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Abstract. We present an architecture for a rational, reactive agent and
describe its implementation. The paper addresses issues raised by the
interaction of the rational and reactive behaviour of the agent, and its
updating mechanism. We relate it with the work of others.

1 Introduction

In previous work we defined a logical formalization of a framework for multi-
agent systems and we defined its semantics [13]. In such a framework, we embed-
ded a flexible and powerful kind of agent that are rational, reactive, abductive,
able to prefer and they can update the knowledge base of other agents.

The knowledge state of each agent is represented by an an abductive logic
program in which it is possible to express rules, integrity constraints, active
rules and priorities among rules. This allows the agents to reason, to react to
the environment, to prefer among several alternatives, to update both beliefs
and reactions, and to abduce hypotheses to explain observations. We defined a
declarative and procedural semantics of this kind of agent [4, 14]. These agents
are then embedded into a multi-agent system in such a way that the only form
of interaction among them is based on the notions of project and update.

The semantics of the agents depends on the query that each agent has to
prove at a certain moment in time. In fact, in proving a query G the agent may
abduce hypotheses that explain G, and in turn these hypotheses may trigger
active rules, and so on. Hypotheses abduced in proving G are not permanent
knowledge, rather they only hold during the proof of G. To make them permanent
knowledge, an agent can issue an internal project and update its own knowledge
base with those hypotheses.

Our approach to agents is an enabling technology for sophisticated Web
applications due to their deliberative, reactive and updating capabilities. See
[15] for a discussion on the use of preference reasoning in Web applications, and
[1] for a discussion on the use of Logic Programming for the Semantic Web.

In this paper we present an architecture for such a kind of agents and outline
its implementation. Our aim is to have a simple architecture and to test its



behaviour in different application domains. In particular, we are interested in
testing the interaction between the rational/deliberative (D) and reactive (R)
behaviour of the agent, and its updating mechanism (U). In fact, the interaction
of these components raises a number of issues that are addressed in Section 3.

D-R Can (should?) the deliberative behaviour of the agent influence the reactive
behaviour? and vice versa? This is an important issue. For example, if the
deliberative mechanism of the agent is performing some planning, and some
exogenous event occurs, then the reactive mechanism of the agent can detect
the anomaly, suspend the planning and require to start a replanning phase.

D-U If α has a goal to prove and contemporarily some updates to consider, which
of the two tasks shall α perform first? The policy of giving priority to goals
may decrease the agent performance when a quick reaction is required. In
contrast, prioritizing updates can cause unwanted delays of the proof of a
goal only to consider unrelevant updates.
Another issue concerns the behaviour of the agent when is proving a goal
G (i.e., it is deliberative) and it receives an update. Should α complete the
execution of G, and then consider the update? or instead should it suspend
the execution of G, consider the update and then relaunch G ?

R-U If α receives several updates, should α consider each update and then trigger
its active rules? or should it consider all the updates and only then trigger
the active rules?

Two other interesting features of our architecture are the ability (i) to declara-
tively interrupt/suspend the execution of a query, and (ii) to declaratively self-
modify its control parameters. These features are important for example in the
context of reactive planning when the agents are situated in dynamic environ-
ments. Here, there is often a need to suspend the current execution of a plan
due to unexpected exogenous events, and to replan accordingly. Also, the agent
must be able to tune its behaviour according to the environment’s conditions.
For example, in a dangerous situation the agent may decide to become more
reactive to quickly respond to changes of the environment. In contrast, in other
situations the agent is required to be more deliberative, like when it enters into
a planning phase.

The remainder of the paper is structured as follows. Section 2 presents the
logical framework, the notion of abductive agents, and the agent cycle. The
architecture of the agent is presented in Section 3. Finally, Sections 6 and 7
compare our work with the literature and presents future lines of research work.

2 Preliminaries

In this section we present the language of agents and our conception of abductive
agents. The reader is referred to [14] for more details and examples on the
language, including its declarative semantics, [4] for the procedural semantics,
and [5] for the declarative semantics of update and preference reasoning.



2.1 Logic Programming Framework

In this exposition, we syntactically represent the theories of agents as propo-
sitional Horn theories. In particular, we represent default negation not A as a
standard propositional variable. Propositional variables whose names do not be-
gin with “not” and do not contain the symbols “:”, “÷” and “<” are called
domain atoms. For each domain atom A we assume a complementary proposi-
tional variable of the form not A. Domain atoms and negated domain atoms are
called domain literals.

Communication is a form of interaction among agents. The aim of an agent β
when communicating a message C to an agent α, is to make α update its current
theory with C (i.e., to make α accept some desired mental state). In turn, when
α receives the message C from β, it is up to α whether or not incorporate C.
This form of communication is formalized through the notion of projects and
updates. Propositional variables of the form α:C (where C is defined below) are
called projects. α:C denotes the intention (of some agent β) of proposing the
updating of the theory of agent α with C. Projects can be negated. A negated
project of the form not α:C denotes the intention of the agent of not proposing
the updating of the theory of agent α with C. Projects and negated projects are
generically called project literals.

Propositional variables of the form β÷C are called updates. β÷C denotes an
update with C in the current theory (of some agent α), that has been proposed
by β. Updates can be negated. A negated update of the form not β÷C in the
theory of some agent α indicates that agent β does not have the intention to
update the theory of agent α with C. Updates and negated updates are called
update literals.

Preference information is used along with incomplete knowledge. In such a
setting, due to the incompleteness of the knowledge, several models of a pro-
gram may be possible. Preference reasoning is enacted by choosing among those
possible models, through the expression of priorities amongst the rules of the
program. Preference information is formalized through the notion of priority
atoms. Propositional variables of the form nr < nu are called priority atoms.
nr < nu means that rule r (whose name is nr) is preferred to rule u (whose
name is nu). Priority atoms can be negated. not nr < nu means that rule r is
not preferred to rule u. Priority atoms and negated priority atoms are called
priority literals.

Domain atoms, projects, updates, and priority atoms are generically called
atoms. Domain literals, project literals, update literals, and priority literals are
generically called literals.

Definition 1. A generalized rule is a rule of the form L0 ← L1, . . . , Ln with
n ≥ 0 where every Li (0 ≤ i ≤ n) is a literal.

Definition 2. A domain rule is a generalized rule L0 ← L1, . . . , Ln whose head
L0 is a domain literal distinct from false and not false, and every literal Li

(1 ≤ i ≤ n) is a domain literal or an update literal.



Definition 3. An integrity constraint is a generalized rule whose head is the
literal false or not false.

Integrity constraints are rules that enforce some condition on states, and they
take the form of denials. To make integrity constraints updatable, we allow the
domain literal not false to occur in the head of an integrity constraint. For ex-
ample, updating the theory of an agent α with not false ← relaxConstraints
has the effect to turn off the integrity constraints of α if relaxConstraints holds.
Note that the body of an integrity constraint can contain any literal. The follow-
ing definition introduces rules that are executed bottom-up. To emphasize this
aspect we employ a different notation for them.

Definition 4. An active rule is a generalized rule whose head Z is a project
literal and every literal Li (1 ≤ i ≤ n) in its body is a domain literal or an
update literal. We write active rules as L1, . . . , Ln ⇒ Z.

Active rules can modify the current state, to produce a new state, when triggered.
If the body L1, . . . , Ln of the active rule is satisfied, then the project (fluent)
Z can be selected and executed. The head of an active rule is a project, either
internal or external. An internal project operates on the state of the agent itself
(self-update), e.g., if an agent gets an observation, then it updates its knowledge.
External projects instead are performed on other agents, e.g., when an agent
wants to update the theory of another agent.

To express preference information in logic programs we introduce the notion
of priority rule.

Definition 5. A priority rule is a generalized rule L0 ← L1, . . . , Ln whose head
L0 is a priority literal and every Li (1 ≤ i ≤ n) is a domain literal, an update
literal, or a priority literal.

Priority rules are also subject to updating.

Definition 6. A query takes the form ?− L1, . . . , Ln with n ≥ 0, where every
Li (1 ≤ i ≤ n) is a domain literal, an update literal, or priority literal.

We assume that for every project α:C, C is either a domain rule, an integrity
constraint, an active rule, a priority rule or a query. Thus, a project can take
one of the forms:

α:(L0 ← L1, . . . , Ln)
α:(false ← L1, . . . , Ln, Z1, . . . , Zm)
α:(not false ← L1, . . . , Ln, Z1, . . . , Zm)

α:(L1, . . . , Ln ⇒ Z)
α:(?−L1, . . . , Ln)

2.2 Abductive Agents

The knowledge of an agent can dynamically evolve when it receives new knowl-
edge or when it abduces new hypotheses to explain observations. The new knowl-
edge is presented in the form of an updating program, and the new hypotheses
in the form of a (finite) set of domain atoms (abducibles).



An updating program U is a finite set of updates. An updating program
contains the updates that will be performed on the current knowledge state of
the agent. As negated updates are not performed by any agent, negated updates
cannot occur in any updating program. To characterize the evolution of the
knowledge of an agent we need to introduce the notion of sequence of updating
programs. In the remaining, let S = {1, . . . , s, . . .} be a set of natural numbers.
We call the elements i ∈ S ∪ {0} states. A sequence of updating programs U =
{Us | s ∈ S} is a set of updating programs Us superscripted by the states s ∈ S.

Let A be a set of domain atoms distinct from false. We call the domain atoms
in A abducibles. Abducibles can be thought of as hypotheses that can be used
to extend the current theory of the agent in order to provide an “explanation”
for given queries. Explanations are required to meet all the integrity constraints.
Abducibles may also be defined by domain rules as the result of a self-update to
adopt an abducible as a fact rule.

Definition 7. Let s ∈ S ∪ {0} be a state. An agent α at state s, written as Ψs
α,

is a pair (A,U), where A is the set of abducibles and U is a sequence of updating
programs {U1, . . . , Us}. If s = 0, then U = {}.
An agent α at state 0 is defined by a set of abducibles A and an empty sequence
of updating programs, that is Ψ0

α = (A, {}). At state 1 α is defined by (A, {U1}),
where U1 is the updating program containing all the updates that α has received
at state 0 either from other agents or as self-updates. In general, an agent α at
state s is defined by Ψs

α = (A, {U1, . . . , Us}), where each Us is the updating
program containing the updates that α has received at state s− 1.

Example 1. Consider a situation where an agent Elizabeth (represented by e) is
told by Maria (represented by m) to abduce fire to explain the observation that
there is smoke, and to sound the alarm to the fire brigade (represented by f)
in case of fire. Later on, Elizabeth is told by Robert (represented by r) that a
possible explanation for the presence of smoke is that John is smoking, and in
such a case she should scream at him. The theory of Elizabeth can be formalized
as Ψ2

e = {A,U} where A = {fire, smoking(john)} and U = {U1, U2}:

U1 =

{
m÷(smoke ← fire)

m÷(fire ⇒ f :alarm)

}
U2 =

{
r÷(smoke ← smoking(john))

r÷(smoking(john) ⇒ j:scream)

}

Suppose that at state 2 there is smoke. Then, Elizabeth has two hypotheses
equally plausible to explain it: fire and smoking(john). Things change if later on
Elizabeth is told by Maria to prefer the hypothesis fire to smoking(john) when
John is at the pub to explain the presence of smoke:

U3 =

{
m÷(fire < smoking(john) ← pub(john))

m÷(pub(john))

}

Now, Elizabeth has one preferred hypothesis to explain smoke, i.e., fire.



2.3 Agent Cycle

In this section we briefly sketch the behaviour of an agent. This is carried out
from the perspective of an agent α. The basic “engine” of α is an abductive logic
programming proof procedure, executed via the cycle represented in Fig. 1.

Cycle(α,s,Ψs
α,G), where Ψs

α = (A,U) and U = {U1, . . . , Us}.

1. Observe and record any input in the updating program Us+1.

2. Select a query ?−g in G ∪Queries(α, Us+1) and execute ?−g wrt.
P = Γ (s + 1,U ∪ {Us+1}). Let Us+2 = {α ÷ ans(g, gθ,La)} if g is provable
with substitution θ and abduced hypotheses La ⊆ A, otherwise (i.e., if g is not
provable) let Us+2 = {α÷ ans(g, fail, [ ])} and La = [ ].

3. Execute all the projects in ExecProj (La, Q, s + 2), where
Q = Γ (s + 2,U ∪ {Us+1, Us+2}).

4. Cycle with (α,s + 2,Ψs+2
α ,G′), where Ψs+2

α = (A,U ∪ {Us+1, Us+2}) and
G′ = G ∪Queries(α, Us+1)− {?−g}.

Fig. 1. The agent cycle

Step 1: The cycle of an agent α starts at state s by observing any inputs, i.e.
updates from other agents or from the environment, and by recording them in
updating program Us+1.

Step 2: A query ?−g is selected from G∪Queries(α, Us+1), where G is the set of
queries still to be executed and Queries(α, Us+1) = {?−g | α÷(?−g) ∈ Us+1}
is the set of queries requested to be proved by α. Then, g is executed with respect
to the generalized logic program P obtained via a syntactic transformation Γ
presented in [4]. Basically, Γ takes into consideration the entire sequence of
updating programs U at state s + 1 and codes it into an object level generalized
logic program P . Thus, any abductive proof procedure, such as ABDUAL [7],
can be used in proving from P . The answer ans(g, gθ,La) of the query ?−g is
then recorded in the updating program Us+2. Note that only the queries issued
by the agent α itself are executed. The queries issued by other agents are treated
as normal updates1.

Step 3: The set ExecProj (La, Q, s + 2) of projects that are executable at state
s+2 is computed and all the projects executed. A project is executable at state
s + 2 if it is defined by an active rule in P whose body contains literals that are
true at s + 2 or are abducibles in La. If an executable project takes the form
β : C (meaning that agent α intends to update the theory of agent β with C),

1 This way α retains control on deciding which queries (requested by other agents) to
execute. For example, the theory of α may contain the active rule: β÷(?−g),Cond ⇒
α:(?−g) which states that if α has been requested to prove a query ?−g by β and
some condition Cond holds, then α will issue the internal project to prove the query
?−g.
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then (once executed) the update α÷C will be available as input to the cycle of
the agent β.

Step 4: Finally, the agent cycles with state s + 2, by incorporating the updating
programs Us+1 and Us+2 into U , and with the new list G′ of queries.

Initially, the cycle of α is Cycle(α,0,Ψ0
α,{}) with Ψ0

α = (A, {}).

3 Agent Architecture

The agent framework is implemented as follows: its logical parts (e.g., logical
reasoning, preferring, updating, etc.) are implemented in XSB Prolog [11], while
its non-logical parts (e.g., agent communication, user interface, etc.) are imple-
mented in Java. We then employ InterProlog [10] to interface Java and XSB
Prolog. The next subsections present an overview of the architecture, its com-
ponents and the flow of projects (for more details consult [16]).

3.1 Overview

The architecture consists of six components, as illustrated in Fig. 2. Each one
harbours its own specific task and is implemented in Java to enhance flexibility.
Since every component is implemented via a Java thread, the components can
run concurrently. Therefore, the behaviour of the agent is not sequential like
in Kowalski and Sadri’s agent cycle [18]. Rather, the system has the ability to
execute at the same time, asynchronously, several tasks differently located in
the agent cycle (defined in Section 2.3) . The agent in our implementation is
therefore enabled to exhibit both rational and reactive behaviours concurrently.
The architecture consists of the following components that form the agent’s base
structure:

– The central control: it controls the behaviour of the entire architecture via a
number of control parameters. For example, it determines when a query or
an update should be sent to the reactive and/or to the rational processes.



– The reactive and the rational processes: they characterize the reactive and
rational behaviours of the agent, respectively. The rational and reactive pro-
cesses are implemented by two corresponding XSB Prolog processes whose
knowledge bases are kept identical2.

– The update handler: it sorts and forwards the information received from the
reactive process and from the surrounding environment.

– The action handler: it handles the different tasks (actions) the agent wants
executed. It has the ability to affect the environment.

– The external interface: it handles the communication between the agent and
it’s environment, including other agents.

The solid arrows between the components in Fig. 2 (a) illustrate all the possible
paths of projects. The dashed arrow indicates that the action handler can change
the value of some parameters in the central control. The three arrows exiting
the action handler indicate that it can perform several actions to affect the
environment,which includes other agents, depending on the situation and tasks
at hand.

Between every two components connected by a solid arrow there exists a
queue. This is necessary for handling asynchronicity between the threads of the
connected components when exchanging information. The queues are not shown
in Fig. 2 (a). If a component receives a large workload, the queue collects the
information to be exchanged and awaits till the receiving component can handle
the new incoming information.

3.2 Project Flow

This section illustrates the flow of projects in the agent architecture. This is
narrated from the perspective of an agent α, depicted in Fig. 2 (b). Suppose that
an agent β asks agent α to prove a query ?−g via the external project α : ?−g. At
the next state, the external interface of α receives (step 1) the update β ÷ ?−g,
indicating that β has requested α to prove g.3 In turn, this update is sent to
the update handler (step 2) whose task is to sort the different types of updates.
For example, if the update contains an action to be performed, then the update
will be sent to the action handler, otherwise to the central control. Since the
update contains a query requested by another agent, the update handler sends
β÷?−g to central control (step 3). Now, central control updates the database of
the reactive process (step 4a) and of the rational process (step 4b) with β÷?−g.
Note that when α receives a request to prove a query ?−g from another agent
β (via the update β ÷ ?−g in the theory of α), g is not proven directly. Instead,
α has the ability to decide whether or not to prove g. Indeed, α proves g only

2 The use of identical copies of the knowledge base is required by the present unavail-
ability of XSB Prolog threads sharing the same knowledge program. This will be
remedied in the near future by ongoing XSB implementation work by colleagues.

3 An asynchronous transition rule system that characterizes the interactions among
agents is presented in [13].



if α itself posts this request via the internal project α : ?−g. Suppose that the
knowledge base of the reactive process contains an active rule of the form:

β ÷ ?−g ⇒ α : ?−g

saying that, if α receives a request to prove a query ?−g from an agent β, then
α assumes the project to prove g (i.e., α : ?−g). At the next state of α, the
internal project α : ?−g will be executed (step 5). This implies that the update
handler will receive (step 6) the update α ÷ ?−g from the reactive process,
which in turn sends it to central control (step 7). Central control updates again
the knowledge bases of the reactive and rational process with α ÷ ?−g (steps
8a and 8b). Since the query is issued by the agent itself, central control will
launch the query ?−g (step 9). Notice that the updating and reasoning phases
are considered to be atomic. That is, it is not possible while proving a query to
make an update of the knowledge base (unless by relaunching the query itself).
If g is provable with substitution θ and list of abduced hypotheses La, central
control will update the knowledge bases of the reactive and rational process with
the answer α÷ ans(g, gθ,La) of the query ?−g (steps 10a and 10b). This allows
α to eventually send the answer back to β in case its knowledge base contains
an active rule of the form:

β ÷ ?−g, α÷ ans(g,ANS,ABD) ⇒ β : ans(g,ANS,ABD)

When this active rule triggers (step 11), the update handler receives the project
β : ans(g,ANS,ABD) (step 12) which is sent to the external interface (step 13)
it being an external project.

3.3 Rational Process

The rational process models the rational ability of agents. It is implemented by an
XSB Prolog process. If an agent α is at state s and Ψs

α = {A,U}, then the knowl-
edge base of the rational process is the generalized logic program P = Γ (s,U)
obtained via a syntactic transformation Γ presented in [4]. The ABDUAL pro-
cedure [6, 7] is employed wrt. P to compute well-founded abductive answers
to goals. (This procedure is capable of computing generalized stable models as
well.) The rational process receives the queries to be proved from central control.
When the rational process proves a query ?−g with substitution θ and list of
abduced hypotheses La, it returns the answer as ans(g, gθ,La) to central control
which in turn updates the knowledge bases of the rational and reactive processes
with α÷ ans(g, gθ,La).

3.4 Reactive Process

The reactive process models the reactive behaviour of the agent. It is imple-
mented by an XSB Prolog process whose underlying theory is the generalized
logic program P = Γ (s,U).4 The task of the reactive process is to trigger any
4 Recall that the rational and reactive process have the same knowledge base.



active rule whose body is satisfied by P at the current state s. Triggering an ac-
tive rule means executing the project occurring in its head. To test which active
rules can be triggered central control launches the query ?−exec(La,L) to the
reactive process, where La is the list of hypotheses abduced by the rational pro-
cess at state s. Executing ?−exec(La, L) returns a list L of executable projects
to central control. Basically, the call to exec(. . .) checks the active rules whose
body holds in Γ (s,U) and returns their heads in the list L. exec(. . .) is defined
by a generalized logic program implementing the behaviour of ExecProj (. . .).
The definition of exec(. . .) can vary depending on the kind of agent behaviour
we want to characterize. The intuition is that P can have several well-founded
abductive models, each of which may trigger distinct active rules (and therefore
each model will contain distinct projects). If we want to characterize a cautious
behaviour for agents, then the executable projects are those occurring in every
model. An alternative definition for would be to execute all the projects that
occur in some model of P : brave behaviour.

The hypotheses in La assumed to prove a query g remain abduced only during
the current cycle of the agent. They can be made permanent knowledge through
an internal update. For instance, the active rule a ⇒ α : a where a ∈ A, states
to execute the internal update α : a when the hypothesis a is abduced.

Distinguished projects are those defining the predefined predicates sendIn-
terrupt, doAct, and stateModify. For example, the active rule in the theory of an
agent α:

β ÷ urgentRequest(G) ⇒ α : sendIterrupt(G, true)

instructs α to interrupt the execution of its current query G′, to launch the
query G, and to resume the execution of G′ once G is proved (since the flag of
sendInterrupt is true), just in case an agent β has urgently requested it. The
active rule:

meeting ⇒ α : doAct(displayMessage)

instructs α to graphically display a message to remind itself of the meeting.
An interesting feature of our architecture is that an agent can declaratively
change the value of its control parameters. This is achieved through the predicate
stateModify. The active rule

alarmState ⇒ α : stateModify(reactiveDelayTime, 100)

once triggered allows α to assign the value 100 to the control parameter reac-
tiveDelayTime, in case a dangerous situation supervenes. ReactiveDelayTime is
a parameter in central control that defines the time interval between two dis-
tinct tests of which active rules of α that can be triggered. Basically, its value
defines the level of reactiveness of α. The list of parameters that control the
agent behaviour can be found in [16].

The ability to declaratively interrupt the rational process and to modify the
values of the control parameters of the agent architecture is essential to tailor
the global behaviour of the agent to its actual needs (cf. [3] for a discussion).



4 Update Handler

The update handler collects both the executable projects coming from the re-
active process and the updates coming from the external interface. The task of
the update handler is to sort out the projects and updates and to send them to
the right destination. Note that to maintain the semantics of updates, all the
executable projects of an agent α must be executed at the same time.

A project can be either (i) an external project, (ii) an internal project, or
(iii) an internal project containing a predefined atom sendInterrupt, doAct, or
stateModify. Updates and external projects are sent to central control and to
the external interface, respectively. Regarding internal projects we distinguish
among three cases. Those not containing any predefined atom are sent to central
control. Those containing the atoms doAct or stateModify are sent to the action
handler, while those containing the atom sendInterrupt are sent to central control
via a prioritized queue in order to make them executed before regular updates.

5 Central Control

Central control handles all the other components of the architecture by means if
its control parameters. Central control has also the ability to interrupt/suspend
the execution of a query. To do so, it sends an interrupt sendInterrupt(g′, F )
to the rational process commanding it to interrupt the execution of the current
query g and to execute the query g′. The flag F indicates whether or not the
execution of g must be resumed after the proof of g′ is completed. The interrup-
tion/suspension commands are implemented by XSB Prolog, and can originate
externally. They call upon an interrupt handler, whose behaviour is user defin-
able by logic program rules. Its workings are similar in spirit to break interrupts
during debugging and, like them, can be embedded.

It comprises two incoming queues: a prioritized queue with updates con-
taining interrupts, and a queue with normal updates. Central control works in
cycles. First, it executes the updates with interrupts one by one until the queue is
empty. To do so, it suspends the execution of the current query and launches the
query associated with the interrupt. Once terminated, the current query can be
relaunched or resumed, depending on the flag of the interrupt. Since interrupts
cannot contain updates (only queries), the knowledge base remains unchanged
after performing an interrupt and therefore the execution of the suspended goal
can be resumed. Then the queue with normal updates is given attention by se-
lecting the next update in the queue and by updating the knowledge bases of
the rational and reactive process. If it is an internal update of the form α÷ ?−g
(indicating that the agent has posted an update to itself by requiring the execu-
tion of a query ?−g), then central control launches the query ?−g to the rational
process, it collects its answer ans(g, gθ,La) and it updates the knowledge bases of
the rational and reactive process with it. Then, it launches the query exec(La, L)
to the reactive process and sends the list L of executable projects to the update
handler. Finally, central control modifies the value of its control parameters if



so requested by the action handler through a stateModify command, and cycles
again.

Example 2. Consider the situation presented in Example 1. Suppose that at state
3 Elizabeth is proving the query ?−smoke. This task is carried out as follows.
First, central control posts the query to the rational process which proves it
by abducing fire.5 After receiving the answer ans(smoke, smoke, [fire]) from the
rational process, central control posts the update e÷ans(smoke, smoke, [fire]) to
both the rational and reactive process, and launches the query ?−exec([fire], L)
to the reactive process. Since the active rule fire ⇒ f :alarm in U1 is triggered,
the query succeeds with substitution L = [f :alarm]. Finally, central control posts
the list L of executable projects to the update handler to sort them out and send
them to the final destination.

6 Related Work

The use of computational logic for modelling multi-agent systems has been
widely investigated (e.g., see [2, 22] for a roadmap). One approach close to our
own is the agent-based architecture proposed by Kowalski and Sadri [18], which
aims at reconciling rationality and reactivity. Agents are logic programs that
continuously perform the observe-think-act cycle. The thinking or deliberative
component consists in explaining the observations, generating actions in response
to observations, and planning to achieve its goals. The reacting component is
defined via a proof-procedure which exploits integrity constraints.

Another approach close to ours is the Dali multi-agent system proposed by
Costantini [12]. Dali is a language and environment for developing logic agents
and multi-agent systems. Dali agents are rational agents that are capable of
reactive and proactive behaviour. These abilities rely on and are implemented
over the notion of event.

The Impact system [8] represents the beliefs of an agent by a logic-based
program and integrity constraints. Agents are equipped with an action base de-
scribing the actions they can perform. Rules in the program generalize condition-
action rules by including deontic modalities to indicate, for instance, that actions
are permitted or forbidden. Integrity constraints, as in our approach, specify sit-
uations that cannot arise and actions that cannot be performed concurrently.
Alternative actions can be executed in reaction to messages.

3APL [9] is a programming language for implementing cognitive agents. It
provides programming constructs for modelling agent’s beliefs and goals, and a
number of basic capabilities to revise them.

The BDI approach [21] is a logic-based formalism to represent agents. In
it, an agent is characterized by its beliefs, desires (i.e., objectives it aims at),
and intentions (i.e., plans it commits to). Beliefs, desires, and intentions are
represented via modal operators with a possible world semantics.
5 Recall that due to the preference expressed on abducibles by Maria, fire is preferred

to smoking(john) when John is at the pub.



Another logic-based formalism proposed for representing agents is Agent0 [23].
In this approach, an agent is characterized by its beliefs and commitments. Com-
mitments are production rules that can refer to non-consecutive states of the
world in which the agent operates. Both the BDI and the Agent0 approach
use logic as a tool for representing agents, but rely upon a non-logic-based ex-
ecution model. This causes a wide gap between theory and practice in these
approaches [22].

An example of a BDI architecture is Interrap [20]. It is a hybrid architecture
consisting of two vertical layers: one containing layers of knowledge bases, the
other containing various control components that interact with the knowledge
bases at their level. The lowest control component is the world interface that
manages the interactions between the agent and its environment. Above the
world interface there is the behaviour-based component, whose task it is to model
the basic reactive capabilities of the agent. Above this component there is a local
planning component able to generate single-agent plans in response to requests
from the behaviour-based component. On top of the control layer there is a social
planning component. The latter is able to satisfy the goals of several agents by
generating their joint plans. A formal foundation of the Interrap architecture is
presented in [17].

Sloman et al. [24, 25] proposed a hybrid agent whose architecture consists
of three layers: the reactive, the deliberative, and the meta-management layer.
The layers operate concurrently and influence each other. The deliberative layer,
for example, can be automatically invoked to reschedule tasks that the reactive
layer cannot cope with. The meta-management (reflective) layer provides the
agent with capabilities of self-monitoring, self-evaluation, and self-control.

A hybrid architecture, named Minerva, that includes, among others, deliber-
ative and reactive behaviour was proposed by Leite et al. [19]. This architecture
consists of several components sharing a common knowledge base and performing
various tasks, like deliberation, reactiveness, planning, etc. All the architectural
components share a common representation mechanism to capture knowledge
and state transitions.

7 Conclusion and Future Work

We have presented an architecture for a type of agent that is able to reason, to
react to the environment, to update its knowledge to model the dynamic aspects
of the world where it is situated, is able to prefer, and also to abduce hypotheses
to explain its observations.

Our aim is to develop a simple architecture and to test its behaviour in
different application domains. Currently we are carrying out on an experimental
implementation to test our agent in a simple Web site management application.

An interesting line of research is to investigate how to formally describe the
behaviour of our agent architecture. This will allow us (i) to formally compare
our architecture with other hybrid architectures proposed in the literature, (ii)
to verify its logical properties, and (iii) to analyze and expand its architec-



tural design to accommodate other components. Currently, we are investigating
whether it is possible to employ/extend the COOP calculus [17] to achieve this
goal. In the future, we plan to add more modules to the basic structure, such as
a planner, a learning module, etc., modelling other rational abilities and their
functionalities, and to test their interactions within the basic architecture.

The design of our architecture allows an agent to tune its behaviour to the
environmental needs. Thus, the agent has self-monitoring and self-control capa-
bilities. Regarding self-evaluation, we are exploring the benefits of integrating a
meta-management component into the architecture along the lines proposed by
Sloman [24]. Our aim is to design an approach to agents where self-evaluation
capabilities allow an agent to dynamically reconfigure its architectural compo-
nents.

At the moment, our agent implementation runs locally on the host machine,
but the entire application can be made distributed over internet. This can be
achieved via the remote method invocation of Java and by the fact that our XSB
subagents keep a mirror copy of the knowledge base of the agent. In this view,
the central control component plays the role of a conductor that orchestrates
the integration of all the architectural components, and thereby offers an high-
level interface for Web services. The advantage of a distributed implementation
is that our agents can have their parts spread on the Web. Thus, for instance if
a deliberative agent is being developed at one place, several reactive agents may
use its deliberations.
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