
Prospective Logic Agents

Luı́s Moniz Pereira and Gonçalo Lopes

Centro de Inteliĝencia Artificial - CENTRIA
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

goncaloclopes@gmail.com
lmp@di.fct.unl.pt

Abstract. As we face the real possibility of modelling agent systems capable of
non-deterministic self-evolution, we are confronted with the problem of having
several different possible futures for any single agent. This issue brings the chal-
lenge of how to allow such evolving agents to be able tolook ahead, prospec-
tively, into such hypothetical futures, in order to determine the best courses of
evolution from their own present, and thence to prefer amongst them. The con-
cept of prospective logic programs is presented as a way to address such issues.
We start by building on previous theoretical background, on evolving programs
and on abduction, to construe a framework for prospection and describe an ab-
stract procedure for its materialization. We take on several examples ofmodelling
prospective logic programs that illustrate the proposed concepts and briefly dis-
cuss the ACORDA system, a working implementation of the previously presented
procedure. We conclude by elaborating about current limitations of the system
and examining future work scenaria.

1 Introduction

Continuous developments in logic programming (LP) language semantics which can
account for evolving programs with updates [2, 3] have opened the door to new per-
spectives and problems amidst the LP and agents community. As it is now possible
for a program to talk about its own evolution, changing and adapting itself through
non-monotonic self-updates, one of the new looming challenges is how to use such se-
mantics to specify and model logic based agents which are capable of anticipating their
own possible future states and of preferring among them in order to further their goals,
prospectively maintaining truth and consistency in so doing. Such predictions need to
account not only for changes in the perceived external environment, but need also to in-
corporate available actions originating from the agent itself, and perhaps even consider
possible actions and hypothetical goals emerging in the activity of other agents.

While being immersed in a world (virtual or real), every proactive agent should be
capable, to some degree, of conjuring up hypotheticalwhat-if scenaria while attending
to a given set of integrity constraints, goals, and partial observations of the environ-
ment. These scenaria can be about hypothetical observations (what-if this observation
were true?), about hypothetical actions (what-if this action were performed?) or hypo-
thetical goals (what-if this goal was pursued?). As we are dealing with non-monotonic
logics, where knowledge about the world is incomplete and revisable, a way to repre-
sent predictions about the future is to consider possible scenaria as tentative evolving



hypotheses whichmaybecome true, pending subsequent confirmation or disconfirma-
tion on further observations, the latter based on the expected consequences of assuming
each of the scenaria.

We intend to show how rules and methodologies for the synthesis and maintenance
of abductive hypotheses, extensively studied by several authors in the field of Abductive
Logic Programming [9, 11, 17, 16], can be used for effective,yet defeasible, prediction
of an agent’s future. Note that we are considering in this work a very broad notion
of abduction, which can account for any of the types of scenaria mentioned above.
Abductive reasoning by such prospective agents also benefits greatly from employing
a notion of simulation allowing them to derive the consequences for each available
scenario, as the agents imagine the possible evolution of their future states prior to
actually taking action towards selecting one of them.

It is to be expected that a multitude of possible scenaria become available to choose
from at any given time, and thus we need efficient means to prune irrelevant possibili-
ties, as well as to enact preferences and relevancy preorders over the considered ones.
Such preference specifications can be enforced either a priori or a posteriori w.r.t hy-
potheses making. A priori preferences are embedded in the knowledge representation
theory itself and can be used to produce the most interestingor relevant conjectures
about possible future states. Active research on the topic of preferences among ab-
ducibles is available to help us fulfill this purpose [6, 7] and results from those works
have been incorporated in the presently proposed framework.

A posteriori preferences represent meta-reasoning over the resulting scenaria them-
selves, allowing the agent to actually make a choice based onthe imagined conse-
quences in each scenario, possibly by attempting to confirm or disconfirm some of the
predicted consequences, by attributing a measure of interest to each possible model, or
simply by delaying the choice over some models and pursuing further prospection on
the most interesting possibilities which remain open. At times, several hypotheses may
be kept open simultaneously, constantly updated by information from the environment,
until a choice is somehow forced during execution (e.g. by using escape conditions), or
until a single scenario is preferred, or until none are possible.

In prospective reasoning agents, exploration of the futureis essentially an open-
ended, non-deterministic and continuously iterated process, distinct from the one-step,
best-path-takes-all planning procedures. First, the use of abduction can dynamically ex-
tend the theory of the agent during the reasoning process itself in a context-dependent
way so that no definite set of possible actions is implicitly defined. Second, the choice
process itself typically involves acting upon the environment to narrow down the num-
ber of available options, which means that the very process of selecting futures can
drive an agent to autonomous action. Unlike Rodin’s thinker, a prospective logic agent
is thus proactive in its look ahead of the future, acting uponits environment in order to
anticipate, pre-adapt and enact informed choices efficiently. These two features imply
that the horizon of search is likely to change at every iteration and the state of the agent
itself can be altered during this search.

The study of this new LP outlook is essentially an innovativecombination of fruitful
research in the area, providing a testbed for experimentation in new theories of program
evolution, simulation and self-updating, while launchingthe foundational seeds for



modeling rational self-evolving prospective agents. Preliminary research results have
proved themselves useful for a variety of applications and have led to the development
of the ACORDA1 system, successfully used in modelling diagnostic situations [13].
This paper presents a more formal abstract description of the procedure involved in the
design and implementation of prospective logic agents.Some examples are also pre-
sented as an illustration of the proposed system capabilities, and some broad sketches
are laid out concerning future research directions.

2 Logic Programming Framework

2.1 Language

LetL be any first order language. A domain literal inL is a domain atomA or its default
negationnot A, the latter expressing that the atom is false by default (CWA). A domain
rule inL is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

whereA is a domain atom andL1, . . . , Lt are domain literals. An integrity constraint in
L is a rule of the form:

⊥ ← L1, . . . , Lt (t > 0)

where⊥ is a domain atom denoting falsity, andL1, . . . , Lt are domain literals.
A (logic) programP overL is a set of domain rules and integrity constraints, stand-

ing for all their ground instances. Every programP is associated with a set ofabducibles
A ⊆ L, consisting of literals which (without loss of generality)do not appear in any
rule head ofP. Abducibles may be thought of as hypotheses that can be used to extend
the current theory, in order to provide hypothetical solutions or possible explanations
for given queries.

2.2 Preferring Abducibles

An abducible can be assumed only if it is a considered one, i.e. it is expected in the
given situation, and moreover there is no expectation to thecontrary [6, 7].

consider(A)← expect(A), not expect not(A).

The rules about expectations are domain-specific knowledgecontained in the theory
of the agent, and effectively constrain the hypotheses (andhence scenaria) which are
available.

To express preference criteria among abducibles, we consider an extended first order
languageL∗. A preference atom inL∗ is one of the forma ⊳ b, wherea and b are
abducibles.a⊳b means that the abduciblea is preferred to the abducibleb. A preference
rule inL∗ is one of the form:

a ⊳ b← L1, . . . , Lt (t ≥ 0)

1 ACORDA literally means “wake-up” in Portuguese. TheACORDAsystem project page is
temporarily set up at:http://articaserv.ath.cx/



wherea ⊳ b is a preference atom and everyLi(1 ≤ i ≤ t) is a domain or preference
literal overL∗.

Although the program transformation in [6, 7] accounted only for mutually exclu-
sive abducibles, we have extended the definition to allow forsets of abducibles, so we
can generateabductive stable models[6, 7] having more than a single abducible. For a
more detailed explanation of the adapted transformation, please consult the ACORDA
project page, mentioned in the previous footnote.

3 Prospective Logic Agents

We now present the abstract procedure driving evolution of aprospective logic agent.
Although it is still too early to present a complete formal LPsemantics to this com-
bination of techniques and methodologies, as the implemented system is undergoing
constant evolution and revision, it is to be expected that such a formalization will arise
in the future, since the proposed architecture is built on top of logically grounded and
semantically well-defined LP components. The procedure is illustrated in Figure 1, and
is the basis for the implemented ACORDA system, which we willdetail in Section 5.

Each prospective logic agent has a knowledge base containing some initial program
overL∗. The problem of prospection is then one of finding abductive extensions to this
initial theory which are both:

– relevant under the agent’s current desires and goals
– preferred extensions w.r.t. the preference rules in the knowledge base

We adopt the following definition for the relevant part of a programP under a literalL:

Definition 1. LetL,B,C be literals inL∗. We sayL directly depends onB iff B occurs
in the body of some rule inP with headL. We sayL depends onB iff L directly depends
on B or there is someC such thatL directly depends onC andC depends onB. We
say thatRelL(P ), the relevant part ofP , is the logic program constituted by the set of
all rules ofP with headL or someB on whichL depends on.

Given the above definition, we say that an abductive extension ∆ of P (i.e. ∆ ⊆
AP ) is relevant under some queryG iff all the literals in∆ belong toRelG(P ∪∆).
The first step thus becomes to select the desires and goals that the agent will possibly
attend to during the prospective cycle.

3.1 Goals and Observations

Definition 2. An observation is a quaternary relation amongst the observer; the re-
porter; the observation name; and the truth value associated with it.

observe(Observer,Reporter,Observation, V alue)

Observationscan stand for actions, goals or perceptions. Theobserve/4 literals are
meant to represent observations reported by the environment into the agent or from one
agent to another, which can also be itself (self-triggered goals). We also introduce the



Abductive
Scenarios

a priori
Preferences

+ Utility Theory

a posteriori
Preferences

+ Utility Theory

Active
Goals + Integrity

Constraints

Knowledge
Base

External
Oracles

Abductive
Hypothesis

Update
Committed Abducibles

Start

Moral Theory

Agent

Fig. 1.Prospective agent cycle.

correspondingon observe/4 literal, which we consider as representing active goals or
desires that, once triggered, cause the agent to attempt their satisfaction by launching
the queries standing for the observations contained inside.

The prospecting mechanism thus polls for theon observe/4 literals which are satis-
fied under the initial theory of the agent. In an abstract representation, we are interested
in thoseon observe/4 literals which belong to the Well-Founded Model of the evolving
logic program at the current knowledge state.

Definition 3. The set of active goals of initial programP is:

Goals(P ) = {G : on observe(agent, agent,G, true) ∈WFM(P )}

By adopting the more skeptic Well-Founded Semantics at thisstage, we guarantee
a unique model for the activation ofon observe/4 literals. It should be noted that there
can be many situations where more than one active goal is derived under the current
knowledge theory of the agent. Since we are dealing with the combinatorial explosion
of all possible abductive extensions, it is possible that, even if no combination of ab-
ducibles satisfies the entire conjunction of active goals, that at least a subset of those
goals will be satisfied in some models. In order to allow for the generation of all these
possible scenaria, we actually transform active goals intotentative queries, encoded
in the following form:

try(G)← G try(G)← not try not(G)
try not(G)← not try(G)

In this way, we guarantee that computed scenaria will provide all possible ways
to satisfy the conjunction of desires,or possible subsets of desires, allowing us then
to apply selection rules to qualitatively determine which abductive extensions to adopt
based on the relative importance or urgency of activated goals. Integrity constraints



are also considered, so as to ensure the agent always performs transitions into valid
evolution states. These can also be triggered on the basis ofpossible abductive scenaria,
as the next example will demonstrate.

Example 1.Prospecting the future allows for taking action before someexpected sce-
naria actually happen. This is vital in taking proactive action, not only to achieve our
goals, but also to prevent, or at least account for, catastrophic futures.

Consider a scenario where weather forecasts have been transmitted foretelling the
possibility of a tornado. It is necessary to deal with this emergency beforehand, and take
preventive measures before the event actually takes place.A prospective logic program
that could deal with this scenario is encoded below.

⊥ ← consider(tornado), not deal with emergency(tornado)

expect(tornado)← weather forecast(tornado)
deal with emergency(tornado)← consider(decide board up house)

expect(decide board up house)← consider(tornado)
⊥ ← decide board up house, not boards at home, not go buy boards

The first sentence expresses that, in case a tornado scenariois considered, the pro-
gram should deal with the emergency. A possible way to deal with this emergency is
deciding to board up the house. This hypothesis is only made available in the event of
a tornado, since we do not want in this case to account for thisdecision in any other
situation (we could change the correspondingexpect/1 rule to state otherwise). The
weather forecast brings about that a tornado is expected, and there being no contrary
expectation to this scenario, the above program presents two possible predictions about
the future. In one of the scenaria, the tornado is absent, butin the scenario where it is
actually confirmed, the decision to board up the house follows as a necessity.

If we commit to the decision of boarding up the house, by assuming the tornado
scenario is more relevant, and we do not have boards at home, it is necessary that we
go and buy the boards. This is reflected by the second integrity constraint, which in
fact would launch a subgoal for buying boards. As such, even if no goals were active,
the possibility of considering certain scenaria can trigger integrity constraints, and also
contextual abducibles which may in turn be used, once they are confirmed, to support
activation of other goals.

3.2 Generating Scenaria

Once the set of active goals for the current state is known, the next step is to find out
which are the relevant abductive extensions which are considered in the situation. They
can be found by reasoning backwards from the goals into abducibles which come up
underconsider/1 literals. Each abducible represents a choice: the agent caneither
assume it true, or assume it false, meaning that it may potentially face a number of
interpretations equal to all possible combinations of relevant abducibles. In practice,
the combinatorial explosion of possible interpretations is contained and made tractable
by a number of factors.



To begin with, the simple fact that all abducibles are constrained to the relevant part
of the program under the active goals already leaves all the irrelevant abducibles out of
the generation of scenaria. Secondly, the context-dependent rules presented in Section
2.2 for considering abducibles further excludes those abducibles which are not rele-
vant to the actual situation of the agent. Furthermore, it isoften the case that available
abducibles are contradictory, i.e. considering an abducible actually precludes consider-
ing another one, for instance, when choosing between drinking coffee or drinking tea
[6, 7]. Finally, this step includes the application of a priori preferences in the form of
contextual preference rules among the available abducibles.

In each possible interpretation, or scenario, thus generated, we also reason forwards
from abducibles to obtain the relevant consequences of actually committing to each of
them. Each abductive stable model is characterized by the abducible choices contained
in it, but is in fact a whole model of the program sent to it. Information about each of
the models will then be used to enact preferences over the scenariosa posteriori, taking
into account the consequences in each scenario

3.3 Preferring a posteriori

Once each possible scenario is actually obtained, there area number of different strate-
gies which can be used to choose which of the scenaria leads tomore favorable con-
sequences. A possible way to achieve this was first presentedin [16], using numeric
functions to generate a quantitative measure of utility foreach possible action. We al-
low for the application of a similar strategy, by making a priori assignments of prob-
ability values to uncertain literals and utilities to relevant consequences of abducibles.
We can then obtain a posteriori the overall utility of a modelby weighing the utility of
its consequences by the probability of its uncertain literals. It is then possible to use this
numerical assessment to establish a preorder among remaining models.

Although such numerical treatment of a posteriori preferences can be effective in
some situations, there are occasions where we do not want to rely on probability and
utility alone, especially if we are to attribute tasks of responsibility to such autonomous
agents. In particular, it may become necessary to endow suchagents with a set of be-
haviour precepts which are to be obeyed at all times, no matter what the quantitative
assessments may say. This is the role of the moral theory presented in the figure. Al-
though being clearly outside the scope of the presented work, we regard it as a growing
concern which must be weighed as more intelligent and autonomous agents are built
and put to use. A more detailed analysis of this moral perspective can be found in [15].

Both qualitative and quantitative evaluations of the scenarios can be greatly im-
proved by merely acquiring additional information to make afinal decision.We next
consider the mechanism that our agents use to question external systems, be they other
agents, actuators, sensors or other procedures. Each of these serves the purpose of an
oracle, which the agent can probe through observations of its own, of the form

observe(agent, oracle name, query, V alue)← oracle, L1, . . . , Lt (t ≥ 0)

representing that the agent is performing the observationquery on the oracle iden-
tified by oracle name, whenever oracle observations are allowed (governed by the



reserved toggle literaloracle) and given that domain literalsL1, . . . , Lt hold in the
current knowledge state. Following the principle of parsimony, it is not desirable that
the oracles be consulted ahead of time in any situation. Hence, the procedure starts by
using its available local knowledge to generate the preferred abductive scenaria (i.e. the
toggle is turned off), and then extends the search to includeavailable oracles, by tog-
gling oracle on. Each oracle mechanism may in turn have certain conditions specifying
whether it is available for questioning. At the next iteration, this toggle is turned off, as
more consequences will be computed using the additional information.

Whenever the agent acquires additional information to deal with a problem at hand,
it is possible, and even likely, that ensuing side-effects may affect its original search.
Some considered abducibles may now be disconfirmed, but it isalso possible that some
new abducibles which were previously unavailable are now triggered by the information
obtained by the oracle observations. To ensure all possibleside-effects are accounted
for, a second round of prospection takes place, by relaunching the whole conjunctive
query. Information returned from the oracle may change the preferred scenaria previ-
ously computed, which can in turn trigger new questions to oracles, and so on, in an
iterated process of refinement, which stops if no changes to the models have been en-
acted, and there are no new oracle questions to perform, or user updates to execute.

Even after extending the search to allow for experiments, itmay still be the case
that some abducibles are tied in competition to explain the active goals, e.g. if some
available oracle was unable to provide a crucial deciding experiment. In this case, the
only remaining possible action is to branch the simulation into two or more possible up-
date sequences, each one representing an hypothetical world where the agent simulates
commitment to the respective abducible. This means delaying the choice, and keep-
ing in mind the evolution of the remaining scenaria until they are gradually defeated
by future updates, or somehow a choice is enforced. Exactly how these branches are
kept updated and eventually eliminated is not trivial, and this is why we purposefully
leave undefined the procedure controlling the evolution of these branching prospective
sequences. Another interesting possibility would be to consider those abductions com-
mon to all the models and commit to them, in order to prune someirrelevant models
while waiting for future updates to settle the matter.

3.4 Prospective procedure

We conclude this section by presenting the full abstract procedure defining the cycle of
a prospective logic agent.

Definition 4. Let P be an evolving logic program, representing the knowledge theory of
an agent at state S. Letoracle be the propositional atom used as a toggle to restrict ac-
cess to additional external observations. A prospective evolution of P is a set of updates
onto P computed by the following procedure:

1. Let O be the (possibly empty) set of all onobserve/4 atoms which hold at S.
2. Obtain the set of stable models of the residual program derived by evaluating

the conjunctionQ = {G1, . . . , Gn, not⊥}, n ≥ 0, where eachGi represents
the goal contained in a distinct observe/4 literal obtainedfrom the corresponding
on observe/4 in O.



3. If the set contains a single model, update the abductive choices characterizing the
model onto P as facts, toggle theoracle off and stop.

4. Otherwise, iforacle currently holds and no new information from the oracles or
from the scenaria is derived, for each abductive stable model Mi create a new
branching evolution sequencePi and update the abductive choices inMi ontoPi.
Execute the procedure starting from step 1 on each branchingsequencePi.

5. Otherwise, toggle theoracle on and return to 2.

4 Modelling Prospective Logic Agents

4.1 Accounting for Emergencies

Example 2.Consider the emergency scenario in the London underground [11], where
smoke is observed, and we want to be able to provide an explanation for this observa-
tion. Smoke can be caused by fire, in which case we should also consider the presence
of flames, but smoke could also be caused by tear gas, in case ofpolice intervention.
Thetu literal in observation values stands for true or undefined.

smoke← consider(fire) smoke← consider(tear gas)
flames← consider(fire) eyes cringing ← consider(tear gas)

expect(fire) ⊥ ← observation(smoke), not smoke
expect(tear gas) observation(smoke)
fire ⊳ tear gas

⊥ ← flames, not observe(program, user, flames, tu)
⊥ ← eyes cringing, not observe(program, user, eyes cringing, tu)

This example illustrates how an experiment can be derived inlieu of the conse-
quences of an abduction. In order for fire to be abduced, we need to be able to confirm
the presence of flames, which is a necessary consequence, andhence we trigger the ob-
servation to confirm flames, expressed in the second integrity constraint. Only in case
this observation does not disconfirm flames are we allowed to abduce fire.

4.2 Automated Diagnosis

Prospective logic programming has direct application in automated diagnosis scenaria,
as previously shown in [13]. Another illustration is that ofa use case in ongoing research
on diagnosis of self-organizing industrial manufacturingsystems [4].

Example 3.Consider a robotic gripper immersed in a collaborative assembly-line en-
vironment. Commands issued to the gripper from its controller are updated to its evolv-
ing knowledge base, as well as regular readings from the sensor. After expected exe-
cution of its commands, diagnosis requests by the system areissued to the gripper’s
prospecting controller, in order to check for abnormal behaviour. When the system is
confronted with multiple possible diagnosis, requests forexperiments can be asked of



the controller. The gripper can have three possible logicalstates: open, closed or some-
thing intermediate. The available gripper commands are simply open andclose. This
scenario can be encoded as the initial prospective program below.

open← request open, not consider(abnormal(gripper))
open← sensor(open), not consider(abnormal(sensor))

intermediate← request close,manipulating part,
not consider(abnormal(gripper)), not consider(lost part)

intermediate← sensor(intermediate), not consider(abnormal(sensor))

closed← request close, not manipulating part,
not consider(abnormal(gripper))

closed← sensor(closed), not consider(abnormal(sensor))

⊥ ← open, intermediate ⊥ ← open, closed
⊥ ← closed, intermediate

expect(abnormal(gripper)) expect(lost part)← manipulating part
expect(abnormal(sensor))
expect not(abnormal(sensor))←

manipulating part, observe(system, gripper, ok(sensor), true)

observe(system, gripper,Experiment,Result)←
oracle, test sensor(Experiment,Result)

abnormal(gripper) ⊳ abnormal(sensor)←
request open, not sensor(open), not sensor(closed)

lost part ⊳ abnormal(gripper)←
observe(system, gripper, ok(sensor), true), sensor(closed)

abnormal(gripper) ⊳ lost part← not (lost part ⊳ abnormal(gripper))

For each possible logical state, we encode rules predictingthat state from requested
actions and from provided sensor readings. We consider thatexecution of actions may
fail, or that the sensor readings may be abnormal. There are also situations where me-
chanical failure did not occur and sensor readings are also correct, but there was some
other failure, like losing the part the robot was manipulating, by dropping it.

In this case, there is an available experiment to test whether the sensor is malfunc-
tioning, but resorting to it should be avoided as much as possible, as it will imply occu-
pying additional resources from the assembly-line coalition. As expected, evaluation is
context-dependent on the situation. Consider this illustrative update set:

U = {manipulating part, request close, sensor(closed)}.

It represents the robot in the process of manipulating some part, receiving an order to
close the gripper in order to grab it, but the sensor reporting the gripper is completely
closed. This violates an integrity constraint, as the gripper should be in an intermediate



state, taking hold of the part. At the start of a diagnosis, three abductive hypotheses are
expected and considered,

AP = {lost part, abnormal(gripper), abnormal(sensor)}.

Without further information, abducibleabnormal(gripper)is preferred tolost part, but
still no single scenario has been determined. Activating oracle queries, the system finds
the experiment to test the sensor. If it corroborates closed, not only the abducibleab-
normal(sensor)is defeated, but alsoabnormal(gripper), since lost part is preferred.
However, failure to confirm the sensor reading would result in no single scenario being
abduced for this situation, and other measures would have tobe taken.

4.3 Encoding Actions

Another interesting possibility in future prospection is to consider the dynamics of ac-
tions. To perform an action, a prospective agent needs not just to consider the necessary
preconditions for executing it in the present, but also to look ahead at the consequences
it will entail in a future state. These two verifications takeplace on different reason-
ing moments. While the preconditions of an action can be evaluated immediately when
collecting the relevant abducibles for a given knowledge state, its postconditions can
only be taken into consideration after the model generation, when the consequences of
hypothetically executing an action are known.

The execution of an action can be encoded in EVOLP by means ofassert/1rules,
of the form:

assert(A)← L1, . . . , Lt (t ≥ 0)

whereA is a domain atom representing the name of the action andL1, . . . , Lt are do-
main literals representing the preconditions for the action. The preconditions can them-
selves contain otherassert/1 literals in their bodies, allowing lookahead into future
updates. The postconditions of a given action can be encodedas integrity constraints on
the name of the action and will be triggered during generation of the stable models.

Example 4.Consider an agent choosing an activity in the afternoon. It can either go to
the beach, or to the movies, but not both, and it can only go seea movie after buying
tickets to it. The abducibles in this case areAP = {go to beach, go to movies}. There
is a single integrity constraint stating that tickets cannot be bought without money. In
ACORDA syntax:

afternoon activity ← assert(beach)
afternoon activity ← assert(movies)

assert(beach)← consider(go to beach) expect(go to beach)
assert(movies)← tickets expect(go to movies)
assert(tickets)← consider(go to movies) ⊥ ← tickets, not money

The abduction of eithergo to beach or go to movies fulfills, respectively, the pre-
conditions for the actionbeach and the actiontickets. The consequence of buying the



tickets is that the precondition for going to the movies is fulfilled. However, that con-
sequence may also trigger the integrity constraint if the agent does not have money.
Fortunately, by simulating the consequences of actions in the next state, the agent can
effectively anticipate that the constraint will be violated, and proceed to choose the only
viable course of action, that is going to the beach.

5 Implementing the ACORDA System

The basis for the developed ACORDA system is an EVOLP meta-interpreter on which
we can evaluate literals for truth according to three- and two-valued semantics. Both
this meta-interpreter and the remaining components were developed on top of XSB
Prolog, an extensively used and stable LP inference engine implementation, following
the Well-Founded Semantics (WFS) for normal logic programs.

The tabling mechanism [18] used by XSB not only provides significant decrease
in time complexity of logic program evaluation, but also allows for extending WFS to
other non-monotonic semantics. An example of this is the XASP interface (standing
for XSB Answer Set Programming), which extends computationof the WFM, using
Smodels [14] to compute two-valued models from theresidual programresulting from
querying the knowledge base [5]. This residual program is represented by delay lists,
that is, the set of undefined literals for which the program could not find a complete
proof, due to mutual dependencies or loops over default negation for that set of liter-
als, detected by the XSB tabling mechanism. It is also possible to access Smodels by
building up a clause store in which a normal logic program is composed, parsed and
evaluated, with the computed stable models sent back to the XSB system.

This integration allows one to maintain the relevance [8] property for queries over
our programs, something that the Stable Models semantics does not originally enjoy. In
Stable Models, by the very definition of the semantics, it is necessary to compute all the
models for the whole program. Furthermore, since computation of all the models is NP-
complete, it would be unwise to attempt it in practice for thewhole knowledge base in
a logic program, which can contain literally thousands of rules and facts and unlimited
abducibles. In our system, we sidestep this issue, using XASP to compute the relevant
residual program on demand, usually after some degree of transformation. Only the re-
sulting program is then sent to Smodels for computation of possible futures. The XSB
side of the computation also plays the role of an efficient grounder for rules sent to
Smodels, that otherwise resorts to Herbrand base expansion, which can be considerably
hastened if we can provide a priori the grounding of domain literals. Also, the stable
models semantics is not cumulative [8], which is a prohibitive restriction when consid-
ering self-evolving logic programs, in which it is extremely useful to store previously
deduced conclusions as lemmas to be reused.

6 Conclusions and Future Work

As far as we know, the only other authors taking a similar LP approach to the deriva-
tion of the consequences of candidate abductive hypothesesare [11, 10], and [16, 17].
Both represent candidate actions by abducibles and use logic programs to derive their



possible consequences, to help in deciding between them. However, they do not derive
consequences of abducibles that are not actions, such as observations for example. Nor
do they consider the possibility of determining the value ofunknown conditions by
consulting an oracle or by some other process.

Poole uses abduction, restricted to acyclic programs, to provide explanations for
positive and negative goals. An explanation represents a set of independent choices,
each of which is assigned a probability value. The probability of a goal can be found
by considering the set of abductively generated possible worlds containing an abductive
explanation for the goal. His main concern is to compute goaluncertainty, with a view to
decision making, taking into account both the probabilities of the abductive assumptions
and the utilities of their outcomes.

Kowalski argues that an agent can be more intelligent if it isable to reason pre-
actively - that is to say, to reason forward from candidate actions to derive their pos-
sible consequences. These consequences, he recognizes, may also depend upon other
conditions over which the agent has no control, such as the actions of other agents
or unknown states of the environment. He considers the use ofDecision Theory, like
Poole, to choose actions that maximise expected utility. But he has not explored ways
of obtaining information about conditions over which the agent does not have control,
nor the use of preferences to make choices [12].

Compared with Poole and Kowalski, one of the most interesting features of our
approach is the use of Smodels to perform a kind of forward reasoning to derive the
consequences of candidate hypotheses, which may then lead to a further cycle of ab-
ductive exploration, intertwined with preferences for pruning and for directing search.

With branching update sequences we have begun to address theproblem of how
to arbitrarily extend the future lookahead within simulations. Independent threads can
evolve on their own by commiting to surviving assumptions and possibly triggering
new side-effects which will only take place after such commitment.Nevertheless, some
issues in the management of these branching sequences must still be tackled, namely
envolving coordination and articulation of information shared among threads belonging
to a common trunk, as well as the control of the lifetime of each individual thread.

Preferences over observations are also desirable, since not every observation costs
the same for the agent. For example, in the industrial manufacture example, the exper-
iment for testing the sensor was costly, but additional and cheaper experiments could
eventually be developed, and they should be preferred to themore expensive one when-
ever possible. Furthermore, abductive reasoning can be used to generate hypotheses of
observations of events possibly occurring in the future along the lines of [1].

Prospective LP accounts for abducing the possible means to reach an end, but the
converse problem is also of great interest, that is, given the observations of a set of ac-
tions, abduce the goal that led to the selection of those actions. This would be invaluable
in abducing the intentions of other agents from the sequenceof actions they exhibit.

Although we are currently dealing only with prospection of the future, prospective
simulations of the past can also be of interest to account forsome learning capabilities
based on counterfactual thought experiments. This means that we can go back to a
choice point faced in the past and relaunch the question in the form ”‘What would
happen if I knew then what I know now?”’, incorporating new elements on reevaluating



past dilemmas. This could allow for debugging of prospective strategies, identifying
experiments that could have been done as well as alternativescenarios that could have
been pursued so that in the future the same errors are not repeated.

References

[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Abduction with hypotheses
confirmation. InProc. of the 19th Intl. Joint Conf. on Artificial Intelligence (IJCAI-05),
pages 1545–1546, 2005.

[2] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca
et al., editor,Procs. 8th European Conf. on Logics in Artificial Intelligence (JELIA’02),
pages 50–61, 2002.

[3] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases.J. Logic Programming, 45(1-3):43–70,
September/October 2000.

[4] J. Barata, L. Ribeiro, and M. Onori. Diagnosis on evolvable production systems. InProcs.
of the IEEE Intl. Symp. on Industrial Electronics (ISIE’07), Vigo, Spain, Forthcoming 2007.

[5] L. Castro, T. Swift, and D. S. Warren.XASP: Answer Set Programming with XSB and
Smodels. http://xsb.sourceforge.net/packages/xasp.pdf .

[6] P. Dell’Acqua and L. M. Pereira. Preferential theory revision. InL. M. Pereira and
G. Wheeler, editors,Procs. Computational Models of Scientific Reasoning and Applica-
tions, pages 69–84, 2005.

[7] P. Dell’Acqua and L. M. Pereira. Preferential theory revision (ext.). J. Applied Logic, 2007.
[8] J. Dix. A classification theory of semantics of normal logic programs: i. strong properties,

ii. weak properties.Fundamenta Informaticae, 22(3):227–255,257–288, 1995.
[9] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In

D. Gabbay, C. Hogger, and J. Robinson, editors,Handbook of logic in Artificial Intelligence
and Logic Programming, volume 5, pages 235–324. Oxford University Press, 1998.

[10] R. Kowalski. How to be artificially intelligent.http://www.doc.ic.ac.uk/ ˜ rak/ ,
2002-2006.

[11] R. Kowalski. The logical way to be artificially intelligent. In F. Toni and P. Torroni, editors,
Proceedings of CLIMA VI, LNAI, pages 1–22. Springer Verlag, 2006.

[12] R. Kowalski. Private communication. 2007.
[13] G. Lopes and L. M. Pereira. Prospective logic programming with ACORDA. In G. Sut-

cliffe, R. Schmidt, and S. Schulz, editors,Procs. of the FLoC’06 Ws. on Empirically Suc-
cessful Computerized Reasoning, 3rd Intl. J. Conf. on Automated Reasoning, number 192
in CEUR Workshop Procs., 2006.

[14] I. Niemel̈a and P. Simons. Smodels: An implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode,
editors,4th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning, LNAI 1265,
pages 420–429, Berlin, 1997. Springer.

[15] L. M. Pereira and A. Saptawijaya. Modelling morality with prospectivelogic. In J. M.
Neves, M. F. Santos, and J. M. Machado, editors,Procs. 13th Portuguese Intl.Conf. on
Artificial Intelligence (EPIA’07), LNAI. Springer, December 2007.

[16] D. Poole. The independent choice logic for modelling multiple agents under uncertainty.
Artificial Intelligence, 94(1-2):7–56, 1997.

[17] D. Poole. Abducing through negation as failure: Stable models within the independent
choice logic.Journal of Logic Programming, 44:5–35, 2000.

[18] T. Swift. Tabling for non-monotonic programming.Annals of Mathematics and Artificial
Intelligence, 25(3-4):201–240, 1999.


