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Abstract: Problem solving by declarative theory building can be an extremely e�ective method for port-
ing concepts and knowledge from the problem domain to the solution domain, by allowing the
implementation of complete procedural constructs and enabling to produce sound solutions. If
conveniently expressed, such a theory may be directly coded into a declarative programming lan-
guage. If expressed within the paradigm of logic programming, then the theory itself represents
the very procedure to obtain its desired solutions.
The illustrative case study considered here is the obtention of architectural layouts from an ad-
jacency graph: Given a list of imposed adjacencies among a set of planar rectangular spaces
(represented by the graph's nodes), the goal is to generate all permissible layouts schemas on the
plane which respect the adjacencies, and to determine the minimal modular dimensions of such a
set of spaces.
Another aim of this article is also to show the guidelines of an e�ective translation of the theory
constructed to solve the proposed problem in Logic Programming, making use of the combined
power of two di�erent semantics and their implementations, namely the Well Founded Semantics
and the Stable Models one.

1 Introduction

In the architectural domain, the problem of
specifying a set of possible architectural layouts
for construction purposes is of critical impor-
tance. The constraints involved in such a spec-
i�cation are often complex and interleaved, in-
volving matters of topology such as the required
or impossible adjacencies in a set of layout plant
spaces and matters of dimension regarding the
size of each space in order to minimize construc-
tion material or to maximize space within the
building's architectural skeleton. Additional con-
straints apply to the overall shape of the layouts'
contours.

The problem considered here approaches these

issues and promotes automatic methods for the
generation of valid alternative layouts given such
sets of constraints. In this case, a necessary ad-
jacencies list is initially given, specifying con-
straints on the topology of the modular layout
spaces.

A method of building a requirements theory
to solve the general problem was �rst elaborated
and presented in (Pereira, 1974; Pereira, 1978)
and, as such, the main concern here is to provide
an e�cient translation into a logic program
of that theory. This is accomplished in what
regards the determination of the permissible
hv-assignments constraints to edges (i.e. the
assignment of the horizontal or vertical labels
to each adjacency edge to signal the relative



position of the corresponding separating wall
between its two adjacent spaces; and, also, in
what regards the determination of the minimal
compatible modular dimensions for each space;
and, �nally, in what regards the drawing of the
associated layout scheme).For an example, see
Fig 1 below.

Figure 1: A labelled graph and its associated layout.

The problem o�ers today the same challenge it
did three decades ago, when Algol68 language was
the programming vehicle. It is generally highly
and elaborately constrained, with each constraint
very di�cult to implement or even approach,
since some of the concepts related to the architec-
tural background are relatively complex. Further-
more, given the overall complexity of the prob-
lem, it is quite di�cult to produce a declarative
implementation solution with classical program-
ming languages.

However, approximately thirty years after, we
have available today more and better (declara-
tive) tools and resources and in particular log-
ical and procedural mechanisms to more eas-
ily develop such an implementation. For a sin-
gle comparison, the solution de�ned in (Pereira,
1974) was indeed completely implemented in Al-
gol68, having the author even to implement his
own backtracking mechanism at a high level.
Since then, possibly many solutions were imple-
mented in various other languages, but here we
are proposing a solution based not in one but in
two distinct logic programming frameworks and
their implementations (XSB-Prolog and Smodels)
aiming at a cooperative chore division that makes
use of the better strengths of each.

Additionally, since the appearance of the
Stable Models Semantics few signi�cantly pre-
existing complex problems have been considered
that can e�ectively test its strengths and weak-
nesses. The present pre-existing combinatorial
problem is perfect for that testing. It is suf-
�ciently complex in some of its subproblems,

thereby allowing the latter semantics to be tested
thoroughly and hence stress its strengths, and in
other of its subproblems too complex or even too
unfeasible to even apply that semantics, resorting
then to XSB-Prolog and its Well-Founded Seman-
tics and therefore stressing the former's weak-
nesses. And vice-versa, exchanging the roles of
the two semantics. The use of the Stable Models
Semantics was enacted through the XASP inter-
face included in XSB-Prolog. The interface syn-
tax can be consulted in (XASP, 2005). More de-
tailed information will be provided in subsequent
sections regarding subproblem solving, namely
where each of the semantics is called for.

In the next section detailed information will
be provided about the problem statement, in-
cluding hypotheses de�nition, problem decompo-
sition, and implementation details. There follow,
in subsequent sections, a concise analysis regard-
ing both semantics and, in the last section, we set
forth closing remarks and future enhancements
about the application herein reported.

2 Problem Formulation and

Decomposition

The initial problem formulation is de�ned
by the original de�nitional hypotheses presented
in (Pereira, 1974), recapped in (Pereira, 1978).
Below are those covered by the current imple-
mentation relative to subproblem 1.4 de�ned in
(Pereira, 1974; Pereira, 1978), which establishes
the conditions under which a planar rendering of
the adjacency graph gives at least one permissible
hv-assignment:

� Conditions A [These we presuppose]

1. The adjacency graph is �nite, simple, con-
nected, non-separable, and planar.

2. Every interior node of the adjacency graph
has four or more edges.

3. Every face of the adjacency graph must be
triangular or rectangular.

� Conditions B [These we wish to satisfy non-
deterministically]

1. Each edge must be labelled or "coloured"
either with 'v' or 'h', an hv-assignment be-
ing a complete labelling of the graph.

2. No triangular face can have all its edges as-
signed the same colour.



3. All rectangular faces must have opposite
edges assigned the same colour, and non-
opposite ones assigned di�erent colours.

4. The edges around an interior node must
be coloured in such a way that they may
be grouped into four successive alternating
colour groups.

The implementation approach was decom-
posed into the following subproblems and attend-
ing employed technology:

1. To determine the set of faces formed by the
adjacency graph (XSB-Prolog).

� De�ne triangle as a set of 3 pairwise adja-
cent nodes

� De�ne square as a sequence of 4 nodes
where each each node is adjacent only to
its predecessor and its sucessor

� De�ne a shape starting at a given node as a
triangular or square face having that node
as a vertex.

� Obtain all the shapes, starting from a given
node as the set of all faces having that node
as a vertex.

2. To determine the labelled hv-graph given the
set of faces (Smodels).

� De�ne color as being an 'h' or a 'v'.

� De�ne arc as a directed adjacency.

� De�ne a coloured arc as an arc with a as-
signed color.

� There can be no stable model where an arc
has more than one labelling.

� There can be no stable model where both
arcs that de�ne an adjacency have di�erent
labels.

� There can be no stable model where every
arc that constitutes a triangle have been
coloured in the same way.

� There can be no stable model where oppo-
site arcs constituting a square are coloured
in the same way.

3. To determine the two, horizontal and verti-
cal, space partitions given the hv-graph (XSB-
Prolog).

� Orient each label given a permissible hv-
assignment as mentioned in (Pereira, 1974),
Chapter 6, Section 2 and in (Pereira, 1978),
namely, every edge in the same colour group
of any node must be directed in the same
sense and opposite groups must have their
edges oppositely directed with respect to
the node.

� Obtain the set of paths from every initial or
source node to each terminal or sink node.

4. To determine the minimal modular dimen-
sions for each space given the partitions (XSB-
Prolog).

� A node's minimal X dimension is the num-
ber of its occurrences in the vertical parti-
tion.

� Similarly, a node's minimal Y dimension is
the number of its occurrences in the hori-
zontal partition.

5. To determine the coordinates positioning each
space. (XSB-Prolog)

� Implement both contour recognition au-
tomata proposed in (Pereira, 1974), Chap-
ter 6, Section 2 and (Pereira, 1978).

� The �rst automaton tries to determine the
coordinates of the external divisions, thus
giving a boundary for the interior nodes.

� The second automaton starts with any un-
processed node adjacent to at least one of
the previously processed nodes and com-
putes the coordinates of the next division
and the next direction.

� So, �rst determine the coordinates for all
exterior nodes thus obtaining an external
skeleton for the layout.

� And secondly, having the external skeleton
determine the coordinates for the interior
nodes.

6. To draw the �nal layout (XSB-Prolog).

� Generate an empty matrix given all dimen-
sions.

� Sweep each line, �lling each cell with the
corresponding space �guring at that coor-
dinate.

The solution is almost entirely based on that
proposed in (Pereira, 1974), complemented with
a few enhancements for integration of two distinct
types of semantics, the Well-Founded Semantics
(WFS) and the Stable Models (SM) one.

As an example consider the adjacency graph
exhibited in Fig.2a, regarding the topology of 14
spaces where the graph is compliant with Condi-
tions A from the start.

From the graph one can easily obtain all the
faces where a given node appears. For instance,
taking node 10 as the starting node we can ob-
tain 5 faces, namely a triangle formed together
with nodes 1 and 9, a triangle formed together



Figure 2: a) Adjacency graph. b) Coloured Adja-
cency graph.

Figure 3: a) Horizontal partition graph. b) Vertical
partition graph.

with nodes 1 and 2, a third triangle formed to-
gether with nodes 2 and 3, a square formed to-
gether with nodes 9, 8 and 11, and �nally another
square formed together with nodes 3, 4, and 11.

Having the faces where every node appears,
one can now label each edge in the graph with ei-
ther an 'h' or a 'v', so long as the restrictions pre-
sented in Conditions B are veri�ed. One colouring
for the adjacency graph presented is depicted in
Fig.2b.

Having the hv-graph, we proceed to deter-
mine the horizontal and vertical partitions of the
graph. The horizontal partition can be obtained
by considering a subgraph of the hv-graph whose
edges are just those labelled with 'v'; similarly
the vertical partition can be obtained considering
only those edges labelled with 'h'.

Given the colouring depicted in Fig.2b, the
horizontal partition of the hv-graph with a pos-
sible de�ned direction for each edge is consum-
mated in Fig.3a. Similarly, the vertical partition
is depicted in Fig.3b.

Given the horizontal and vertical partitions of
the hv-graph, we now determine the set of paths
from every initial node to every terminal node in
each partition, with arbitrary directions. Start-
ing with the horizontal partition, the table of
columns, i.e, the set of all paths is (each path

is represented as a column) is on the left; for the
vertical partition, the table of rows, i.e, the set of
all paths is (each path is represented as a row) is
on the right:

1 1 2 2 3 1 2 3

9 9 10 10 4 1 10 3

8 8 11 11 5 9 10 3

7 12 13 13 8 11 4

14 14 5 7 12 13 4

6 6 7 14 5

7 6 5

For the subproblem of determining the mini-
mal modular dimensions of each space it su�ces
to count the occurrences of each division in the
table of columns thus determining their minimal
X-coordinate dimension and, similarly, counting
its occurrences in the table of rows to determine
the minimal Y-coordinate dimension.

Table 1 shows the minimal modular dimen-
sions for each division for the example under con-
sideration.

Space X dimension Y dimension
1 2 2
2 2 1
3 1 3
4 1 2
5 2 2
6 2 1
7 1 3
8 2 1
9 2 1
10 2 2
11 2 1
12 1 1
13 2 1
14 2 1

Table 1. Minimal modular dimensions.

At this point, there just remain to be deter-
mined the coordinates of the spaces. As men-
tioned earlier, the exterior nodes' coordinates
are computed �rst, thus obtaining the external
skeleton of the layout, and only then the inte-
rior nodes' coordinates are calculated, as all their
hv-graph ancestor's coordinates have been calcu-
lated.

To obtain the �nal layout it su�ces to build
the matrix whose dimensions can be calculated
with each node's coordinates and minimal mod-
ular dimensions, and then to put each division in
the matrix.

Fig.4 depicts one of the layouts obtained from
the initial adjacency graph with a 90 degree sym-
metric turn of the permissible hv-assignment that
was presented in this section. Other examples are
presented in Figs. 5 and 6.



Figure 4: Layout.

Figure 5: Another layout for the same graph.

In the next sections an overview of each logic
program semantics' implementation adequateness
is examined.

3 Well-Founded Semantics Tabled

Derivation - XSB{Prolog

The XSB{Prolog system implements the Well-
Founded Semantics (WFS) (Gelder et al., 1991)
partially by means of a tabled loop detection and
delaying mechanism. The loops in the program
are then solved with the unde�ned truth-value |
just like WFS does. Taking advantage of the un-
derlying WFS implementation, the XSB{Prolog
system can be safely used for top-down query
solving with no risk of falling into a endless loop
like a normal Prolog implementation would. The
default negation of the Well-Founded Semantics is
the more adequate one to express most of the con-
straints regarding the permissible layout schemes
in this problem. For example, the two alterna-
tive edge colourings of each edge are expressed by
means of a length 2 even loop over default nega-
tion, and WFS is able to cope with them. Indeed,
we rely on XSB{Prolog to compute the residual
or kernel program of a query, and on Smodels to
compute the Stable Models of this kernel. The

Figure 6: Non-rectangular layout (with black external
space) still for the same graph.

XSB{Prolog XASP interface | as it is known
| provides an ASP interface which permits the
programmer to call on the Smodels implementa-
tion. In summary, the XASP side of the imple-
mentation top-down �nds exactly just those de-
fault negation literals involved in loops which are
relevant for the query, and then the Smodels part
takes such even loops remaining to be solved, plus
any integrity constraints, and returns their solu-
tions, i.e. their Stable Models, back to XASP for
integration into answers to the query.

Top-down querying, in general, can improve
the level of groundness of the residual program
pertaining to a query. It thus avoids some of
the complications that full groundness, required
of the whole program and not just the residual
part with respect to the query, begets for prob-
lem representation when just Stable Models im-
plementations are used. Because it can do with-
out full groundness of the whole program, pro-
gramming with meta-interpreters becomes a us-
able tool, that enlarges the degree of freedom
in representing and solving problems, compared
with the Stable Models implementations.

However, it is also true that the de�nition of
many of the more complex concepts in the the-
ory ended up being expressed with several pro-
cedural considerations in mind, for e�ciency rea-
sons. Pure logical declarativeness is not always
desirable for that reason, and this shortcoming is
clearly expressed by some of the more complex
parts of the developed program.

The main advantage of a tabulated imple-
mentation of WFS is the computational e�-
ciency of the derivation algorithm, which is poly-
nomial. Well-established implementations, like
XSB{Prolog, can interact with several other logic
programming tools and external applications, and
provide adequate constructs to allow for a exible
user interface, in addition to debugging tools.

Our program is almost entirely based on XSB{
Prolog, in part because some of the subproblems
can easily be implemented with the WFS seman-
tics, or the SLDNF (negation by failure) seman-
tics, which is also available in XSB{Prolog. For
other subproblems Smodels is the perfect choice;
then the XSB{Prolog side prepares all the data to
be sent to Smodels, by building the residual pro-
gram, sending it to Smodels, obtaining the results
back and interpreting them.



4 Answer Set Semantics - Smodels

The answer set semantics is a popular choice
in the logic programming community, that allows
for improved ways to declaratively express prob-
lem solving theories, and a method to compute
their correct solutions.

Logical expressiveness is greatly enhanced by
the introduction of explicit negation and a more
intuitive way to express problem related con-
straints and to generate all possible models for
a given theory. The subproblem related with the
determination of permissible hv-assignments, for
instance, is easily expressed in the answer set se-
mantics, without much complexity in the devel-
opment of the program.

There are some main disadvantages however,
that constitute the major drawbacks of the an-
swer set semantics approach. The �rst one, re-
lated to the non-relevancy property, is the com-
putational complexity of the model derivation,
which belongs to the NP-complete class of prob-
lems. As such, its implementations have an ex-
ponential temporal complexity to compute all the
answer sets.

Secondly, Stable Models in non-cumulative,
thus being unable to make use of already known
sets of literals, something that could easily be
used for the instance of the problem at hand.

The third disadvantage refers to the way all its
implementations, like Smodels, treat a program.
The stable models (and answer sets) semantics
considers the whole Herbrand base of a logic the-
ory i.e., it only works with fully instantiated rules.
Before computation of the stable models begins,
it is necessary for the implementation to combine
the substitutions of all variables in a rule, with
respect to all possible ground instance values of
each one.

As a consequence of some of the previous dis-
advantages, Smodels cannot make use of known
deterministic properties of our layout theory. For
instance, while XSB-Prolog, enhanced with a de-
terministic priority meta-interpreter mechanism
(like the one de�ned in (Pereira et al., 1992)),
can, without grounding, identify each determin-
istic call in turn, and therefore produce an evalua-
tion in polynomial time without recourse to back-
tracking, Smodels instead is forced to ground ev-
ery variable in the program, having even to re-
sort to each variable's domain to do so. Meta-
interpretation allows guiding an evaluation with-
out the spacial multiplication of the programme,
and without analyzing each variable's domain,

a priceless feature when integrated into XSB-
Prolog.

It is also not possible to de�ne dynamic con-
structs during computation, which greatly limits
expression of certain aspects of the theory. These
limitations were deeply felt during development
of this implementation and greatly conditioned
the use of this semantics throughout.

These disadvantages had a direct impact in
the process of choosing the tool in which to
implement each of the referred subproblems or,
more appropriately, in preferring XSB{Prolog
over SModels, even for the combinatorial ones.
For instance, the dynamic construct de�nition
disadvantage is patent in subproblem 1, in the
problem of determining the horizontal and verti-
cal partitions of the hv-graph, and in determining
the minimal modular dimensions of each division,
simply because it cannot be known a priori the ex-
act number of elements we are referring to, and,
even if they were known, it would probably be
very di�cult to code anyway. On top of that, the
derivation algorithm can transform a polynomial
problem into an exponential one, as exempli�ed
by subproblem 5 related to the determination of
the coordinates of the external skeleton of the lay-
out, which can be solved in polynomial time and,
if translated into SModels, would turn exponen-
tial.

5 Closing Remarks and Future

Work

The implementation presented in this article
corresponds only to a limited subset of the rather
complete theory presented in (Pereira, 1974). As
mentioned earlier, only the planar topological as-
pect of the problem-solving theory was consid-
ered, i.e. a planar rendering of the graph was
assumed. The extensions required to restrain the
dimensions of each space and each adjacency to
speci�ed intervals were clearly out of scope of this
work, but they are unavoidable in order to ob-
tain a practical and general usable solution to the
problem.

Only one of the subproblems mentioned was
implemented in Smodels; however, also the sub-
problem related to determining the orientation of
the labels could be implemented in it. This sub-
problem, as implemented in XSB{Prolog, is one
of the most complex parts of the program and,
if it were implemented in Smodels, the relevant
part of the code would be much more concise,



logical and substantially reduced in size and com-
plexity. Unfortunately, because of the disadvan-
tages mentioned, we found the time complexity of
the obtained code substantially increased, as did
the number of layouts obtained, but unnecessarily
since the new solutions are just symmetrical vari-
ations! For example, given a triangular adjacency
graph, the distinct number of solutions (modulo
symmetry) is 6 in the current implementation,
but would turn to 24 if developed in Smodels,
with no really new solutions.

A possible solution for this problem is in the
utilization not of the usual Stable Models Se-
mantics but of a revised one, which enjoys rel-
evancy and cumulativity, as mentioned and de-
�ned in (Pereira and Pinto, 2005a) and (Pereira
and Pinto, 2005b), which are properties required
for an e�cient and more declarative implementa-
tion for the instance at hand.

Regarding the generalization of the problem
instance tackled, future work includes dynami-
cally obtaining alternative planar representations
of an adjacency graph, albeit from an initially
non-planar one, respecting some constraints, and
so allowing for a more exible interface with a
human user, who does not have to produce a pla-
nar representation; addition of range intervals for
each dimension, thereby restricting the possible
values associated with each space and taking a
signi�cant step towards real requisites; allowing
dimensional range overlap of spaces in order to
view and detect problematic design points; intro-
duction of layout restrictions guaranteeing elimi-
nation of unwanted layouts; interconnection with
AutoCAD, thus enabling a more formal presen-
tation of the layouts, which are currently repre-
sented in HTML.

This application is a perfect example of the
bene�ts of a joint collaboration of the Well
Founded Semantics and the Stable Models Se-
mantics aiming at theory building for problem
solving.

Having implemented the solution in this hy-
brid way we can thus gain more declarativeness
by relegating every task to the system where we
can more easily programme it and, also obtaining
a much more e�cient solution by relegating each
task to the system that more easily solves it.

Future research in this double approach can
undoubtedly provide a more declarative, simple
and logical approach to problems on the basis of
Logic Programming. Some major steps have al-
ready been taken towards that direction, namely
the revised Stable Models Semantics presented

in (Pereira and Pinto, 2005a) and (Pereira and
Pinto, 2005b), as it is believed that enhancements
to the Stable Models semantics can bring major
improvements to the �eld of Logic Programming.
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