
An Evolvable Rule-Based E-mail Agent

J. J. Alferes1, A. Brogi2, J. A. Leite1, and L. M. Pereira1

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. The Semantic Web is a “living organism”, which combines
autonomously evolving data sources/knowledge repositories. This dy-
namic character of the Semantic Web requires (declarative) languages
and mechanisms for specifying its maintenance and evolution. For ex-
ample, for changing the behaviour of a data source, so that a new rule
becomes into effect, one should not be concerned with the complex, in-
terrelated, and dynamically obtained knowledge, and should have a way
to simply specify what knowledge is to be changed. This requires the
existence of a language for exacting such changes (or updates), which
takes in consideration the addition/deletion and changes of rules, thereby
automating the task of dealing with inconsistencies arising from those
updates. To address this issue, we resort to recent developments in the
field of Logic Programming, and show how the framework of EVOLP
(EVOlving Logic Programs) can be put to work to model such reac-
tive and updateable rule bases, bringing an important added value to
RuleML. We make our case by exhibiting a detailed application example
of how EVOLP can be used to express updateable RuleML rule bases,
employing it to define an evolving e-mail Personal Assistant Agent.

1 Introduction

The World Wide Web (WWW) is, without a doubt, a great success story, bring-
ing new challenges and opportunities at almost every conceivable level of our
existence. While its exponential growth was initially seen as one of its bigger
attractive features, it now contributes to one of its major challenges: provide
structure and organization to its contents, thus shifting its data and documents
from the current human oriented format to a more machine understandable one
where a greater level of automation can be achieved. The World Wide Web Con-
sortium’s (W3C) [7] Semantic Web Activity [1] was launched to address these
concerns. While the eXtensible Markup Language (XML) [20] provides a method
to structure documents, and the Resource Description Framework (RDF) [17]
one for exposing their meaning, it is widely accepted now the need to reason with,
and about, WWW documents. Rules provide the natural and widely accepted
mechanism to perform automated reasoning, with available mature theory and
technology. The Rule Markup Initiative (RuleML) [13] aims at defining a core
format for rule interchange, resorting to XML.

The Logic Programming paradigm, with its well-defined, general, integra-
tive, encompassing, and rigorous framework, together with its recent technolog-

ical and theoretical developments, brings new insights to the above issues, and
provides inspiration to this general promising area of investigation [10, 11, 18].

The Semantic Web is a “living organism”, which combines autonomously
evolving data sources/knowledge repositories. This dynamic character of the
Semantic Web requires (declarative) languages and mechanisms for specifying
its maintenance and evolution. For example, for changing the behaviour of a
data source, so that a new rule becomes into effect, one should not per force
have to be concerned with the complex, interrelated, and dynamically obtained
knowledge, and should have a way to simply specify what knowledge is to be
changed. This requires the existence of a language for exacting such changes
(or updates), which takes in consideration the addition/deletion and changes of
rules, thereby automating the task of dealing with inconsistencies arising from
those updates. To address this issue, we resort to recent developments in the
field of Logic Programming, and show how the framework of EVOLP [2] can be
put to work to model such reactive and updateable rule bases, in effect bringing
an important added value to RuleML.

The EVOLP framework appeared in the line of development of other exist-
ing languages (such as LUPS [4], EPI [8] and KABUL [14]) for specifying and
programming the evolution of knowledge bases represented as logic programs.
Distinctly from these extant languages, which introduce a lot of new program-
ming constructs, each encoding a high level behaviour of addition and deletion of
rules, EVOLP’s up front goal was to enable with the evolution of logic programs
by adding to traditional logic programming as few constructs as possible, i.e. by
staying as close as possible to the usual language of logic programs.

EVOLP can adequately express the semantics resulting from successive up-
dates to logic programs, considered as incremental specifications of knowledge
bases, and whose effect may be contextual. It automatically and appropriately
deals, via its update semantics (based on Dynamic Logic Programming [3]), with
possible potential contradictions arising from successive specification changes
and refinements. Furthermore, the EVOLP language can express self-updates
triggered by the evolution context itself, present or future. Additionally, fore-
seen updates not yet executed can automatically trigger other updates, and
moreover updates can be nested, so as to (contextually) determine change, both
in the next state and in other states further down an evolution strand.

It is the goal of this paper to show that the attending formulation of EVOLP
provides a good firm formal basis in which to express, implement, and reason
about dynamic RuleML rule bases. To do this, in the ensuing section we recap
the formal syntax and semantics of EVOLP. Immediately afterwards we make
our case by exhibiting a detailed and protracted application example of how
EVOLP can be mustered to express updateable RuleML rule bases, employing
it to define an evolving e-mail Personal Assistant Agent, whose executable spec-
ification evolves by means of external and of internal dynamic updates, both of
which can be made contingent on the evolution context in which they occur.
We terminate with a section comprising discussion, comparisons with related
application work, open issues, and themes for future development.

2 Evolving logic programs

In this section we briefly recall the language and semantics of EVOLP [2].
EVOLP is a logic programming language that caters for the evolution of an
agent’s knowledge, be it caused by external events, or by internal requirements
for change. Moreover, it does so by adding as few new constructs to traditional
logic programming as possible.

2.1 Language

What is required to let logic programs evolve? For a start, one needs some
mechanism for letting older rules be supervened by more recent ones. That is,
one must include a mechanism for deletion of previous knowledge to accompany
the agent’s knowledge evolution. This can be achieved by permitting default
negation not just in rule bodies, as in normal logic programming, but in rule
heads as well1.

Moreover, one needs a means to state that, under some conditions, some new
rule or other is to be added to the program. This is achieved in EVOLP sim-
ply by augmenting the language with a reserved predicate assert/1, whose sole
argument is itself a full-blown rule, and so arbitrary nesting becomes possible.
This predicate can appear both as rule head (to impose internal assertions of
rules) as well as in rule bodies (to test for assertion of rules). Formally:

Definition 1. Let L be any propositional language (not containing the predicate
assert/1). The extended language Lassert is defined inductively as follows:

– All propositional atoms in L are propositional atoms in Lassert;
– If each of L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom A or

its default negation notA), then

L0 ← L1, . . . , Ln

is a generalized logic program rule over Lassert(and dubbed EVOLP rule);
– If R is a rule over Lassert then assert(R) is a propositional atom of Lassert;
– Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L (or EVOLP program, for short)
is a (possibly infinite) set of generalized logic program rules over Lassert.

Besides internal updates, which may be modelled with the above, EVOLP
allows too for influence from the outside, where this influence may be: observation
of facts (or rules) that are perceived at some state; assertion commands directly
imparting the assertion of new rules on the evolving program. Both can be
represented as EVOLP rules: the former by rules without the assertion predicate
in the head, and the latter by rules having it. Accordingly, outside influence is
represented as a sequence of EVOLP programs:

Definition 2. Let P be an evolving program over the language L. An event
sequence over P is a sequence of evolving programs over L.
1 A known extension to normal logic programs [15], named generalized logic programs.

2.2 Semantics

In general, an EVOLP program describes an agent’s initial knowledge base.
This knowledge base may already include rules (sporting asserts in heads) that
describe the forms of its own evolution. Besides, EVOLP considers sequences of
events representing observations and commands arising from the outside. Each
event in the sequence is itself a set of EVOLP rules, i.e. an EVOLP program.
Thus the semantics issue is that of, when given an initial EVOLP program
and a sequence of EVOLP programs as events, to determine what is true and
what is false after each event. More precisely, the meaning of a sequence of
EVOLP programs is afforded by a set of evolution stable models, each of which
being a sequence of interpretations or states. The basic compelling idea is that
each evolution stable model describes a possible evolution of the initial program
along a given number n of evolution steps, taking into account the events in
the sequence. Each evolution is represented by a sequence of programs, each
corresponding to a knowledge state.

The primordial intuitions for the construction of these program sequences
are as follows: Regarding head asserts, whenever the atom assert(Rule) belongs
to an interpretation in a given sequence, i.e. belongs to that model according to
the stable model semantics of the current program, then Rule must belong to
the program in the next state; Moreover, assertion literals in bodies are treated
like any other predicate literals. Furthermore, to deal with outside events, i.e.
with sequences of EVOLP programs, rules in the i-th event are added on one
occasion only to the program of state i.

Sequences of programs are then treated as in DLP (Dynamic Logic program-
ming) [3], where the most recent rules are set in force, and previous rules are
valid (by inertia) insofar as possible, i.e. they are kept for as long as they do not
conflict with more recent ones. Default negation is treated as in stable models
of normal [9] and generalized programs [15]. Formally, a dynamic logic program
is a sequence P1 ⊕ . . . ⊕ Pn (also denoted

⊕P, where P is a set of generalized
logic programs indexed by 1, . . . , n), and its semantics is determined by2:

Definition 3. Let
⊕{Pi : i ∈ S} be a dynamic logic program over language L,

let s ∈ S, and let M be a set of propositional atoms of L. Then:

Defaults(M) = {notA ← . |6 ∃A ← Bdy ∈ Pi(1 ≤ i ≤ s) : M |= Bdy}
Rejects(M) = {L ← Bdy ∈ Pi | ∃ notL ← Bdy′ ∈ Pj , i < j ≤ s, M |= Bdy′}

where A is an atom, notL denotes the complement w.r.t. default negation of the
head literal L, and both Bdy and Bdy′ are conjunctions of literals. M |= Bdy iff
for every atom A (resp. literal notA) in Bdy, A ∈ M (resp. A 6∈ M).

Definition 4. Let P =
⊕{Pi : i ∈ S} be a dynamic logic program over language

L. A set M of propositional atoms of L is a stable model of P at state s ∈ S iff:

M ′ = least
([⋃

i≤s
Pi −Rejects(M)

]
∪Defaults(M)

)

2 For more details on dynamic logic programming the reader is referred to [3].

where M ′ = M ∪ {not A | A 6∈ M}, and least(.) denotes the least (wrt. set
inclusion) model of the definite program obtained from the argument program by
replacing every default negated literal notA by a new atom not A.

Definition 5. An evolution interpretation of length n of an evolving program
P over L is a finite sequence I = 〈I1, I2, . . . , In〉 of sets of propositional atoms of
Lassert. The evolution trace associated with an evolution interpretation I is the
sequence of programs 〈P1, P2, . . . , Pn〉 where: P1 = P and Pi = {R | assert(R) ∈
Ii−1}, for each 2 ≤ i ≤ n.

Definition 6. An evolution interpretation of length n, 〈I1, I2, . . . , In〉, with evo-
lution trace 〈P1, P2, . . . , Pn〉, is an evolution stable model of P given a sequence
of events 〈E1, E2, . . . , Ek〉, with n ≤ k, iff for every i (1 ≤ i ≤ n), Ii is a stable
model at state i of P1⊕P2 . . .⊕ (Pi ∪Ei). We say that an atom A is true (resp.
false) after n steps if A belongs (resp. does not belong) to the last interpretation
of all the (resp. any of the) evolution stable models of length n.

Notice that the rules coming from the outside are treated as events that do
not persist by inertia. At any given step i, the rules from Ei are added and the
(possibly various) Ii obtained. This determines the programs Pi+1 of the trace,
which are then added to Ei+1 to determine the models Ii+1.

To better understand the definitions, we put them to work on an example.

Example 1. Consider the initial program P :

a. assert(b ← a) ← not c. c ← assert(not a ←). assert(not a ←) ← b, d.

stating that: a is true; whenever c is false, rule b ← a is to be asserted; whenever
fact not a is to be asserted, c is true; and if b and d are true then fact not a is to
be asserted. Moreover, suppose the following sequence of events was perceived:

〈{assert(d ← a)}, {e ←}, {}〉

The (only) stable model of P ∪E1 is I1 = {a, assert(b ← a), assert(d ← a)}
and it conveys the information that program P is ready to evolve into a new
program P ⊕ P2 by adding rules (b ← a) and (d ← a) at the next step, i.e. in
P2. In the only stable model I2 of the new program P ⊕ (P2 ∪ E2), atoms e, b
and d are true, as well as atoms assert(not a ←) and c. Thus, P ⊕ P2 is ready
to evolve into a new program P ⊕ P2 ⊕ P3 by adding rule (not a ←) at the next
step, i.e. in P3. Now the negative fact in P3 conflicts with the positive fact in P ,
and this older one is rejected. The rules added in P2 remain valid, but are no
longer useful to conclude b and d since a is no longer valid. So assert(not a ←)
and c are also no longer true. In the only stable model last in the sequence, I3,
all of a, b, and c are false. Moreover, there being no information on e on any of
P1, P2 or P3, e becomes false too. Accordingly, the only evolution stable model
is 〈I1, I2, I3〉 with the Iis as described above.

Notice that the truth of the event e in the 2nd state does not persist by
inertia to later states. Intuitively, in EVOLP, rules coming from the outside, be

they observations or assertion commands, are to be understood as events at a
state, and so do not persist by inertia. The same holds for the truth of event
assert(d ← a) which also does not persist. However, its truth in the 1st state
caused the addition of rule d ← a to P2, which itself persists therefrom as per
the semantics of DLP.

3 An evolving E-mail Agent on the Web

Forthwith, EVOLP is employed to specify several features of a Personal Assistant
agent for e-mail management on the Web, able to perform a few basic actions
such as sending, receiving, and deleting messages, as well as moving them be-
tween folders, and to perform tasks such as filtering spam, storing messages in
appropriate folders, sending automatic replies, notifying the user, and/or auto-
matically forwarding specific messages, all of which dependant on user specified
updatable criteria.

The specification of the policies that trigger agent actions can in general be
modelled by a set of logic programming rules, and represented at a Web page by
resorting to a Rule Markup Language (RuleML) with reaction rules triggering
the actions. This way, all of the interface between the user, the knowledge base
with the email messages, and the incoming messages could be achieved via this
RuleML rule base: incoming messages would be treated as events given to the
RuleML rule base via some Web service, and the user could access the messages
via Web services querying the RuleML rule base. All the user would have to do
would be to specify his policies in or translate them into RuleML.

If we expect the user to specify once and for all a consistent set of policies,
then such a RuleML with reaction rules setting would be all that is required.
But reality tells us otherwise: one observes that the user, every now and then,
will discover new conditions under which incoming messages should be deleted,
and under which messages now being deleted should be kept. If one allows dy-
namic specification of both the positive rule instances (e.g. should be deleted)
and negative ones (e.g. should not be deleted) of such policies, soon the union
of all rules becomes inconsistent. And one cannot expect the user to debug the
RuleML rule base so as to invalidate all the old rules that no longer should be
available due to more recent countervening ones. We would rather allow the user
to simply state whatever new is to be enforced, and let the inference engine
associated with the rule base automatically determine the old rules which may
persist and those that do not. We are not even presupposing the user is con-
tradictory, but just that he has updated his profile, something quite reasonable.
For example, suppose he is tired of receiving spam messages advertising credit
and states that all incoming messages whose subject contains the word credit
are to be deleted. Later he finds out that important messages from his accoun-
tant are being deleted because the subject mentions credit. He should simply
state that such incoming messages from his accountant are not to be deleted,
and the inference mechanisms themselves should automatically determine that

such messages are not to be deleted, in spite of the previous rule. But if we just
evaluate over the union of all specified policies, a contradiction is obtained.

It would also be important for the personal e-mail assistant agent to allow
the specification of tasks not so simple as just performing actions whenever
their conditions are met. Suppose one is organizing a conference and wants to
automate part of the communication with referees and with authors. Basic tasks
include automatic replies to authors whenever abstracts are submitted, etc. But
more complex tasks can be conceived that we wish the agent to handle, such as:
waiting for messages from referees about accepting to review a paper and, once
they arrive, forwarding to him a message with the paper if it has already arrived,
otherwise waiting till it arrives and then forwarding it; having different policies
to deal with papers before and after the deadline; permitting the specification
of extensions to the deadline on a case by case manner, and dealing differently
with each paper; updating the initial specification for such policies; etc.

Next we show how an EVOLP based markup language, and corresponding
inference mechanisms, would deal with the above mentioned contradictions, and
automatically solves them with clear and precise semantics, as well as would
account for the aforesaid more complex tasks. In the exposition, we concentrate
on those features directly concerned with the evolving specification, namely the
representation of the dynamic user profile, and of the dynamic specification of its
action preconditions and their effects. Methods to specify other common simple
tasks can easily be guaged from the exposition.

3.1 The general EVOLP/RuleML setting

To be able to specify RuleML rule bases using EVOLP as semantics, one first
needs some XML schema to write EVOLP rules. This can easily be accomplished
and, for the sake of readability, instead of defining that, and using XML notation
for writing predicates and rules, here we simply write them as usual in logic
programming. The EVOLP framework assumes that sequences of events are
given to the evolving knowledge base, each of which is an EVOLP program.
Each event causes the addition of an extra program in an evolving sequence
P1 ⊕ . . . ⊕ Pi of programs. This means our EVOLP rule bases must be able to
cater for sequences of sets of rules, rather than simply for sets of rules. Thus,
an appropriate tag (say, <newProgram/>) must exist in our schema in order to
specify where new programs in the sequence are inserted [6]. We also need some
mechanism for sending events, and for adding the new program to the rule base.
This is performed via an appropriate Web service (whose description is outside
the scope of this paper) that: receives the events; calls the EVOLP inference
engine over the existing RuleML rule base in order to compute the new resulting
program; and edits the rule base by adding to it the new program in the evolving
sequence. Queries to the rule base are also posted via Web services that call the
underlying EVOLP inference mechanism.

Our email agent is to be implemented via one such RuleML rule base with
the specification of the user policies for his email. New incoming messages are
simply viewed as events to the rule base, containing all the contents of the

message. More precisely, newmsg (MsgId, From, Subject, Body) event are used
for incoming message. As for outgoing messages, we presume that a Web service
periodically queries the RuleML specification for true predicates of the form
send (To, Subject, Body), and dispatches corresponding messages.

To simplify the exposition, instead of having the policies stored in a different
rule base from that of the (received) messages, we assume that both will be stored
in the same rule base. Accordingly, messages will be stored as facts in the same
rule base where the policy specifications sit. More precisely, for every message
there will be a fact msg (MsgId, From, Subject, Body, T ime), along with a fact
in (MsgId, Folder) to represent that the message is in folder Folder. Viewing
the contents of folders and messages then amounts to appropriately querying the
rule base with the specification and messages for those predicates, and displaying
the result via a transformed XML page.

3.2 One concrete example of policy specification

Now we show a concrete example of an email agent specification, and its evo-
lution. We start with a very simple specification stating: all incoming messages
are to be stored unless their deletion is explicitly specified; they are to be stored
in the inbox folder unless otherwise stated to be automatically moved elsewhere;
messages can be moved between folders, and deleted from folders. All this can
be represented by the EVOLP program containing rules r1 through r10 below,
i.e. P = {〈r1〉 , 〈r2〉 , . . . , 〈r10〉}.

r1 : time (1) ← r2 : assert (time (T + 1)) ← time (T)
r3 : assert (not time (T)) ← time (T)
r4 : assert (msg (M, F, S, B, T)) ← newmsg (M, F, S, B) , time (T) ,not delete (M)
r5 : assert (in (M, inbox)) ← newmsg (M, , ,) ,not move (M, F) ,not delete (M)
r6 : assert (in (M, Fto)) ← newmsg (M, , ,) , move (M, Fto)
r7 : assert (in (M, Fto)) ← move (M, Ffrom, Fto) , in (M, Ffrom)
r8 : assert (not in (M, Ffrom)) ← move (M, Ffrom, Fto) ,not in (M, Fto)
r9 : assert (not in (M, F)) ← delete (M) , in (M, F)
r10 : assert (sent (To, S, B, T)) ← send (To, S, B) , time(T)

The first three rules encode a clock, from now used to time-stamp all in-
coming messages. Such time-stamping is not really required, and an absolute
(system) time could be used instead, but it is useful to show how a local clock
can be encoded in EVOLP. Rule r4 specifies that all incoming messages, when
not specified to be deleted, indicated by literal not delete (MsgId), are to be
time-stamped and asserted as a fact along with the message. Rule r5 speci-
fies that all incoming messages, when not specified to be deleted nor specified
to be moved to a specific folder, are to be stored in the folder inbox. Rule r6

specifies the effect of moving an incoming message to a specific folder. Rules
r7 and r8 encode the effect of moving a message between folders, represented
by move (MsgId, Folderfrom, Folderto). Note no problem arises in specifying a
message to be moved from and to the same folder. Rule r9 specifies the effect of
a delete action, represented by delete (MsgId). This action causes a message to

be removed from its current folder. Finally, rule r10 encodes that sending a mes-
sage causes the message to have been sent, hereby represented by the assertion
of fact sent (To, Subject, Body, T ime).

At the initial state the stable model contains only {time (1) , assert(time(2)),
assert(not time(1))}. With this initial specification, and since we do not yet have
any rules to specify which incoming messages are to be deleted and which are to
be moved, every received message is to be moved to folder inbox. Also, at every
state transition, the clock increases its value. Suppose an event E1 is received
concerning three incoming messages:

newmsg (1, “a@a”, “credit”, “some spam text”)
newmsg (2, “accountant@c”, “hello”, “some text”)
newmsg (3, “b@d”, “freecredit”, “more spam”)

After this event the stable model contains:

assert (msg (1, “a@a”, “credit”, “some spam text”, 1)) , assert (in (1, inbox))
assert (msg (2, “accountant@c”, “hello”, “some text”, 1)) , assert (in (2, inbox))
assert (msg (3, “b@d”, “free credit”, “more spam”, 1)) , assert (in (3, inbox))
time (1) , assert (not time (1)) , assert (time (2))

From this, program P2 contains:

msg (1, “a@a”, “credit”, “some spam text”, 1) , in (1, inbox) ,not time (1)
msg (2, “accountant@c”, “hello”, “some text”, 1) , in (2, inbox)
msg (3, “b@d”, “free credit”, “more spam”, 1) , in (3, inbox) , time (2)

indicating that the specification has been updated so as to store all messages,
properly time-stamped, in folder inbox. Moreover the clock has been updated to
its new value.

At this point, the user becomes upset with all the spam messages being
received and decides to start deleting them on arrival. With this purpose, he
updates the specification by asserting a general rule stating that spam messages
should be deleted, encoded as the assertion of rule r11, and he also updates the
agent with a definition of what should be considered as spam, in this case simply
those whose subject contains the word “credit”, encoded by the assertion of r12.

r11 : delete (M) ← newmsg (M, F, S, B) , spam (F, S, B)
r12 : spam (F, S,B) ← contains (S, “credit”)

Throughout, by definition consider literal contains (S, T) true whenever T is
contained in S, whose specification we omit for brevity. The assertion of these two
rules, together with an update so as to delete messages 1 and 3, constitutes event
E2 = {assert (〈r11〉) , assert (〈r12〉) , delete (1) , delete (3)}. After this event, the
stable model contains:

assert (〈r11〉) , assert (〈r12〉) , delete (1) , delete (3) , assert (not in (1, inbox))
assert (not in (3, inbox)) , assert (time (3)) , assert (not time (2))

together with those propositions of the form msg/5, time/1, in/2, representing
the existing messages, their locations, and the current internal time3.

From this model program P3 is constructed, containing r11, r12, together
with the facts time (3), not time (2), not in (1, inbox) and not in (3, inbox).

Suppose event E3 is then received with:

newmsg (4, “d@a”, “free credit card”, “spam spam spam”)
newmsg (5, “accountant@c”, “credit”, “got your credit”)
newmsg (6, “girlfriend@d”, “hi”, “theater tonight?”)

After this update, the stable model contains spam(F, “free credit card”,B),
assert(in(6, inbox)), assert(msg(6, “girlfriend@d”, “hi”, “theater tonight?”, 3)),
spam(F, “credit”,B), delete(4), and delete(5).

Since messages 4 and 5 are considered spam messages, they are both set for
deletion and thus are not asserted. Only message 6 is asserted. From this model
we construct the program P4 which contains facts not time (3), in (6, inbox),
time (4), and msg (6, “girlfriend@d”, “hi”, “theater tonight?”, 3).

Next we receive an event E4 containing a single message4: newmsg(7,
“accountant@c”, “are you there?”, “...”). This message makes the user aware
that previous messages from his accountant had been deleted as spam. He then
decides to update the definition of spam, to the effect that messages from his
accountant are not spam. He achieves this by sending in an event asserting rule
r13 (below). Note this rule is contradictory with rule r12, for any message from
the accountant with the subject containing the word “credit”. But EVOLP au-
tomatically detects such contradictions and resolves them by taking the newer
rule to be an update of any previously existing ones, and we thus expect all
such messages not to be deleted. Next the user is appointed conference chair
and decides to update his email policy specification to perform some attend-
ing tasks. Henceforth, messages with the subject “abstract” are to be moved to
folder abstracts, encoded by rule r14, those containing the word “cfp” in their
subjects should be moved to folder cfp (r15). Furthermore, as the user is accus-
tomed to only looking at his inbox folder, he wishes to be notified whenever an
incoming message is immediately stored at a folder other than inbox. This is
accomplished with rule r16, which renders notify (M) true in every such. Mark
that notify/1 represents an action with no internal effect on the agent’s knowl-
edge base, and that actual notification of the user would require some external
program to periodically query the specification. The agent must also send a mes-
sage acknowledging receipt of every abstract (r17). And since the user will be
away from his computer, he decides to forward urgent mail to his temporary new
address. This could be enacted by simply stating that urgent messages should
be sent to his new address. But he decides to create a new internal action, repre-
sented by forward (MsgId, To), whose effect is to forward the newly incoming
message MsgId to the address To, thus making it easier to specify future for-
warding options. The specification of this action is achieved by asserting rule r18.
Then, based on this action, he can specify that all urgent messages be forwarded

3 From now on we omit all propositions and assertions concerning the clock unless
relevant for the presentation.

4 At this state we omit the model and update.

to his new address, by asserting rule r19. Finally, the user realizes that the mes-
sages that have been deleted are not being effectively deleted, but rather only
removed from their folders, i.e. msg (M, F, S, B, T) is still true, except that there
is no in (M,) that is true. He then decides to create another internal action,
purge, whose effect is that of making false all those messages that have been
previously removed from all folders by action delete. The specification of this
action is obtained via asserting rule r20. The assertion of rules 13–20 constitutes
event E5.

r13 : not spam (F, S, B) ← contains (F, “accountant”)
r14 : move (M, abstracts) ← newmsg (M, F, S, B) , contains (S, “abstract”)
r15 : move (M, cfp) ← newmsg (M, F, S, B) , contains (S, “cfp”)
r16 : notify (M) ← newmsg (M, F, S, B) ,not assert (in (M, inbox)) ,

assert (in (M, Fldr))
r17 : send (From, S, “Thanks”) ← newmsg (M, F, S, B) , contains (S, “abstract”)
r18 : send (To, S, B) ← forward (M, To) , newmsg (M, F, S, B)
r19 : forward (M, “b@domain”) ← newmsg (M, , “urgent”,)
r20 : assert (not msg (M, F, S, B, T)) ← purge, msg (M, F, S, B, T) ,not in (M,)

At the subsequent update the agent receives more messages, performs a
purge, moves message 6 to the private folder, and deletes message 6, all en-
coded by these facts in E6:

newmsg(9,‘a2@e’,‘abstract’,‘abs...’), newmsg(10,‘a3@e’,‘abstract’,‘abs...’)
newmsg(13,‘accountant@c’,‘fwd:credit’,‘...’), newmsg(11,‘x@d’,‘urgent’,‘...’)
move(6, inbox, private), delete(6), purge, newmsg(8,‘a1@e’,‘abstract’,‘abs...’)
newmsg(12,‘accountant@c’,‘fwd:credit’,‘...’)

After this event, the stable model contains, on messages 1 and 3, as a re-
sult of the purge, assert (not msg (M,F, S, B, T)); assert (in (M,abstracts)) for
messages 8, 9 and 10; plus forward (11, “b@domain”) and the corresponding
send action, i.e. send (“b@domain”, “urgent”, “...”); and, concerning message 6,
the stable model contains assert (in (6, private)) and delete (6). There are also
notifications for messages 8, 9, 10 and 14. Next the user decides that whenever a
message is both deleted and moved, the deletion action prevails, i.e. it should not
be asserted into the folder specified by the move action. This is encoded by the
assertion of rule r21 (below). Furthermore, the user decides to update his spam
rules to avoid all spam his accountant has been forwarding him (r22). Finally,
because he wishes the agent to deal with communication with the referees, he
sets up the assignments between referees and submitted papers (r23 − r28). So,
E7 is {assert (〈r21〉) , . . . , assert (〈r28〉)}, where:

r21 : not assert (in (M, Fto)) ← move (M, Ffrom, Fto) , delete (M)
r22 : spam (F, S, B) ← contains (S, “credit”) , contains (S, “Fwd”)
r23 : assign (“paper1”, “ref2@b”) r24 : assign (“paper2”, “ref2@b”)
r25 : assign (“paper2”, “ref3@c”) r26 : assign (“paper3”, “ref3@c”)
r27 : assign (“paper3”, “ref1@a”) r28 : assign (“paper1”, “ref1@a”)

After all have been asserted, at the subsequent state the agent receives a
spam message from the accountant, performs a move and a delete of message

12 to test if the new rule is working, and sends messages to the referees inviting
them to review the corresponding papers, as encoded by these facts and rules
that belong to E8:

newmsg (15, “accountant@c”, “fwd : credit”, “...”) , move (12, inbox, folder1)
delete (12) send (R, PId, “invitation to review”) ← assign (PId, R)

At this point, we invite the reader to check that message 15 was rejected and
message 12 was indeed deleted. It is important to notice that messages to referees
are sent only once. This is because the rule belonging to E8 is not an assertion
and thus never becomes part of the agent’s knowledge base. It is just utilized to
determine the stable model at this state, and not used again.

Subsequently the user decides to specify the way the email agent should
deal with communication with authors and reviewers. Forthwith, we show how
some of these tasks can be specified in EVOLP. Upon receipt of a message from
a reviewer accepting to review a given paper, the latter should be sent to the
referee the moment it arrives. This can be specified by rule r29 (below) asserting a
rule that sends the paper to the referee, but this assertion should only take place
after the referee accepts the task. If the paper has already been received when
the reviewer does so, then it should be sent immediately (r30). Of course, papers
received after some deadline, unless some extension was granted to a particular
one, should be rejected and the author so notified. This is encoded by rules r31

and r32 which are asserted when the deadline is reached, even though it might
not yet been set. Rule r31 sends a message to the author while rule r32 prevents
the paper being sent to the referee. Finally, the user asserts two rules to deal with
deadline extensions on a paper by paper basis. Whenever the user includes an
event of the form dline (PId, Dur) in an update, he is granting an extension of
the deadline to paper PId with duration Dur. This immediately causes ext (PId)
to be asserted, preventing the paper being rejected. Concurrently, by means of
rule r34, a rule is asserted that will render ext (PId) false once the deadline
plus the extension is reached, after which the paper is rejected. Thus, E9 is
{assert (〈r29〉) , . . . , assert (〈r34〉)}, where:

r29 : assert(send(R, S, B) ← newmsg(M, F, S, B), contains(S, PId),
assign(PId, R))

← newmsg(M, R, PId, B), contains(B,‘accept’)

r30 : send(R, PId, B) ← newmsg(M, R, PId, B1), contains(B1,‘accept’),
msg(M1, F, PId, B, T)

r31 : assert(send(F, S,‘too late’) ← newmsg(M, F, S, B), contains(S, PId),
not ext(PId))

← time(T), deadline(T)

r32 : assert(not send(Referee, S, B) ← newmsg(M, F, S, B), contains(S, PId),
not ext(PId))

← time(T), deadline(T)

r33 : assert(ext(PId)) ← dline(PId, D)
r34 : assert(assert(not ext(PId)) ← time(D + T), deadline(T)) ← dline(PId, D)

Subsequently the user sets the deadline by asserting the fact deadline (14)5,
i.e. the event E10 contains the fact assert (deadline (14)).

The remainder of the story goes as follows: at event E11 the agent receives
both acceptance messages from referee 1; at event E12 it receives paper 2; the
user grants deadline extensions of two time units to papers 1 and 3, encoded
in event E13; at event E14 it receives the acceptance messages from referee 2;
at event E15, i.e. after the deadline but before the granted extension expires, it
receives paper 1; at event E16 it receives the acceptance messages from referee
3; at event E17, i.e. after the extension has expired, it receives paper 3. Lack of
space prevents us from elaborating further on what folows these events, but we
invite the reader to check that: after event E14 paper 2 is sent to referee 2; after
event E15 paper 1 is sent to both referees 1 and 2; after event E16 paper 2 is
sent to referee 3; since paper 3 arrives after its deadline extension it is rejected,
a message being sent to the author, and the paper not sent to any referee.I.e:

E11 = {newmsg(16, “ref1@a”, “paper1”, “accept”),
newmsg(17, “ref1@a”, “paper3”, “accept”)}

E12 = {newmsg(18, “a2@e”, “paper2”, “thepaper”)}
E13 = {dline(“paper3”, 2), dline(“paper1”, 2)}
E14 = {newmsg(19, “ref2@b”, “paper1”, “accept”),

newmsg(20, “ref2@b”, “paper2”, “accept”)}
E15 = {newmsg(21, “a1@e”, “paper1”, “thepaper”)}
E16 = {newmsg(22, “ref3@c”, “paper2”, “accept”),

newmsg(23, “ref3@c”, “paper3”, “accept”)}
E17 = {newmsg(24, “a3@e”, “paper3”, “thepaper”)}

4 Concluding remarks

A large number of software products is nowadays available to perform email
monitoring and filtering. One example is Spam Agent [19], a recently deployed
email monitoring and filtering tool which features a comprehensive set of filters
(over 1500) to block spam and unwanted emails. Email monitoring and filtering
rules can be defined in terms of message sender, recipient, subject, body, and
arbitrary combinations of them. The SpreadMsg software email filtering and
forwarding agent [12] provides unattended data capture, scanning, and extrac-
tion from a wide variety of data. User rule sets are applied to data and, when
criteria are met, data are further parsed and turned into messages that can be
delivered to email addresses, text pagers, digital cellular or GSM mobile phones,
laptops, PDA’s etc.. The SuperScout Email Filter [16], besides supporting simi-
lar capabilities to the previously mentioned agents, features a Virtual Learning
Agent (VLA). The VLA is a content development tool that can be trained to

5 Dealing with the synchronisation of external and internal times is outside the scope
of this paper. Here, we set the deadline as a value that refers to the agent’s internal
clock.

understand and recognize specific proprietary content in order to protect con-
fidential and business critical information from the security risks arising from
accidental or malicious leakage. Widely used commercial email filtering systems
provide SPAM filters and, in some cases, a more general set of email handling
rules. Outlook, Netscape, and Hotmail, for instance, all provide means to de-
fine email filtering rules. Some systems require the user to write the filtering
rules, while others employ learning algorithms or try to extract patterns from
examples. An interesting, very recent proposal is the Personal Email Assistant
(PEA) [5], which is intended to provide a customizable, machine learning based
environment to support email processing. An aspect of PEA is that it relies on
combining available open source components for information retrieval, machine
learning, and agents. Lack of space prevents us from mentioning other (out of
many) email monitoring and filtering agents available. It is worth observing how-
ever that, to the best of our knowledge, none of the available agents enjoys the
ability of autonomously and dynamically updating its own filtering policies in a
way as general as the EVOLP specifications illustrated in the present work.

In this paper, we have illustrated how EVOLP can be employed to specify
a personal assistant agent for e-mail management on the Web. More generally,
we have shown how EVOLP can be employed to express updateable RuleML
rule bases (by means of a suitable XML schema — which we did not illustrate
for lack of space). This paves the way for a more general usage of EVOLP
in the context of the Semantic Web. In this perspective, EVOLP features an
implemented inference engine which can be fruitfully used for querying data and
for the rapid prototyping of Web-based agents.

The complexity of the inference engine relates to the possible branching of
evolutions of a program. Non-stratified rules for assertions can be used to model
alternative updates to the agent’s knowledge base, e.g. for stating, under certain
conditions, either to move a message to a folder or to delete it but not both. Non-
stratification can also be used to model uncertainty in the external observations.
In both these cases, EVOLP semantics provides several evolution stable models,
upon which reasoning can be made, concerning what happens in case one or
other action is chosen. On the other hand, by having various models, EVOLP
can no longer be used to actually perform the actions, unless some mechanism for
selecting models is introduced. For (static) logic programs, this issue of selecting
among stable models has already been extensively studied: either by defining
more skeptical semantics that always provide a unique model or by preferring
among stable models based on some priority ordering on rules. The introduction
of such mechanisms in EVOLP too is the subject of current and future work by
the authors, with particular emphasis on defining a well-founded based semantics
for EVOLP. Another way to view such a well-founded sematics, is that it is
sound, though not complete, wrt. the stable model based semantics of Section 2.
However, its complexity, rather than being NP-complete as is the stable models
semantics, is polynomial on the size of the EVOLP program.

We began this article by extolling the virtue and promise of Logic Program-
ming, for adumbrating the issues and solutions relative to the (internally and

externally) updatable executable specification of agents, and to the study of their
evolution by means of a precisely defined declarative semantics with well-defined
properties. We have shown, in a concrete web related example, how EVOLP can
be used, not only to specify an agent’s email policy, but also to dynamically
change its specification, and make desired foreseen changes, dependent on dy-
namic external conditions or events. We have run and tested the example, with an
EVOLP implementation available at: http://centria.di.fct.unl.pt/˜jja/updates/.

Acknowledgments

This work has been partially supported by project FLUX “Flexible Logical Up-
dates”, POSI/SRI/40958/2001, financed by FEDER.

References

1. The Semantic Web Activity. http://www.w3.org/2001/sw/.
2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In

JELIA’02, volume 2424 of LNAI. Springer, 2002.
3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-

namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3), 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence, 138(1-2), 2002.

5. R. Bergman, M. Griss, and C. Staelin. A personal email assistant. Technical
Report HPL-2002-236, HP Labs Palo Alto, 2002.

6. H. Boley, S. Tabet, and G. Wagner. Design rationale of ruleml: A markup language
for semantic web rules. In SWWS’01, 2001.

7. The World Wide Web Consortium. http://www.w3.org/.
8. T. Eiter, M. Fink, G. Sabbatini, and H Tompits. A framework for declarative

update specifications in logic programs. In IJCAI’01. Morgan-Kaufmann, 2001.
9. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In ICLP’88.

MIT Press, 1988.
10. B. Grosof. Representing e-business rules for the semantic web: Situated courteous

logic programs in ruleml. In WITS’01, 2001.
11. B. Grosof and T. Poon. Representing agent contracts with exceptions using xml

rules, ontologies, and process descriptions. In RuleML-BR-SW’02, 2002.
12. Compuquest Inc. Spreadmsg. www.compuquestinc.com.
13. The Rule Markup Initiative. http://www.dfki.uni-kl.de/ruleml/.
14. J. A. Leite. Evolving Knowledge Bases. IOS Press, 2003.
15. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-

liminary report). In KR’92. Morgan-Kaufmann, 1992.
16. Caudex Services Ltd. Superscout email filter. www.caudexservices.co.uk.
17. Resource Description Framework (RDF). http://www.w3.org/RDF/.
18. M. Schroeder and G. Wagner, editors. Procs. of RuleML-BR-SW’02, number 60

in CEUR-WS Publication, 2002.
19. Spam-Filtering-Software.com. Spam agent. www.spam-filtering-software.com.
20. Extensible Markup Language (XML). http://www.w3.org/XML/.

