
Preference Revision via Declarative Debugging

Pierangelo Dell’Acqua∗† and Lúıs Moniz Pereira†

∗ Department of Science and Technology - ITN
Linköping University, 601 74 Norrköping, Sweden

pier@itn.liu.se
† Centro de Inteligência Artificial - CENTRIA

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. Preference criteria are rarely static. Often they are subject to
modification and aggregation. The resulting preference criteria may not
satisfy the properties of the original ones and must therefore be revised.
This paper investigates the problem of revising such preference criteria
by means of declarative debugging techniques.

1 Motivation

Preference criteria are subject to be modified when new information is brought
to the knowledge of the individual, or aggregated when we need to represent and
reason about the simultaneous preferences of several individuals. As motivating
example, suppose you invite three friends Karin, Leif and Osvald to go and see
a movie. Karin prefers thrillers to action movies. Leif, on the other hand, prefers
action movies to thrillers. Finally, Osvald is like Leif and prefers action movies
to thrillers. Suppose you need to buy the tickets. Which movie do you choose?

Preference aggregation is an important problem and potential applications of
this work include those where preference reasoning plays a role, e.g., in artificial
intelligence, political science, and economics (cf. social choice and multi-criteria
decision).

Typically, preference criteria must satisfy certain properties, e.g., those of
strict partial order. When aggregating or updating preference criteria such prop-
erties might not be preserved, and therefore the need arises for a revision. In
this paper, we consider any preference criteria expressible in the language of
logic programs (LP), and investigate the problem of revising them by means of
declarative debugging techniques for LP. In particular, we employ an adapted
version of the contradiction removal method defined for the class of normal logic
programs plus integrity constraints proposed in [10]. The resulting framework
is flexible and general, and tailored neither to any specific preference criteria
nor any specific method for preference aggregation, but rather to any method
expressible in LP. The ability to express meta-information on the diagnoses of a
revision problem gives us a further level of abstraction permitting to select the
best diagnosis for the problem at hand.

2 Background

In this section we provide some logic programming fundamentals and few basic
definitions regarding preference relations.

2.1 Language

Let L be a first order language. A literal in L is an atom A in L or its default
negation not A. A normal logic program P over L (sometimes simply called
program) is a set of rules and integrity constraints of the form:

A← L1, . . . , Ln (n ≥ 0)

where A is an atom, L1, . . . , Ln are literals in L, where in integrity constraints
A is ⊥ (contradiction). A rule stands for all its ground instances with respect to
L. When n = 0 we write the rule as A. LP denotes the language of P .

For normal logic programs we consider the Well Founded Semantics [7]. We
write P |= L whenever a literal L belongs to the well-founded model of a program
P . P is contradictory if P |= ⊥. Programs are liable to be contradictory because
of the integrity constraints.

Example 1. Let P = {a← not b;⊥ ← a}. Since we have no rules for b, by
Closed World Assumption (CWA), it is natural to accept not b as true and
therefore conclude a. Because of the integrity constraint, we conclude ⊥ and
thus engender a contradiction.

2.2 Preference Relation

Given a set N , a preference relation � is any binary relation on N . Given two
elements a and b in N , a � b means that a is preferred to b. We assume that N
contains at least two elements.

We do not assume any property of �, although in many situations it will
satisfy the properties of a strict partial order. Typical properties of � include:

- irreflexivity: ∀x. x 6� x
- asymmetry: ∀x∀y. x � y ⇒ y 6� x
- transitivity: ∀x∀y ∀z. (x � y ∧ y � z)⇒ x � z
- negative transitivity: ∀x∀y ∀z. (x 6� y ∧ y 6� z)⇒ x 6� z
- connectivity: ∀x∀y. x � y ∨ y � x ∨ x = y

The relation � is:

- a strict partial order if it is irreflexive and transitive (thus also asymmetric);
- a weak order if it is a negatively transitive strict partial order;
- a total order if it is a connected strict partial order.

Every preference relation � induces an indifference relation ∼. Two elements a
and b in N are indifferent a ∼ b if neither is preferred to the other one, that is,
a 6� b and b 6� a.

2

3 Diagnosis

In this section we present the notion of diagnosis adapted from [10] to handle
preference relations. We illustrate the use of diagnoses with a number of exam-
ples. Given a contradictory program P , to revise its contradiction (⊥) we have
to modify P by adding and removing rules. In this framework, the diagnostic
process reduces to finding such rules. To specify which rules in P may be added
or removed, we assume given a set C of predicate symbols in LP . C induces a
partition of P into two disjoint parts: a changeable one Pc and a stable one Ps.
Pc contains the rules in P defining predicate symbols in C, while Ps contains the
rules in P defining predicate symbols not belonging to C. Pc is the part subject
to the diagnosis process.

Definition 1. Let P be a program and C a set of predicate symbols in LP . Let
D be a pair 〈U, I〉 where U is a set of atoms, whose predicate symbols are in C,
and I ⊆ Pc. Then D is a diagnosis for P iff (P − I) ∪ U 6|= ⊥. The pair 〈{} , {}〉
is called empty diagnosis.

Intuitively, a diagnosis specifies the rules to be added and removed from the
changeable part of P to revise its contradiction ⊥. In order to minimize the
number of changes we consider minimal diagnoses.

Definition 2. Let P be a program and D = 〈U, I〉 a diagnosis for P . Then, D
is a minimal diagnosis for P iff there exists no diagnosis D2 = 〈U2, I2〉 for P
such that (U2 ∪ I2) ⊆ (U ∪ I).

Preference relations can be composed in several ways, or updated to reflect
changes in user preference criteria. Following [3] we distinguish between unidi-
mensional and multidimensional composition. In unidimensional composition, a
number of preference relations over the same domain are composed, producing
another preference relation over the same domain. In contrast, in multidimen-
sional composition, a number of preference relations defined over several domains
are composed, producing a preference relation defined over the Cartesian product
of those relations.

When composing preference relations, it is often the case (see [3] for a dis-
cussion) that the resulting preference relation does not satisfy some required
property, and therefore needs revising.

Example 2. Consider a framework where preference relations are required to
satisfy the properties of strict partial orders. Let �1 and �2 be two preference
relations defined as: a �1 b, and b �2 c and b �2 a. Consider the boolean
composition � of �1 and �2 defined as � = �1 ∪ �2. Clearly, � is not a strict
partial order being antisymmetric and transitivity not preserved. To revise �,
we formalize both � and the properties of strict partial order with program P .
Assume we want to revise only the rules in P encoding �1 and �2.

3

Ps =

⊥ ← p(x,x)
⊥ ← p(x,y), p(y,x)
⊥ ← p(x,y), p(y,z), not p(x,z)

p(x,y)← p1(x,y)
p(x,y)← p2(x,y)

 and Pc =

p1(a,b)
p2(b,c)
p2(b,a)

 .

The integrity constraints in Ps state that if the preference relation� (represented
by p) is reflexive, symmetric or not transitive, then the program is contradictory.
The last two rules in Ps define � as the union of �1 and �2 (represented by
p1 and p2). The rules in Pc formalizing the two original preference relations (�1

and �2) are those subject to diagnosis (that is, C={p1,p2}).
P is contradictory because its well-founded model MP ={p1(a,b), p2(b,c),

p2(b,a), p(a,b), p(b,c), p(b,a), ⊥} contains ⊥. According to Def. 1, P affords
four minimal diagnoses:

D1 = 〈{p2(a,c)}, {p2(b,a)}〉 D2 = 〈{p1(a,c)}, {p2(b,a)}〉
D3 = 〈{}, {p2(b,a), p2(b,c)}〉 D4 = 〈{}, {p1(a,b)}〉

E.g., D1 is a diagnosis since the well-founded model of (P−{p2(b,a)})∪{p2(a,c)}
is M = {p1(a,b), p2(b,c), p2(a,c), p(a,b), p(b,c), p(a,c)} and M 6|= ⊥.

This example illustrates the prioritized composition of conditional preference
relations:

Example 3. Given the two preference relations �1 and �2, the prioritized com-
position � of �1 and �2 is defined as: x � y ≡ x �1 y∨(x ∼1 y∧x �2 y) where
∼1 is the indifference relation induced by �1, that is: x ∼1 y ≡ x 6�1 y∧y 6�1 x.
Let �1 and �2 be two preference relations defined as a �1 b, and b �2 c,
c �2 a if cond, and b �2 a. Conditional preference c �2 a if cond states c is
preferred to a if cond holds. Suppose � is required to be a strict partial order.
Let cond denote some condition that cannot be revised, and assume cond true.
This situation can be formalized with a program P = Ps ∪ Pc. Suppose we wish
to revise only preference relation �2 (and not �1) because �1 has priority over
�2. To do so, we place the rules defining �1 in Ps and the rules defining �2 in
Pc.

Ps =

⊥ ← p(x,x)
⊥ ← p(x,y), p(y,x)
⊥ ← p(x,y), p(y,z), not p(x,z)

p(x,y)← p1(x,y)
p(x,y)← ind1(x,y), p2(x,y)

ind1(x,y)← not p1(x,y), not p1(y,x)

p1(a,b)

cond

and Pc =

p2(b,c)
p2(c,a)← cond
p2(b,a)

 .

4

It is easy to see that � is not a strict partial order. The well-founded model of P
is MP = {p1(a,b), p2(b,c), p2(c,a), p2(b,a), p(a,b), p(b,c), p(c,a),⊥}. P admits
three minimal diagnoses:

D1 = 〈{p2(a,c)}, {p2(c,a)← cond}〉 D2 = 〈{p2(c,b)}, {p2(b,c)}〉
D3 = 〈{}, {p2(b,c), p2(c,a)← cond}〉

The next example exhibits a situation of multidimensional composition.

Example 4. Given the two preference relations �1 and �2, the Pareto compo-
sition � of �1 and �2 is defined as:

(x, x2) � (y, y2) ≡ x �1 y ∧ x2 �2 y2 ∧ (x �1 y ∨ x2 �2 y2)

where x ∼i y ≡ x 6�i y ∧ y 6�i x and x �i y ≡ x �i y ∨ x ∼i y
with i = 1, 2. Let �1 and �2 be:

a �1 b
a2 �2 b2 b2 �2 c2 a2 �2 c2

The Pareto composition � does not preserve the properties of total order. In
fact, the tuples (b, a2) and (a, b2) are indifferent to one another, and hence �
does not preserve connectivity.

The Pareto composition of �1 and �2 can be formalized by the program
P = Ps ∪ Pc:

Ps =

⊥ ← p(x,x)
⊥ ← p(x,y), p(y,x)
⊥ ← p(x,y), p(y,z), not p(x,z)

⊥ ← notConnected

p((x,x2),(y,y2))← p1(x,y), peq2(x2,y2)
p((x,x2),(y,y2))← peq1(x,y), p2(x2,y2)

peq1(x,y)← p1(x,y)
peq1(x,y)← ind1(x,y)
ind1(x,y)← not p1(x,y), not p1(y,x)

peq2(x,y)← p2(x,y)
peq2(x,y)← ind2(x,y)
ind2(x,y)← not p2(x,y), not p2(y,x)

notConnected← not p((x,x2),(y,y2)), not p((y,y2),(x,x2))

and

Pc =

p1(a,b)
p2(a2,b2)
p2(b2,c2)
p2(a2,c2)

 .

5

P is contradictory because there exist two tuples that are not connected (being
indifferent to one another), i.e. the tuples (b,a2) and (a,b2). Thus, by the last
rule in Ps notConnected holds and by the last integrity constraint ⊥ holds as
well. The following property generalizes this specific example by stating that the
Pareto composition � cannot be a total order.

Property 1. Let �x and �y be two preference relations whose domains contain
at least two elements. If �x and �y are strict partial orders, then the Pareto
composition � of �x and �y cannot be a total order.

Proof. Let Nx = {x1, x2} and Ny = {y1, y2} be the domains of �x and �y. Con-
sider the tuples (x1, y1) and (x1, y2), and suppose that the first one is preferred
to the second, i.e. (x1, y1) � (x1, y2). Then, by definition of Pareto composition
it must hold that y1 �y y2. Consider now the tuples (x1, y1) and (x2, y1), and
assume that (x1, y1) � (x2, y1). Clearly, we must have that x1 �x x2. Since �x

and �y are strict partial orders, it follows that (x2, y1) ∼ (x1, y2). Hence, �
cannot be a total order.

The impossibility of � of being a total order is reflected in the fact that there
exists no diagnosis that makes P non-contradictory.

4 Computing Minimal Diagnosis

To compute minimal diagnoses of a contradictory program, we employ the con-
tradiction removal method presented in [10], adapted here to handle preference
relations. Consider again Example 1. It is arguable that CWA may not hold of
atom b as it leads to contradiction. The contradiction removal method is based
on the idea of revising (to false) some of the default atoms not A true by CWA.
A default atom not A can be revised to false by simply adding A to P . According
to [10] the default literals not A true by CWA that are allowed to change their
truth value are those for which there exists no rule in P defining A. Such literals
are called revisable.

Definition 3. The revisables of a program P is a subset of that set of atoms A
(with A 6= ⊥) for which there are no rules defining A in P .

Definition 4. Let P be a program and V a set of revisables of P . A set Z ⊆ V
is a revision of P wrt. V iff P ∪ Z 6|= ⊥.

Example 5. Consider the contradictory program P = Ps ∪ Pc:

Ps =

⊥ ← a, a′

⊥ ← b
⊥ ← d, not f

 and Pc =

 a← not b, not c
a′ ← not d
c← e

with revisables V = {b, d, e, f}. Intuitively the literals not b, not d and not e are
true by CWA, entailing a and a′, and hence ⊥ via the first integrity constraint.
The revisions of P are {e}, {d, f}, {e, f} and {d, e, f}, where the first two are
minimal.

6

The following transformation maps programs into equivalent programs that are
suitable for contradiction removal.

Definition 5. Let P be a program and C a set of predicate symbols in LP . The
transformation Γ that maps P into a program P ′ is obtained by applying to P
the following two operations:

– Add not incorrect(A← Body) to the body of each rule A← Body in Pc.
– Add the rule p(x1, . . . , xn)← uncovered(p(x1, . . . , xn)) for each predicate p

with arity n in C.

We assume the predicate symbols incorrect and uncovered do not belong to the
language of P . The transformation Γ preserves the truths of program P .

Property 2. Let P be a program and L a literal. Then P |= L iff Γ (P) |= L.

Proof. The claim follows immediately by noting that not incorrect(.) and uncovered(.)
are true and false in Γ (P) because incorrect and uncovered do not belong to LP .

Example 6. Let P be the program of Example 2. Then, the program Γ (P) is:

Γ (P) =

⊥ ← p(x,x)
⊥ ← p(x,y), p(y,x)
⊥ ← p(x,y), p(y,z), not p(x,z)

p(x,y)← p1(x,y)
p(x,y)← p2(x,y)

p1(a,b)← not incorrect(p1(a,b))
p2(b,c)← not incorrect(p2(b,c))
p2(b,a)← not incorrect(p2(b,a))

p1(x,y)← uncovered(p1(x,y))
p2(x,y)← uncovered(p2(x,y))

The minimal revisions of Γ (P) wrt. the revisables of the form incorrect(.) and
uncovered(.) are:

Z1 = {uncovered(p2(a,c)),incorrect(p2(b,a))}
Z2 = {uncovered(p1(a,c)),incorrect(p2(b,a))}
Z3 = {incorrect(p2(b,a)),incorrect(p2(b,c))}
Z4 = {incorrect(p1(a,b))}

It is easy to see that Z1, for instance, is a revision since the well-founded model M
of P∪Z1 is M = {p1(a,b), p2(b,c), p(a,b), p(b,c), p2(a,c), p(a,c), uncovered(p2(a,c)),
incorrect(p2(b,a))} and M 6|= ⊥.

The following result relates the minimal diagnoses of a program P with the
minimal revisions of Γ (P).

7

Property 3. Let P be a program. The pair D = 〈U, I〉 is a diagnosis for P iff

Z = {uncovered(A) : A ∈ U} ∪ {incorrect(A← Body) : A← Body ∈ I}

is a revision of Γ (P), where the revisables are all the literals of the form incorrect(.)
and uncovered(.). Furthermore, D is a minimal diagnosis iff Z is a minimal re-
vision.

Proof. It follows immediately by noting that the programs P − I ∪U and P ∪Z
are equivalent, that is, for every literal L with L 6= uncovered(.) and L 6=
incorrect(.) it holds that P − I ∪ U |= L iff P ∪ Z |= L.

To compute the minimal diagnosis of a program P we consider the transformed
program Γ (P) and compute its minimal revisions. An algorithm for computing
minimal revisions is given in [10].

5 Selecting Minimal Diagnosis

Typically in a preference revision problem, we only consider minimal diagnoses
(wrt. set inclusion) and the problem that naturally arises is how to select the best
ones. In some situations, we may ask the user for more information about his or
her preferences in order to narrow down the alternatives. In other situations, we
require a completely automatized approach. Thus, we need a selection function
f(X) ⊆ X where X is a set of minimal diagnoses. Ideally f(X) is a singleton,
otherwise we must arbitrarily choose one diagnosis from it. The selection function
can be defined by using meta-preference information:

– Temporal information: in case of conflict keep more recent/older preferences.
– Weights can be associated to preferences so that one can compute the total

weight of a diagnosis.
– The preference relation can be revised for each minimal diagnosis and shown

to the user. The user by choosing one answer over others makes the system
infer the preferred diagnosis. Thus, consequences of preferences can be used
to revise the preferences themselves. (Typically, preferences are revisable.)

– One may want to make the smallest number of changes. Thus, one will prefer
D4 in Example 2 to the other minimal diagnoses. In contrast, one may prefer
adding preferences rather than removing them. In this case, one prefers D2

to D3.
– In multi-agent scenarios, it is often the case that one wants to select a fair

revision, for example, and not to reject all the preferences of one agent while
maintaining the preferences of another agent.

– Preferences can be associated with a domain that can be employed to select
diagnoses. For instance, regarding wine one gives priority to the preferences
of Carlo, who is a wine producer, rather than to the preferences of John.

– Diagnoses containing more specific preferences can be selected. For example,
given the two diagnoses 〈{}, {moscato � chianti}〉 and 〈{}, {redWine �
whiteWine}〉 the first is selected since moscato is a white wine and chianti
is a red wine.

8

6 Related Work

Recently, several approaches have been proposed in literature for aggregating
preference criteria. These approaches tackle the problem from different perspec-
tives. One line of research studies which properties are preserved by different
methods of preference criteria aggregation. In contrast, another line investigates
how to reconcile (a posteriori) preference criteria once they are aggregated.

In [3, 9], the authors consider preference relations definable by first-order
formulas, and study the preservation of properties by different composition op-
erators. For example, Chomicki [3] shows that prioritized composition preserves
the properties of weak orders, while it does not preserve the ones of strict partial
orders. Furthermore, he studies the problem of preference refinement [4], a spe-
cial case of preference revision in which the original preferences are augmented
with new preferences. In this working paper the authors do not consider con-
flicting preferences, but instead assume the old and new preference relations are
compatible.

A new method for preference aggregation is studied in [8] by Grosof. This
method generalizes the lexicographic combination method and is applicable to
conflict management problems as a qualitative “weak method”.

The problem of fairness of preference aggregation systems is studied by Rossi
et al [11]. They generalize Arrow’s impossibility theorem for combining total
orders [2] to the case of partial orders.

Yager [13] and Rossi et al [12] investigated the problem of preference aggre-
gation in the context of multi-agent systems. The approach outlined by Yager
supports different types of relationship with respect to the importance of the
interacting agents (e.g., total and weak order). He studied also the aggregation
of fuzzy sets representing individual agent preferences. Rossi et al proposed mCP
nets, a formalism that extends CP nets to handle preferences of several agents.
They provided a number of different semantics for reasoning with mCP nets
based on the notion of voting.

In contrast to the above mentioned approaches, we followed the second line
of research. Basically, two distinct approaches have been proposed in literature
to tackle the problem of amalgamating distributed data:

– paraconsistent formalisms, in which the amalgamated data may remain in-
consistent. The idea is to answer queries in a consistent way without com-
puting the revision of the amalgamated data.

– coherent methods, in which the amalgamated data is revised to restore con-
sistency.

We have considered a coherent method to handle the problem of revising (a pos-
teriori) preference criteria. Our approach is flexible and general, and is tailored
neither to any specific preference criteria nor to any specific method for prefer-
ence aggregation. Furthermore, the ability to express meta-information on the
diagnoses of a revision problem gives us a further level of abstraction allowing
us to select the best diagnosis for the problem at hand. Our approach shares the
principle of minimal change with classical belief revision [6]. However, the basic

9

theoretical setting is different belief revision being concerned with the revision
of finite theories.

We have implemented an algorithm to compute minimal diagnoses by using
a version of ABDUAL [1] for constructive negation with abducibles. ABDUAL
extends Well-Founded semantics with abducibles and integrity constraints. By
means of the latter it can also compute Stable Models, where default literals are
envisaged as constrained abducibles. Alternatively, ABDUAL is implemented in
XSB-Prolog and so, by means of its XASP version that connects it to the Smodels
implementation, stable models can be computed where relevant abducibles for a
query are coded into even loops over default negation. The role of the ABDUAL
is then to identify the relevant abducibles and send the residue program plus the
so coded abducubles to Smodels.

Furthermore, when there exist no abducubles, ABDUAL is polynomial on
the size of the program. When there are abducibles, because of its program
transformation, ABDUAL computes abductive solutions depth-first, one at a
time, via backtracking. So, if solution minimality is not required, a satisfying
solution for preferences revision may found with no need to compute them all
first. A study of the complexity of ABDUAL can be found in [1].

In the near future, we plan to combine our work on preference updating [5]
with preference revision.

References

1. J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in Well-Founded Semantics
and Generalized Stable Models via Tabled Dual Programs. Theory and Practice
of Logic Programming, 4(4):383–428, 2004.

2. K. Arrow. Social Choice and Individual Values. John Wiley and Sons, 1951.
3. Jan Chomicki. Preference Formulas in Relational Queries. ACM Transactions on

Database Systems, 28(4):427–466, 2003.
4. Jan Chomicki and Joyce Song. On Preference Refinement. Paper in progress, 2004.
5. P. Dell’Acqua and L. M. Pereira. Preferring and updating in logic-based agents. In

O. Bartenstein, U. Geske, M. Hannebauer, and O. Yoshie (eds.), Web-Knowledge
Management and Decision Support. Selected Papers from the 14th Int. Conf. on
Applications of Prolog (INAP), LNAI 2543, pp. 70–85, 2003.

6. P. Gärdenfors and H. Rott. Belief Revision. In D. M Gabbay, C. J. Hogger,
and J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pp. 35–132. Oxford University Press, 1995.

7. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for
General Logic Programs. J. ACM, 38(3):620–650, 1991.

8. B. N. Grosof. New Prioritization Methods for Conflict Management. In M. Klein
(ed.), Proc. IJCAI-93 W. on Computational Models of Conflict Management in
Cooperative Problem-Solving. Int. Joint Conf. on Artificial Intelligence, 1993.

9. Andréka H., M. Ryan, and P. Y. Schobbens. Operators and Laws for Combining
Preference Relations. J. of Logic and Computation, 12(1):13–53, 2002.

10. L. M. Pereira, C. Damásio, and J. J. Alferes. Debugging by Diagnosing Assump-
tions. In P. Fritzson (ed.), 1st Int. Ws. on Automatic Algorithmic Debugging,
AADEBUG’93, LNCS 749, pp. 58–74. Preproceedings by Linköping Univ., 1993.

10

11. F. Rossi, K. B. Venable, and T. Walsh. Aggregating Preference Cannot be Fair.
Preprint n. 12-2004, Dept. of Pure and Applied Mathematics, Univ. of Padova,
Italy, 2004.

12. F. Rossi, K. B. Venable, and T. Walsh. mCP nets: Representing and Reasoning
with Preferences of Multiple Agents. In D. L. McGuinness and G. Ferguson (eds.),
Proc. 19th Conf. on Artificial Intelligence, 16th Conf. on Innovative Applications
of Artificial Intelligence, LNCS 749, pp. 729–734. AAAI Press, 2004.

13. Ronald R. Yager. Fusion of Multi-Agent Preference Ordering. Fuzzy Sets and
Systems, 117:1–12, 2001.

11

