
A Model Theory for Paraconsistent Logic

Programming

Carlos Viegas Damásio and Lúıs Moniz Pereira⋆

CRIA, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica

Portugal
{cd|lmp}@fct.unl.pt

Abstract. We provide a nine-valued logic to characterize the models
of logic programs under a paraconsistent well-founded semantics with
explicit negation WFSX p. We define a truth-functional logic, NINE ,
based on the bilattice construction of Ginsberg and Fitting. The models
identified by WFSX p are models of logic NINE . We conclude with a
discussion on the conditions to obtain an isomorphism between the two
definitions, and thereby characterizing WFSX p model-theoretically.

1 Introduction

One of the main issues in logic programming is the definition of semantics for
negation(s). Quite recently, a second form of negation besides the older de-
fault negation, was proposed by several authors [12, 8, 11, 21, 13]) providing
a mechanism for explicitly declaring the falsity of literals, which was not avail-
able before. The importance of extending LP with a second kind of negation ¬,
has been stressed for use in deductive databases, knowledge representation, and
non-monotonic reasoning. Different semantics for extended LPs with ¬-negation
have appeared (e.g. [8, 18, 13, 22]). The specific generalization for extended pro-
grams of well-founded semantics [7], WFSX , defined in [13, 2] using “explicit
negation”, is taken as the base semantics in this paper.

The introduction of explicit negation requires being able to reason with, or at
least detect, contradictory knowledge. Indeed, information is not only normally
incomplete but contradictory as well. As remarked by [22] there are three main
ways of dealing with inconsistent information:

Explosive approach: If the program is contradictory then every formula is
derived from it. This corresponds to the usual approach in mathematical
logic, and of several semantics for extended logic programs [18, 8, 13, 2].

Belief revision approach: The program is revised in order to regain con-
sistency. This is the view adopted by some authors in the LP commu-
nity [17, 14, 10, 1, 2]. It does not necessarily require an explicit paracon-
sistent semantics: the procedural revision operators suffice.

⋆ We thank Esprit BR project Compulog 2 (no. 6810), and JNICT for their support.

Paraconsistent approach: Accept contradictory information and perform rea-
soning tasks that take it into account. This is the approach of [4, 19, 22],
and the one we will follow in this paper.

The first approach is rather näıve and only makes sense when dealing with
mathematical objects. For instance, if we have a large knowledge base being
mantained or updated by different agents, it is natural to encounter inconsisten-
cies in the database. Most of the time, this inconsistency is local to some part
of the knowledge base and it shouldn’t affect other, independent, information.
If we adopt the explosive approach, and a single contradiction is found then we
must discard the entire knowledge base. This is uneconomical.

Sometimes the contradictory information can be due to a specification error,
and we’d like to fix it through debugging. In other situations the information
provided is in itself contradictory. In the former, we can use belief revision tech-
niques. In the latter, a paraconsistent deductive mechanism is necessary. Notice
however that to perform belief revision we need in any case to detect the incon-
sistencies and the reasons supporting them. Thus, paraconsistent reasoning is
an, at least implicit, intermediate step to attain belief revision.

Since we want to assign meaning to every program we will make use of
the paraconsistent version of WFSX , WFSX p which can be found in [1, 2].
The semantics complies with two basic principles: coherence and also a form
of introspection. The “coherence principle” of [13, 2] relates the two forms of
negation, default and explicit: it stipulates that the latter entails the former, i.e
if L (¬L) is entailed then so is not¬L (notL). In other words, coherence requires
that if I’m convinced of the truth of a proposition then I must believe (i.e. be
weakly convinced about) the truth of the proposition.

The introspection mechanism too provides the derivation of new weak con-
victions. To express it we need the notion of “doubt”: I doubt the truth of L iff
I have weak conviction for the falsity of L; I have conviction in the truth of L iff
I doubt the weak conviction in the falsity of L. Now we can state the principle
of introspective doubt: if I doubt all the bodies of rules for L then I’m weakly
convinced of the falsity of L. The joint application of these principles is brought
out in example 1.

Example 1. Let P be the extended logic program containing the five rules {a;¬a;
b ← a; c ← not b; d ← not d}. It is clear that the model of this program must
entail a, ¬a and b; therefore I’m convinced of the truth of a and b (a and b are
true) and convinced of the falsity of a (¬a is true). By applying coherence we
should also have not a, not¬a and not¬b, i.e. I’m weakly convinced of the falsity
of a (not a is true) and weakly convinced of the truth of a and b (not¬a and
not¬b are true). By doubt introspection, I believe in the falsity of b (not b is true)
if I have doubts about the truth of a; and indeed I’m reserved about the truth
of a because I believe in the falsity of a, i.e. not a is true. Therefore not b, and
thus c, should belong to the model. By the same introspective doubt, I’m weakly
convinced of the falsity of c (not c is true) if I doubt my belief in the falsity of
b, i.e. if I’m convinced of the truth of b; this is so (b is true), therefore not c

should belong to the model of the program. Regarding literal d, I’m convinced
of the truth of d iff I doubt the truth of d, therefore I remain agnostic about
my conviction, i.e. d and not d are not entailed. On the other hand, I’m weakly
convinced of the truth d since I have no rule for ¬d.

Therefore we equate conviction in the truth (resp. falsity) of a proposition
with L (resp. ¬L), and belief with “not¬”, i.e. belief in the truth (resp. falsity)
of a proposition with not¬L (resp. not¬¬L = notL).

We assume the reader acquainted with the terminology of extended logic pro-
grams, in particular that atoms or explicitly negated atoms are called objective
literals, and that default literals are the default negated objective literals. For
details see [8, 13, 2]. All definitions and results in this paper are valid only for
the ground instances of programs.

We refer the reader to [1] for the alternating fixpoint definition of WFSX p.
Different, but equivalent, definitions of WFSX p also appeared in [16, 15, 2]. In
these works the paraconsistent version of WFSX is used only to detect contra-
dictions to be removed. This is not the stance taken here. We wish to analyse the
intrinsic properties of the semantics to shed new light on the subject, and also to
turn the connectives into truth-functional ones. We provide a nine-valued logic
to characterize the models of logic programs explicit negation under WFSX p,
based on the bilattice construction of Ginsberg and Fitting. The models iden-
tified by WFSX p are models of logic NINE . We conclude with a discussion
on the conditions to obtain an isomorphism between both definitions, thereby
characterizing WFSX p model-theoretically.

2 Model theory for WFSX p

One of the main criticsms to the original definition of well-founded semantics
with explicit negation regards its model theory. In [13, 2] the definition of the
logical implication operation is not truth functional and literals a and ¬a are
viewed almost as separate entities: though ¬a entails a false nothing else follows
for other truth values. Furthermore, in some cases the head of a rule is assigned
the truth value f the body u, but the rule is satisfied (f ← u). This is due, in such
cases, to the coherence principle, and it might be considered awkward in a three-
valued logic. In other situations, with the same assignment of values to head and
body a rule, and where coherence does not intervene, the rule is unsatisfiable,
showing again the non-truth functional character of the model definition used.
These problems are illustrated with example 2.

Example 2. Let P be the logic program containing the following rules: {a ← b;
b ← not b;¬a}. The WFM(P) is {¬a, not a, not¬b}. According to the notions
of interpretation and model of [13, 2], literal b is assigned truth value undefined,
a is assigned false, and ¬a true. The first rule of the program is satisfied by this
interpretation, even with false head and undefined body. The intuition being
that ¬a overrides the undefinedness of a obtained on the basis of the first rule.

The basic mechanisms we want to capture and formalize are illustrated in
examples 1 and 2. Literals are entailed with three different degrees of epistemic
entrenchment: conviction, weak conviction and undecidedness. Convictions are
represented by objective literals and the rule implication sign in extended logic
programming propagates them. Weak convictions are drawn by default or result
from the mandatory application of the coherence principle.

A by now standard way of generating new logics for reasoning with missing or
conflicting information is via Ginsberg’s bilattices [9], who generalizes the ideas
behind Belnap’s four valued logic [3]. We follow Fitting’s proposals [6] on how
to construct a bilattice.

Definition 1. [6] Given two complete lattices C = 〈C,≤1〉 and D = 〈D,≤2〉
the structure B(C,D) = 〈C×D,≤k,≤t〉 is a bilattice, with 〈c1, d1〉 ≤k 〈c2, d2〉
iff c1 ≤1 c2 ∧ d1 ≤2 d2, and 〈c1, d1〉 ≤t 〈c2, d2〉 iff c1 ≤1 c2 ∧ d2 ≤2 d1. To
each ordering are associated join and meet operations as usual. Conjunction and
disjunction are, respectively, meet and join in the truth-ordering.

The intuition here is that C (D) provides the arguments for (against) be-
lieving in the truth of a statement. If 〈c1, d1〉 ≤k 〈c2, d2〉, then situation 2 has
more information than 1, i.e. knowledge is increased. If 〈c1, d1〉 ≤t 〈c2, d2〉 then
we have more reasons to believe in situation 2 than in 1, because the reasons for
believing the statement either increased or the reasons against it are weaker, i.e.
〈c2, d2〉 is truer than 〈c1, d1〉.

Next we define our truth-space using the bilattice construction. We have
identified the reasons for believing, disbelieving, or abstaining in the truth of
a proposition: conviction, weak conviction and undecidedness. Using these de-
grees we can form two complete lattices, one with the reasons for the truth
of a proposition and other with the reasons against it (or for its falsity): For
= ({} < {not¬L} < {L, not¬L}) and Against = ({} < {notL} < {¬L, notL}).
The set {L} ({¬L}) is not an element of lattice For (Against) because of the
coherence principle: If I am convinced of the truth of L (¬L) then I must be-
lieve in L (¬L), i.e. not¬L (notL) should hold. In fact, we can abstract from
the lattices For and Against by defining their isomorphic lattice of opinion. The
bilattice NINE is then constructed from the opinion lattice.

Definition 2. The opinion lattice is the complete lattice O =< {none, weak,
strong}, (none < weak < strong) >. Bilattice NINE is defined as B(O,O). To
each one of the nine pairs 〈o1, o2〉 of NINE we assign it a value as follows:

Pair Value Pair Value Pair Value
〈none, none〉 ⊥ 〈none, strong〉 f 〈strong, weak〉 II

〈none, weak〉 df 〈strong, none〉 t 〈weak, strong〉 III

〈weak, none〉 dt 〈strong, strong〉 I 〈weak, weak〉 IV

By ⊥ we mean no opinion (or undecidedness or undefinedness), and corre-
sponds to the bottom element of the lattice according to the knowledge ordering.
The two extra logical values correspond to default falsity (df) and default truth

(dt). We have also the classical t and f values and four degrees of contradictory
information. Figure 1 is the Hasse diagram of bilattice NINE . In order to ob-

⊥

df dt

tf

I

IIIII

IVk

t

Fig. 1. Logic NINE

tain a correspondence with the paraconsistent semantics for extended logic pro-
grams we need to define two forms of negation and the interpretation of the rule
implication sign. According to Fitting [6] a negation operator in a (interlaced)
bilattice should satisfy the following three properties: (1) a ≤k b ⇒ ¬a ≤k ¬b;
(2) a ≤t b ⇒ ¬b ≤t ¬a; (3) a = ¬¬a. If the double negation condition (3) is
not verified then the negation operator is said to be weak. The intuition is that
negations should reverse truth but preserve knowledge. In what follows we will
also use NINE , when no confusion arises, to represent the set of logical values
induced by bilattice NINE .

Definition 3. Let ¬ : NINE 7→ NINE and not : NINE 7→ NINE be the
unary operators defined by the following truth-tables.

a ⊥ df dt f t I II III IV

¬a ⊥ dt df t f I III II IV

not a ⊥ t f t f I I I I

Proposition 4. Operators ¬ : NINE 7→ NINE and not : NINE 7→ NINE
are, respectively, a negation and a weak negation.

The rationale is that ¬ finds the degree of conviction for the negation of a
proposition, exchanging the roles of what counts for and what counts against.
The not operator determines if the negation of a proposition is at least believed.
We have four cases to consider: there is no conviction in the truth nor falsity of
a proposition; there is at least weak conviction in the falsity of a proposition and
no conviction in its truth; there is no conviction in the falsity of a proposition and
at least weak conviction in its truth; there is at least weak conviction for both
the falsity and the truth of a proposition. In the first case we remain undecided.
In the second case not returns true, and in the third case false. In the fourth
and last case we have contradictory information and not returns contradiction.

The definition of the rule implication sign is rather simple: it enacts the
principle that if we have conviction in the antecedent we must have conviction
in the consequent.

Definition 5. Let ←: NINE × NINE 7→ NINE be the binary operator de-
fined by the following rules: Rule implication a← b is f iff b is I, II or t but a is
none of these truth values; otherwise, a← b is t.

Our goal is to define a notion of model which complies with the alternating
fixpoint definition of WFSX p. Namely, we would like the paraconsistent well-
founded model to be a NINE model of the program. To attain this we first
define as usual the syntax, and the notions of interpretation, valuation function,
and model.

Definition 6. Let L be a set of atomic propositions. The language L9 is defined
inductively as follows: constants t and f belong to L9; if a ∈ L then a ∈ L9; if
A ∈ L9 then ¬A and notA are in L9 too; if A and B belong to L9 then their
boolean combinations A ∧B, A ∨B and A← B also belong to L9; nothing else
belongs to L9.

We define a nine valued interpretation as a function assigning to each atomic
proposition one of the truth values of NINE . The definition of truth valuation
Î9 wrt to an interpretation I9 is a function mapping formulae into logical values
of NINE , with the logical connectives “∧”, “∨”, “¬”, “not ” and “←” as per
definitions 1, 3, and 5. An interpretation is a model of a set of formulae iff there
is conviction in each formula of the set.

Definition 7. Let I be a NINE interpretation. Interpretation I is a NINE
model of a set of formulae S, represented by I |=9 S, iff ∀s∈S Î(s) = I ∨ Î(s) =
II ∨ Î(s) = t

For simplicity, we write I |=9 s, standing for I |=9 {s}, where s is an arbitrary
formula of L9. By definition of valuation of implicational formulae, we have for
any formula s of L9 the equivalence Î(s← t) = t iff I |=9 s.

The commutative, associative, idempotency and absorption laws of ‘∧’ and
‘∨’ are inherited from the complete lattice structure of NINE . Remark that
property not notA = not¬A = ¬not A holds in NINE , and therefore all possi-
ble combinations of the negation operators can reduce to one of the four following
cases, where a is an atomic proposition: a, not a, ¬a or not¬a.

The mapping between single literal based interpretations and NINE truth-
values is immediate. The formal mapping aspects can be found in definition 8.

Definition 8. Let I be a set of literals, default or objective, and LI the set of
atoms of the language of I. The NINE interpretation τ(I), with underlying
language LI , is the interpretation where to an atomic proposition a of LI is

assigned one logical value, as follows:

⊥ iff a 6∈I ∧ ¬a 6∈I ∧ not a6∈I ∧ not¬a 6∈I
df iff a 6∈I ∧ ¬a 6∈I ∧ not a∈I ∧ not¬a 6∈I
dt iff a 6∈I ∧ ¬a 6∈I ∧ not a6∈I ∧ not¬a∈I
f iff a 6∈I ∧ ¬a∈I ∧ not a∈I ∧ not¬a 6∈I

I iff a∈I ∧ ¬a∈I ∧ not a∈I ∧ not¬a∈I
II iff a∈I ∧ ¬a6∈I ∧ not a∈I ∧ not¬a∈I
III iff a 6∈I ∧ ¬a∈I ∧ not a∈I ∧ not¬a∈I
IV iff a 6∈I ∧ ¬a6∈I ∧ not a∈I ∧ not¬a∈I

Notice that the τ mapping is a bijection among the set of interpretations and
the set of NINE interpretations based on the same set of atomic propositional
symbols.

Our first result is the desirable statement relating the paraconsistent partial
stable models of a logic program with NINE models, i.e. the fixpoints of ΓΓs.
For the definition of Γ and Γs operators see [1, 2]. According to theorem 9 we
have succeeded in finding in NINE a model theory for the paraconsistent well-
founded semantics with explicit negation.

Theorem 9. Let P be an extended logic program. If T is a fixpoint of ΓPΓPs
then

I = τ (T ∪ notHP − ΓPs
) is a NINE model of P , i.e. I |=9 P9. The theory P9

is obtained from P by replacing all rules L0 ← L1, . . . , Lm, notLm+1, . . . , notLn

by the L9 formula L0 ← L1 ∧ . . . ∧ Lm ∧ notLm+1 ∧ . . . ∧ notLn

Example 3. Consider again program P of example 2. Its WFMp is {¬a, not a,
not¬b}. We obtain its NINE model by using the τ transformation. To a is
assigned the value f and to b the value dt. As the reader can check, this is a
NINE model of the corresponding P9 program.

3 Supported Models

The program of example 2 has other NINE models which do not correspond to
any fixpoint of WFSX p. One such model is obtained by assigning f to a, and to b

the undefined truth value⊥. But this model is smaller under the knowledge order
than the corresponding model generated by the WFMp. This raises the question
why we infered dt for b instead of ⊥. In general terms, we have an additional
mechanism for infering weak conviction, i.e. negation by default. Because we
have no conviction in the falsity of b we may weakly believe in its truth. This
form of reasoning provides new insights into the stronger conditions that the
NINE models generated by WFSX p obey.

Definition 10. Let I be a NINE model. We define relation I ; F as follows,
where L is an objective literal and A and B L9 formulae without occurrences of
the rule implication symbol:

I ; L iff I |=9 notL

I ; notL iff I |=9 L

I ; (A ∧B) iff (I ; A) or (I ; B)
I ; (A ∨B) iff (I ; A) and (I ; B)

When I ; F we have reasons to doubt of F . The cases on the left express
formally the intuitions given in the introduction of the paper. Now we can give
a better characterization of the properties obeyed by WFSX p fixpoints.

Definition 11. Let P9 be a NINE theory generated by a logic program P . We
say that I is a supported model of P9 iff the following holds: I |=9 L iff there is an
implication in P9 with consequent L and antecedent Body such that I |=9 Body;
I |=9 notL iff I |=9 ¬L or for every implication with conclusion L and premise
Body we have I ; Body.

According to the above definition, we have conviction in the truth of a literal
if we have at least one rule for that literal for which we are convinced of the
truth of the body. We believe in the falsity of a literal iff we are convinced of its
falsity (coherence principle), or we doubt each body of the rules with that literal
in the head (principle of introspective doubt).

Theorem12. Let P be an extended logic program and P9 its corresponding

NINE theory. If T is a fixpoint of ΓPΓPs
then I = τ (T ∪ notHP − ΓPs

) is

a supported model of P9.

The converse of the above theorem is not valid, i.e. there are supported
models which are not fixpoints of ΓΓs. Therefore supported models do not fully
characterize the fixpoints of ΓΓs, as illustrated in the following example.

Example 4. Consider the following two-rule program {a← b; b← a}. The corre-
sponding NINE theory has four supported models, namely {a = dt, b = dt},
{a = t, b = t}, {a = II, b = II} and {a = IV, b = IV}. The least model under the
knowledge ordering is the first one listed. Mark that the unique fixpoint of the
original program corresponds to the latter model.

The problem with example 4 is the “positive loop” between a and b. In gen-
eral, when programs have no infinite positive dependencies among literals, the
supported models are isomorphic to the fixpoints of WFSX p. We first define the
positive dependency graph:

Definition 13. Let P be an extended logic program. The vertices of the positive
dependency directed graph Dep+(P) of P are the literals of HP . For each rule
L ← L1, . . . , Lm, not Lm+1, . . . , not Ln of P there is an edge from node Li, 1 ≤
i ≤ m, to node L. If there are no infinite descending chains in Dep+(P) we say
that the program has no infinite positive recursion.

Theorem14. Let P be an extended logic program without infinite positive re-

cursion, if I = τ(T ∪ not F) is a supported model of the corresponding P9 theory

then T ∪ not F is a fixpoint of ΓΓs.

The importance of this result is due to the circumstance that an extended
logic program P can be transformed into an equivalent program with no ob-
jective literals in the bodies of rules. This means that it is possible to find an
equivalent program where the characterization of WFSX p fixpoints by the sup-
ported models holds, i.e. a model-theoretic definition for WFSX p. This program
is obtained by iterated application of an appropriate partial evaluation transfor-
mation: let no+(P) be the set of rules in P which do not have positive literals

in their bodies. Let L ← Body be a rule in no+(P). Substitute every positive
occurrences of L in a body of P by the conjunction Body, not¬L. Add these
new rules to P . Iterate this step till all rules of no+(P) were substituted, ob-
taining program P ′. Repeat the whole process with program P ′ till no new rules
are added, resulting program Pf . Program no+(Pf) is equivalent to the original
program P . This bottom-up construction is similar to Brass and Dix’s residual
program computation [5].

Example 5. Consider the program of example 4. By applying the above process
we obtain as a result the empty program, which has the unique supported model
{a = IV, b = IV}, corresponding to its paraconsistent well-founded model.

4 Conclusions

We have provided a new truth-functional nine-valued logic which furnishes an el-
egant model-theory forWFSX andWFSX p. In this logic, a bilattice, it is possible
to define, by a truth table, the meaning of the “not ” and “¬” negation operators,
besides the usual boolean connectives “∨”, “∧” and “←”. We were able to prove
that every paraconsistent partial stable model is a model of the theory readily ob-
tained from the program, under ourNINE logic. Then we introduced the notion
of supported model in order to establish a one-to-one correspondence between
supported models and paraconsistent partial stable models. We have shown that
this is not possible in general, but we have identified a class of the programs (the
ones which do not have infinite positive dependencies) where the “equivalence”
holds. Fortunately, every extended logic program has an equivalent one in this
stricter class of programs, and therefore we can characterize model-theoretically
the semantics of any extended logic program. It remains to be settled if such
one-to-one characterization is possible without using this other equivalent, but
distinct, program. It would also be very interesting if the main ideas underlying
our WFSX p semantics could be generalized for arbitrary interlaced bilattices.
A similar nine-valued logic was independently proposed in [20] to formalize a
semantics for disjunctive extended logic programs, but with different interpre-
tations of the negation operators, and based on an Answer-Set like semantics.
There are results showing the natural embedding of the semantics [4, 18, 19, 22]
in WFSX p, which will be the subject of a forthcoming paper.

References

1. J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system
for non-monotonic reasoning. Journal of Automated Reasoning, Special Issue on
Implementation of NonMonotonic Reasoning(14):93–147, 1995.

2. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming. Springer–
Verlag, 1995. In print.

3. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors,
Modern Uses of Many-valued Logic, pages 8–37. Reidel, 1977.

4. H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoret-
ical Computer Science, 68:135–154, 1989.

5. S. Brass and J. Dix. A disjunctive semantics based on unfolding and bottom-up
evaluation. In Proc. IFIP ’94-Congress, Workshop FG2: Disjunctive Logic Pro-
gramming and Disjunctive Databases, pages 83–91. Springer, 1994.

6. M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic

Programming, 11:91–116, 1991.
7. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. Journal of the ACM, 38(3):620–650, 1991.
8. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren

and Szeredi, editors, 7th ICLP, pages 579–597. MIT Press, 1990.
9. M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial

intelligence. Computational Intelligence, 4:265–316, 1988.
10. C. M. Jonker and C. Witteveen. Revision by expansion. In G. Lakemeyer and

B. Nebel, editors, Proceedings ECAI’92 Workshop on Theoretical Foundations of

Knowledge Representation, pages 40–44. ECAI’92 Press, 1992.
11. R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and Szeredi,

editors, 7th ICLP. MIT Press, 1990.
12. D. Pearce and G. Wagner. Reasoning with negative information I: Strong negation

in logic programs. In Language, Knowledge and Intentionality, pages 430–453. Acta
Philosophica Fennica 49, 1990.

13. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with
explicit negation. In B. Neumann, editor, Proc. ECAI, pages 102–106. John Wiley
& Sons, 1992.

14. L. M. Pereira, J. J. Alferes, and J. N. Apaŕıcio. Contradiction Removal within Well
Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors,
LPNMR’91, pages 105–119. MIT Press, 1991.

15. L. M. Pereira, J. J. Alferes, and J. N. Apaŕıcio. Contradiction removal semantics
with explicit negation. In M. Masuch and L. Pólos, editors, Knowledge Repre-

sentation and Reasoning Under Uncertainty, volume 808 of LNAI, pages 91–106.
Springer-Verlag, 1994.

16. L. M. Pereira, J. N. Apaŕıcio, and J. J. Alferes. Non–monotonic reasoning with
logic programming. Journal of Logic Programming. Special issue on Nonmonotonic

reasoning, 17(2, 3 & 4):227–263, 1993.
17. S. G. Pimentel and W. L. Rodi. Belief revision and paraconsistency in a logic pro-

gramming framework. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors,
LPNMR’91, pages 228–242. MIT Press, 1991.

18. T. Przymusinski. Extended stable semantics for normal and disjunctive programs.
In Warren and Szeredi, editors, 7th ICLP, pages 459–477. MIT Press, 1990.

19. C. Sakama. Extended well–founded semantics for paraconsistent logic programs.
In Fifth Generation Computer Systems, pages 592–599. ICOT, 1992.

20. C. Sakama and K. Inoue. Paraconsistent stable semantics for extended disjunctive
programs. Journal of Logic and Computation, 5(3), 1995.

21. G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H.-D. Gerhardt, editors, Mathematical Foundations of

Database Systems, pages 357–371. LNCS 495, Springer–Verlag, 1991.
22. G. Wagner. Vivid logic: Knowledge-based reasoning with two kinds of negation.

LNAI, 764, 1994.

This article was processed using the LaTEX macro package with LLNCS style

