non-
stratified programs that contain no positive loops within negative SCCs in their dynamic
dependency graphs !.

Theorem 1. Let Q) be a query to a finite ground normal program P. Under a cost model
with constant time access to all subgoals, nodes, and delay elements of each SLG forest
in an evaluation, and constant time access to each clause in P, a partial SLG evaluation
that does not perform ANSWER COMPLETION can be constructed that is linear in the
size of P.

The algorithm ITERATE ANSWER COMPLETION below iteratively applies ANSWER
COMPLETION operations, calling Check Supported Answers() to perform a check
for positive loops. Check Supported Answers() is an adaptation of Tarjan’s algo-
rithm for SCC detection (cf. http://en.wikipedia.org/wiki/Tarjan’ s_
strongly_connected_components_algorithm), whichis linearin size(P).
Note that in the worst case, ANSWER COMPLETION operations iteratively need to be
applied, and that each time it is applied, a single atom would be found false. In that case,
program evaluation would have a cost proportional to atoms(P) x size(P), which is
equivalent to the known complexity for WFS.

2. Implementation of ANSWER COMPLETION

Within an SLG evaluation, a tabled subgoal can be marked as complete, which indicates
that all possible answers have been produced for the subgoal, although SIMPLIFICA-
TION and ANSWER COMPLETION operations may remain to simplify or delete con-
ditional answers. Completed subgoals do not require execution stack space, but only
table space, so that completing subgoals as early as possible is a critical step for engine
efficiency. Accordingly the SLG-WAM performs incremental completion via a com-
pletion instruction, which maintains information about mutually dependent sets of sub-
goals (SCCs), and completes each SCC when all applicable operations have been per-
formed. In addition to marking each subgoal .S in an SCC as complete, if S failed (has
no answers) the completion instruction may initiate SIMPLIFICATION for conditional
answers that depend negatively on S. In terms of ANSWER COMPLETION, observe that
any positive loop among the delayed literals of conditional answers must be contained
within the SCC being completed, as each delayed literal was a selected literal before
it was delayed. This incremental approach has several benefits. Performing ANSWER
COMPLETION operation within the completion instruction restricts the space that any
such operation needs to search. In addition, performing ANSWER COMPLETION af-
ter all other SIMPLIFICATION operations have been performed on answers within the
SCC similarly reduces search space. As a final optimization, ANSWER COMPLETION
is not required unless delaying has been performed within the SCC, a fact that is easily
maintained using data structures in the SLG-WAM’s Completion Stack, which main-
tains information about SCCs. The pseudo code for lterate Answer Completion(),
which traverses all subgoals in the SCC using the Completion Stack, and checks each

! The proof of Theorem 1 is contained in an appendix to this paper for the convenience of
reviewers.



answer for support, deleting unsupported answers from the table and invoking STMPLI-
FICATION operations, is presented in Figure 1. SIMPLIFICATION may remove further
negative loops, and uncover new unsupported other answers as a side-effect. In such
case, the ANSWER COMPLETION procedure should be executed once more, and this is
guaranteed by the use of the reached_fixed_point flag. A fixed-point is reached when
all answers within the scope of the SCC are known to be supported.

Algorithm Iterate Answer Completion(CompletionStack)

reached_fired_point = FALSE;
while not reached_fized_point
reached_fixed_point = TRUE;
foreach subgoal S in the Completion Stack
foreach answer A for subgoal S

if not Check_Supported_Answer(A) /* A is unsupported */
reached_fired_point = FALSE;
delete A;

propagate A’s deletion’s simplifications;

Fig. 1. Algorithm ITERATE ANSWER COMPLETION.

Check Supported Answer This procedure (Figure 2) does the actual check of
whether a (positive) answer is unsupported. It detects positive loops whenever it en-
counters an answer that has already been visited and which is in the SCC. In this case,
the algorithm terminates returning F"”ALSFE to indicate the answer is unsupported. On
the other hand, if the answer has been visited but is not part of the SCC, it means such
answer has been produced during some other branch of query-solving and was there-
fore, rightfully supported and stored in the table: the algorithm terminates returning
TRUE. Checking a non-visited answer consists of 1) marking it as visited; 2) adding
it to the state of the search (stored in the C'ompletion Stack); and then 3) traversing
all the Delay Elements (literals) of the Delay Lists for the answer recursively checking
each in turn for supportedness. Whenever an answer is determined to be unsupported,
all Delay Lists containing (Delay Elements that reference) it are deleted, which may
cause further simplification and iterations of ANSWER COMPLETION.

The above algorithm has been implemented within the completion instruction of XSB.
Full performance analysis is still underway. Preliminary results indicate advantages of
our heuristics: traditional benchmarks like win/1 either do not use SIMPLIFICATION
or use it seldom so that there is no overhead for ANSWER COMPLETION. A stress
test that performs a large number of repetitions of Example 1 shows an overhead of
at most 18%. Example 1 is actually representative of the typical situation where AN-
SWER COMPLETION is needed. This is so because it contains (at least) two rules for
some literal (in this case p(X)) where the first one depends on a loop through nega-
tion (rendering p(X) undefined) and the second one depend on a positive loop, which
is unsupported. The “undefinedness” coming from the first clause is passed on to the
p(X) in the body of the second one. Only ANSWER COMPLETION can then be used to
clean away the delay list with p(X') from the answer coming from the second clause
for p(X). The “pathological” nature of this example follows from the, until now, XSB’s



Algorithm Check Supported Answer(Answer)

if Answer has already been visited
if Answer is in the SupportCheckStack return FALSE;
else return TRUE;
else
mark Answer as visited;
push Answer onto the SupportCheckStack;
mark Answer as supported_unknown,;
foreach Delay List DL for Answer
if Answer is supported_true exit loop;
mark DL as supported_true;
foreach Delay Element DFE in the Delay List DL
if DL is not supported_true exit loop;
if DFE is positive and it is in the SupportCheckStack
recursively call Check Supported Answer(Answer of DE)
if Answer of DE is not supported_true
mark DL as supported_false;
if DL is supported_false
remove DL from Answer’s DLs list
if Answer’s DLs list is now empty
delete Answer node;
simplify away unsupported positives of Answer;
else mark Answer as supported_true;
if the Answer node was deleted return TRU E;
else return FALSE;

Fig. 2. Algorithm CHECK SUPPORTED ANSWER.

SLG-WAM inability to rightfully detect and simplify away unsupported literals such as
p(X).

3. Conclusions

WES is used in an increasing number of applications, from intelligent agents, to inher-
itance in object logics, to supply-chain analysis. However, the abstract complexity of
WES is a concern when embedding into the semantic core of a programming language
like Prolog. Theorem 1 shows that the non-linearity of WFS can be separated from other
parts of an engine for WFS; and the optimizations of the algorithm presented here, to-
gether with the preliminary performance results, underscore the suitability of WFS for
general-purpose programming.

References

1. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
JACM, 43:20-74, 1996.

2. L. M. Pereira and G Lopes. Prospective logic agents. In EPIA, volume 4874 of LNAI, pages
73-86, 2007.

3. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
logic programs. TOPLAS, 20(3):586 — 635, 1998.

4. K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation. Theoretical
Computer Science, 254(1-2):465-499, 2000.



Appendix: Proof of Theorem 1

Theorem 1 and its proof rely on several of the definitions of SLG evalution 2. In order
to make the appendix self-contained, we restate several definitions of SLG, simplified
at times for ground programs and finite evaluations.

Definition 1 (SLG Trees and Forest). An SLG forest consists of a set of SLG trees.
Nodes of SLG trees have the forms:

Answer_Template :- DelayList|Goal List

or simply fail. In the first form, the Answer_Template is an atom, DelayList is a set
of literals and GoalList is a sequence of literals. The second form is called a failure
node.

A node N is an answer when it is a leaf node for which GoallList is empty. If the
DelayList of an answer is empty it is termed an unconditional answer, otherwise, it is
a conditional answer.

Definition 2 (Answer Resolution). Let N be a node A :- D|Lq, ..., L,,, where n > 0,
and Ans = A’ :- D'| an answer. N is SLG resolvable with Ans if 3i, 1 < i < n, such
that L; is identical to A’. The SLG resolvent of N and Ans on L is:

(A S D|L1, ceuy Li—17 L1’,+1, ) Ln)
if D' is empty; otherwise the resolvent has the form:
(A J- D, Li|L1, ceey Ll;l, Li+1, ceey Ln)

Definition 3 (Completely Evaluated). A set S of subgoals in a forest F is completely
evaluated if no S € S is completed and if at least one of the following conditions holds
foreach S € S

1. The tree for S contains an answer S :-
2. For each node N in the tree for S:
(a) The underlying subgoal of the selected literal of N is completed; or
(b) There are no applicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,
ANSWER RETURN, NEGATION RETURN or DELAYING operations (Defini-
tion 6) for N.

, Or

Definition 4 (Supported Answer). Let F be an SLG forest, S a subgoal in F, and
Ans = A :- DelayList| an answer in the tree for S. Then Ans is supported by S in F
if and only if:

1. S is not completely evaluated; or
2. there exists an answer node A :- DelayList'| of S such that every positive delay
literal D is supported.

2 The formulation here follows T. Swift. “A New Formulation of Tabled Resolution with Delay",
Recent Advances in Artifiial Intelligence, pp. 163-177, LNAI 1695, 1999.



Definition 5. Let F be an SLG forest. An atom S is successful in F if some tree in F
has an unconditional answer S. S is failed in F if S is completed and the tree for S
contains no answers. A negative delay literal not D is successful (failed) in a forest F
if D is failed (successful) in F.

Definition 6 (SLG Operations). Given a forest F,, of an SLG evaluation of program
P F,,+1 may be produced by one of the following operations.

1. NEW SUBGOAL: Let F,, contain a non-root node
N = Ans :- DelayList|G, Goal List

where G is the selected literal S or not S. Assume F,, contains no tree with root
subgoal S. Then add the tree S :- |S to F,,.

2. PROGRAM CLAUSE RESOLUTION: Let JF,, contain a root node N = S :-|S and
C' be a program clause S :- Body. Assume that in F,, N does not have a child
Nepita = (S :- |Body). Then add Nepiiq as a child of N.

3. ANSWER RETURN: Let F,, contain a non-root node

N = A :- DelayList|S, Goal List

whose selected literal S is positive. Let Ans be an answer node for S in F,, and
Nepirq be the answer resolvent of N and Ans on S. Assume that in F,,, N does not
have a child N p;1q. Then add N p;14 as a child of N.

4. NEGATION RETURN: Let F,, contain a leaf node

N = Ans :- DelayList|not S, Goal List.

with selected literal not S.

(a) NEGATION SUCCESS: If S is failed in F,, then create a child for N of the
form: Ans :- DelayList|GoalList.

(b) NEGATION FAILURE: If S succeeds in F,, then create a child for N of the
Sform fail.

5. DELAYING: Let F,, contain a leaf node N = Ans :- DelayList|not S, Goal List,
such that S is ground, in F,, but S is neither successful nor failed in F,,. Then
create a child for N of the form Ans :- DelayList,not S|Goal List.

6. SIMPLIFICATION: Let F,, contain a leaf node N = Ans :- DelayList
L € DelayList
(a) If L is failed in F then create a child fail for N.

(b) If L is successful in F, then create a child Ans :- DelayList'| for N, where
DelayList’ = DelayList — L.

7. COMPLETION: Given a completely evaluated set S of subgoals (Definition 3), for
each S € S, setMark(T, complete), where T is the tree for S.

8. ANSWER COMPLETION: Given a set of unsupported answers U A, create a failure
node as a child for each answer Ans € UA.

, and let

Definition 7 (SLG Evaluation). Given a program P and goal G, an SLG evaluation
€ is a sequence of SLG forests Fo,F1,...,Fga, such that:



— Fo is the forest containing a single tree G :- | G
— For each successor ordinal, n+1 < (3, F, 11 is obtained from F,, by an application
of an SLG operation from Definition 6.

If no operation is applicable to F, F is called the final forest of £.

Theorem 2. Let G+ be an atomic goal to a finite ground normal program P. Under
a cost model with constant time access to all subgoals, nodes, and delay literals of each
SLG forest and constant time access to each clause in P, then a partial SLG evaluation
& that does not perform ANSWER COMPLETION can be constructed that is linear in
the size of P.

(Sketch) It follows from the basic properties of SLG as shown in the literature that
£ is finite, so that a cost function is meaningful. We consider the cost of £ where incre-
mental completion is not used. The structure of the proof is

1. To indicate how the SLG operations are modified to support a particular complete
scheduling strategy for &;

2. To show that the length of £ is linear in size(P)

3. To show that each operation can be performed in constant time

Fart I: Defining the scheduling strategy. Consider an SLG evaluation which is aug-
mented by a queue Qo of applicable operations, and a set Hx of non-completed sub-
goals that do not have a (conditional or unconditional) answer.

SLG operations are modified in the following ways to interact with Hr and Qo.

1. When a new SLG tree for subgoal G, is created, the set of PROGRAM CLAUSE
RESOLUTION operations applicable to G ¢, is added to Qo, and Gy, is added
to Hp.

2. When an SLG operation creates a new node N;,,; that is neither the root of an SLG
tree nor an answer, let L be the selected literal of N;,;, and G the underlying
atom of L.

(a) if Gs¢ is new to the evaluation, a NEW SUBGOAL operation is added to Qo
(b) if G4 is not new to the evaluation,

i. If Gs¢ is positive, an ANSWER RETURN operation applicable for G¢; is
added to Qo (if an unconditional answer for GG.; is available in the current
forest it is scheduled, otherwise an arbitrary conditional answer for G; is
scheduled).

ii. If G4 is negative
A. If G, is successful or failed in the current forest a NEGATION RE-
TURN operation for G 4; is added to Qo
B. Otherwise, a DELAYING operation for G, is added to Qo

3. When an SLG operation creates a new answer N, s for a subgoal S, S is removed
from Hp if it is present there, and
(a) If N, is unconditional, and there are no other unconditional answers for S in

the current forest or if IV, is conditional and there are no other answers for .S
in the current forest, ANSWER RETURN operations are added to Q) for each
node having S as a selected positive literal



(b) In addition, if N, is unconditional and ther are no other unconditional an-
swers for S in the current forest, SIMPLIFICATION operations are added for
each node that has S or not S in its delay list.

4. When a failure node is added to a node S, If S is now failed (i.e. because all
of its leaf nodes are failure nodes), S is added to Hg (if it is not there), and a
COMPLETION operation for S is added to Qo

5. When a subgoal S is completed, if S is failed, SIMPLIFICATION operations for S
are added to Qp, and S is removed from Hp if it is present there.

Based on these modified operations, the initial SLG forest for £ consists of a tree for
Ginit, and with Qo consisting of PROGRAM CLAUSE RESOLUTION operations appli-
cable to Gy,;¢. £ proceeds by executing the operations in ()¢ in FIFO order (actually the
order does not matter). When () becomes empty, a completion operation is placed on
Qo for each subgoal in Hp. If there are no such subgoals, £ terminates. Since each op-
eration inserts into ) all operations that it makes applicable, the scheduling sketeched
here is complete.

Part 2 € has a number of operations that is linear in size(P). We start by showing
that the size of any SLG forest, F, is linear in size(P). Consider first that the number
of trees in F is bounded by the number of underlying subgoals of literals in P, which
is linear in size(P). Also, the total number of children of the root node of some tree in
P is limited by the number of program clauses in P — again linear in size(P). Next, let
Node be node produced by PROGRAM CLAUSE RESOLUTION, with Lits yoqe literals
in its goal list. Each such literal can in principle either be resolved or delayed, leading to
at most 2®1#(P) children for N where maz;it(P) is the maximal number of literals
in any clause in P. Accordingly, size(F) is linear in size(P)

Next, consider that operations are scheduled only when a given node is created or
a given tree is completed, each of which situations can occur only once in £. We thus
consider the number of operations scheduled for the creation of each type of node.

— The number of operations scheduled when creating a new tree for a subgoal S (i.e.
a NEW SUBGOAL operation) is the number k of clauses with head S. Note that the
total number of all NEW SUBGOAL operations is at most size(P).

— The number of operations scheduled upon creation of an interior node with selected
literal G is 1, since it will schedule at most one NEW SUBGOAL, ANSWER RE-
TURN, NEGATION RETURN or DELAYING operation

— The number of operations scheduled upon creation of an answer node for a subgoal
S is at most k where k is the number of nodes in F with S or not .S as its selected
literal or in its delay list. Note that the total cost for all such operations is linear in
the size of P, since each literal on a clause of P will be resolved or simplified away
at most once.

— The number of operations scheduled upon creation of a failure node is constant,
since at most one COMPLETION operation will be scheduled.

— The number of operations scheduled upon completion of a node S is at most k
where k is the number of nodes in F with S or not S in its delay list, or not S as
its selected literal. Note that the total cost of all such operatins is linear in the size
of P, since each literal in a clause of P will be simplified away at most once.



Since the total number of operations scheduled upon creating each types of node in
the forest and the total number of operations scheduled upon subgoal completion are all
linear in size(P), the second part is shown.

Part I1I: that each operation can be performed in constant time.

Since access to Hp is assumed to be constant-time, we do not mention it in the
subcases below.

— NEW SUBGOAL: Given constant-time indexing to subgoals in F the NEW SUB-
GOAL operation, which checks whether or not a particular subgoal is in F requires
constant time to perform the check, and given constant-time indexing of clauses in
P, the cost of scheduling each PROGRAM CLAUSE RESOLUTION operation will
also require constant time.

— PROGRAM CLAUSE RESOLUTION:

e If the operation creates an interior node NN, then, given constant-time index-
ing to answers in F, a PROGRAM CLAUSE RESOLUTION operation requires
a constant time to schedule each ANSWER RETURN, NEGATION RETURN, or
DELAYING oparation for N.

e Otherwise, if the operation creates an answer node for a subgoal S, constant
time access to answers of F allows the operation to schedule an ANSWER
RETURN or NEGATION RETURN operation, if needed, for each leaf node in F
whose selected literal has .S as its underlying atom. Given constant-time access
to elements of delay lists in F, each SIMPLIFICATION operation scheduled will
also require constant time.

— The constant time cost of scheduling each operation by ANSWER RETURN, DE-
LAYING, NEGATION RETURN, SIMPLIFICATION and COMPLETION operations
follows from the same argument as for PROGRAM CLAUSE RESOLUTION.

Thus the application of SLG operations and their scheduling overhead requires a
cost linear in size(P), In addition, by using H, the scheduling of COMPLETION oper-
ations at each stage when (o becomes empty is proportional to the number of subgoals
in Hp, Given constant-time access to subgoals in F the cost scheduling these opera-
tions is linear in the size of Hp. Given a subgoal is added to Hr only once, when it is
created the total cost of all scheduling of COMPLETION operations from Hp, will be
linear in size(P). Thus, the cost of all SLG operations and scheduling steps for £ is
constant in size(P).



