
SLWV - A Logic Programing Theorem Prover

Luis Moniz Pereira† , Luis Caires¥ and José Alferes*

AI Centre, Uninova
2825 Monte da Caparica, Portugal

Abstract: The purpose of this work is to define a theorem prover that retains the procedural aspects of logic
programing. The proof system we propose (SLWV1 resolution) is defined for a set of clauses in the implicational
form (keeping to the form of logic programs), not requiring contrapositives, and has an execution method that
respects the execution order of literals in a clause, preserving the procedural flavor of logic programming.
 SLWV resolution can be seen as a combination of SL-resolution [Chan73] and case-analysis, that admits a form
of linear derivation. We prove its soundness and completeness, give it an operational semantics by defining a
standard derivation, and produce an implementation.
 Our work can be seen as an extension to logic programs that goes beyond normal programs, as defined in [Lloy87],
and thus beyond(positive) definite clause programming, by allowing also definite negative heads. Thus we admit
program clauses with both positive and (classically) negated atoms conjoined in the body, and at most one literal as
its head (clauses with disjunctions of literals in the head are transformed into a single clause of that form).
 As this approach does not require alternative clause contrapositives, it provides for better control over the search
space. We provide a method of execution keeping to the implicational clausal form of program statements typical
of Prolog (without the use of clause contrapositives), adding an increased expressiveness, but at a tolerable
computational cost for regular Prolog programs. The implementation relies on the source program being
preprocessed into directly executable Prolog. Since preprocessing only involves the addition of three additional
variables to each predicate definition while keeping the overall program structure untouched, a directly
recognizable execution pattern that mimics Prolog is obtained: this can be useful in debugging.

Keywords: Logic Programming, Negation, Resolution, Theorem Proving

Introduction

The purpose of this work is to define a theorem prover that retains the procedural
aspects of logic programing. In order to keep to the clausal form of logic programs,
the proof system we define (SLWV resolution) applies, without loss of generality,
to sets of clauses in the implicational form, though not requiring any contrapositive
variants. Thus the form of clauses we consider is:
 H <- L1, …, Ln.
where n ≥ 0 and H, L1, …, Ln are literals. As usual a literal is an atom A or its
(classical) negation ¬A.

Clauses with negative literals in the head are transformed into a single
contrapositive clause with ⊥ there, where the new symbol denotes falsehood.
Accordingly, refuting a top goal G is equivalent to adding the clause ¬G⁄⊥ and
finding a derivation for ⊥.

In order to preserve the procedural aspect of the language, it is our aim to maintain
the execution order of literals in a clause. So we can't use contrapositives. The proof
system we propose can be seen as a combination of SL-resolution [Chan73] and

† Fax: +351-1-2955641 Phone: +351-1-2953156 E-mail: lmp@fct.unl.pt
¥ Fax: +351-1-2955641 Phone: +351-1-2953156 E-mail: lxc@fct.unl.pt
* Fax: +351-1-2955641 Phone: +351-1-2953156 E-mail: jja@fct.unl.pt
1 Selected Linear Without contrapositive clause Variants.

2

case-analysis that admits a form of linear derivation. As an example let us consider
a procedural-like representation of a SL-resolution for program:

(1) arrested(X) :- ¬ paytaxes(X).
(2) sad(X):- ¬ drunk(X), nomoney(X).
(3) ¬ drunk(john). (4) drunk(X) :- sad(X).
(5) nomoney(X) :- paytaxes(X).

and query ?- arrested(john).

 o

arrested(john)

¬ paytaxes(john)

¬ nomoney(john)

¬ sad(john), ¬drunk(john)

¬ drunk(john), ¬ drunk(john)

¬ drunk(john)

arrested(X) :- ¬paytaxes(X)

¬ paytaxes(X) :- ¬ nomoney(X)

¬ nomoney(X) :- ¬ sad(X), ¬ drunk(X)

¬ sad(X) :- ¬ drunk(X)

¬ drunk(john)

Clauses inside boxes show where a contrapositive must be used to resolve a literal.
In such cases, our method, instead of relying on contrapositives, tries alternative
branches of the ancestors of the literal, in order to find a complementary literal, and
then resolving both, using case-analysis. The graph below illustrates in a simple
way how our method proceeds, in this example (arrows show a possible execution
trace).

⊥

arrested(john)

¬ paytaxes(john)

drunk(john)

sad(john)

¬ drunk(john) nomoney(john)

paytaxes(john)

(1)

(3)

(4)

(2)

(5)

try alternative

case-analysis resolution

anscestor resolution

Here we can see that the case-analysis resolution corresponds to the use of a
contrapositive2.

2 The equivalence between our method and SL-resolution, specially in what concerns the use of
contrapositives, is discussed in section 5 herein.

3

The organization of this paper is as follows: in sections 1 to 3 we define the proof
system used for normal programs. In section 4 we examine the connections with
resolution proofs, prove its equivalence to SL-resolution (thus proving it is sound
and complete) and give some examples. Section 5 explains how we extend the
method for clauses with negative heads. In Section 6 we define a new kind of
answers (disjunctive answers) and explain how a theorem prover that keeps the
procedural aspect of logic programs can handle this problem easily. Section 7
describes a simple executor for the method. Finally, in section 8, we draw some
conclusions.

1. Language

The class of programs we consider initiallyare ordered finite sets of clauses of the
implicative form H♦B1, B2,…Bn (or H ♦ B for short) where H is an atom and the
Bj for all j are literals. n may be 0, in which case we write H ♦ ∂, where ∂ stands for
an atom satisfied by all models. For a clause C H ♦ B, we write BodyC for B.

1.1. Definitions

Labels are finite sequences of literals. &-clauses are conjunctions of literals. L-
Clauses are pairs L#G, where L is a label and G a &-clause. L-Resolvents are finite
sequences of L-Clauses. ∆ is the empty L-Clause. The intended meaning of a L-
Clause PN#F is the disjunction F v A1 v A2 v…v An, for Ai ε PN. Thus F logically
follows from ø#F.

Now, let Π be a program, PN a label, σ,τ substitutions.

2. Rules

These rules are the basic inferences of the system, and state the deducibility relation
of formulae (which are L-Clauses).

2.1. ∆-Rules

Error! [R1] Error! [R2]

Error! if Aσ is complement of Aiσ for some Ai ε PN and σ [R3]3

2.2. ♦Rule

Error! for some A ε PN+<g>4, if H ♦ B ε Π and Hσ = Aσ [R4]

Any such A verifying the above stated condition is called a reducible literal. The
actual A used is said to be reduced by H ♦ B upon application of R4.

3 This rule can be seen as an instance of a Gentzen cut.
4 A+B is the concatenation of the labels A and B.

4

2.3. &-Rule

Error! [R5]

3. Derivations and Proof Branches

As usual, we say that a literal F is deducible if there is a proof of ø#F using the
above rules in sequence. Since there is a rule (R5) involving more that one premise,
the proofs in this system are tree-shaped. However, we can devise a linear
refutation scheme, by allowing formulae to be sequences of L-Clauses (L-
Resolvents). So, we start off with ø#F, and apply the rules backwards. Application
of R4 then always introduces a non singular L-Resolvent. When applying any rule
to the latest L-Resolvent in the sequence, we select a fixed L-Clause in it and
proceed. In order to prove completeness, a notion of proof branch for F (or F-PB)
will be introduced as a (recursively construed) branch of a proof tree for F.

3.1. Definitions

Let S be an imposed total ordering over Π, and C a clause of Π.
|C| is the ordinal index of C in Π wrt S.
Let k be a natural number.
We define the k-shuffle S' of S to be the ordering over Π such that if S establishes
C0 < C1 < .. < Ck < .. < Cn, then S' establishes C0 < C1 < .. < .. < Cn < Ck. Note
that if Ci < Cj for i≠k in S then Ci < Cj in S', for j ≠ k, and Ck = max(Π) wrt S'.
Additionaly, the i-promoting of a label PN = <A1,A2,…,Ai,…,An> is defined as the
label PN* = <Ai,A1,…,Ai-1,Ai+1…,An>. (Shuffles and promotions will be used
solely to insure fairness in reductions.)
Let CL(A) = { H ♦ B ε Π | Hσ=Aσ for some σ} be the clause set for a literal A. Note
that if A is a negative literal, CL(A) is empty.
Let Fi be L-Clauses and Si a ordering over Π.
 A proof branch B for G wrt Π (or a G-PB) is a sequence F1-S1, F2-S2, .. Fn-Sn
defined as follows (unless expressed otherwise, Sn+1 is Sn):

PB1. F1 is ø # G.
PB2. If Fn is ∆, then Fn is the last L-Clause of B.
PB2'. If Fn is PN # ∂ then Fn+1 is ∆.
PB3. If Fn is PN # (g, G), then Fn+1 is either PN#g or PN#G. (branching)
PB4. If Fn is PN # A , with A a literal, then

PB4.1 If Aσ is complement of ALiσ for some ALi ε PN and substitution
σ,then Fn+1 is ∆. Otherwise, let CL = CL(A) U (U CL(Ai) for all Ai ε PN).

PB4.1.1 CL is empty. Then Fn is last L-Clause of B.
PB4.1.2 CL is not empty. Let C be min(CL) wrt Sn, and AR the atom

that introduced C in CL. Now, we consider two cases: If

5

ARσ = Aσ, we set Fn+1 as PN+<A> # BodyCσ. Otherwise
ARσ = Aσ, for some A ε PN=<A1,A2,…,Ak,…,An>. If there
are several Aj in this condition, we let A be the rightmost
such Aj. Finally, let Fn+1 be PN* # BodyCσ. In both cases,
let Sn+1 be the |C|-shuffle of Sn. So shuffles (and
promotions) are only used in this subcase.

Notes:

(1) Proof branches are formed by applying the basic inference rules backwards.
PB2, PB2' and PB4.1 relate respectively to [R1], [R2] and [R3]. PB3 relates to [R5]
and PB4.1.2 relates to [R4].

(2) The notions of reducible and reduced literal stated in 2.2 also apply in the
context of the PB4.1.2 step. Furthermore, we assume that substitutions are applied
throughout the whole branch.

Example: Let the program Π = { 1:p ♦ a,b ; 2:p ♦ ¬a ;3:b }. The proof branches for
goal p in that program are:
 Sn
{} # p [1,2,3] by PB1
{p} # (a,b) [2,3,1] by PB4.1.2

now, splitting of branches occurs (by PB3). For the left one, we have
{p} # a [2,3,1]
{p,a} # ¬a [3,2,1] by PB4.1.2
Δ [3,2,1] by PB4.1

by PB2 this is the last L-clause of this branch. The right branch will produce.
{p} # b [2,3,1]
{p,b} # ∂ [2,1,3] by PB4.1.2
Δ [2,1,3] by PB2'
again by PB2 this is the last L-clause of this branch.❏

In [Pere90] we provided a soundness and completeness result for the above system.
The proof is inspired in [Shut77] and proceeds as follows: After exhibiting some
properties of F-PBs, we prove that if every F-PB contains ∆, then F is deducible;
finally, we build a model that satisfies S = ΠU{¬F} from the hypothesis that there is
a F-PB that does not contain ∆: so if S is unsatisfiable, all F-PBs must contain ∆, and
F is deducible.

Completeness Theorem [Pere90]: If S is unsatisfiable then every F-PB contains ∆
and F is deducible.❏

Soundness Theorem [Pere90]: If F is deducible, then M |=F in any model M that
satisfies Π.❏

6

4. SLWV Connection with Resolution Proofs

In this section we begin by defining a SLWV linear derivation. Then we show how
this derivation can be mapped into SL ones and vice versa.

4.1. SLWV Linear Derivation

Definition: A refutation for G from Π is a proof that every G-PB contains ∆. If there
is a refutation of G from Π we say that G is Π-refutable, or simply refutable if Π is
understood.

We now consider the linear refutation method over L-Resolvents suggested in 3
(assuming that the selected literal is the leftmost one). Let R be a L-Resolvent.
Then, the following defines a (SLWV) linear derivation G for a literal G.

D1. F1 is ø # G.
D2. If Fn is ∆, then Fn is the last L-Resolvent of G.
D2'. If Fn is PN # ∂ R then Fn+1 is R.
D3. If Fn is PN # (g, G) R, then Fn+1 is PN # g PN # G R.
D4. If Fn is PN # A R, with A a literal, then
D4.1 If Aσ is complement of ALiσ for some ALi ε PN and substitution σ,then
Fn+1 is R.

D4.1.1 CL is empty. Then Fn is last L-Resolvent of B.
D4.1.2 CL is not empty. This case is everywhere identical to PB4.1.2, with

R included throughout, so it is omitted for brevity5.

Example: Let us consider now an example similar to the one given in the
introduction. For brevity we use short predicate names.
Π = {arr(X)♦ ¬pay(X) ; sad(X)♦ nom(X) ; arr(X)♦ dr(j); dr(X)♦ sad(X); nom(X) ♦
pay(X)}.

The SLWV refutation of arr(X) is:

{}#arr(X) by D1
{arr(X)}# ¬pay(X) by D4.1.2

5 Remark: It is interesting to argue soundness of the inference system by justifying its rules in terms
of valid resolution steps. For application of rules R1,R2 and R5 soundness is easily recognized.For R4, if
g is the selected literal, we have an instance of a resolution step with a side clause. Otherwise, suppose
some Ai ε PN is selected for resolving upon. This Ai is clearly an ancestor for g. So, application of R4
results in suspending the current resolvent (by introducing g in PN) , followed by the choice of another
candidate side clause for Ai. For R3, let G be the Ai mentioned in 2.1 above. Such G is either (i) an
ancestor of A or (ii) not so. (i) if G is an ancestor of A, R3 merely rewords the ancestor cancelation step
available in SL-Resolution. (ii) if G is not an ancestor of A, let H♦{Ri}, G, {Rj} be the clause that
introduced G into PN. Now, as suggested above, we can envisage G as a place holder for the resolvent C
= G, {Rj}, and the R3 step as the resolution on A of Fn=PN#A R with C, since {Rj} was left in R by the R4
step that introduced G in PN.❏

7

{arr(j), ¬pay(j)}# dr(j) by D4.1.2
{arr(j), ¬pay(j), dr(j)}# sad(j) by D4.1.2
{arr(j),¬pay(j),dr(j),sad(j)}# (¬dr(j), nom(j)) by D4.1.2
{arr(j),¬pay(j),dr(j),sad(j)}# ¬dr(j) {arr(j),¬pay(j),dr(j),sad(j)}# nom(j) by D3
{arr(j), ¬pay(j), dr(j), sad(j), nom(j)}# pay(j) by D4.1
Δ by D4.1

Example: Let Π = { 1: p(0) ♦ ;2:r(x) ♦ p(x), 3:r(y) ♦ ¬p(f(x)),p(x) }. Note that the
third clause has a kind of recursion in its body. In fact this clause is equivalente to
p(f(x)) ♦ ¬r(Y),p(X). The first version of the clause turns things more unreadble.
Nevertheless one could write it like that.

The SLWV refutation for r(f(f(0))) is:
 Sn
{} # r(f(f(0))) [1,2,3] by D1
{r(f(f(0)))} # p(f(f(0))) [1,3,2] by D4.1.2
{r(f(f(0))),p(f(f(0)))} # ¬p(f(X)) {r(f(f(0))),p(f(f(0)))} #p(X) [1,2,3] by D4.1.2 and D3
{r(f(f(0))),p(f(f(0)))} # p(f(0)) [1,2,3] by D4.1

[here some steps are omitted for brevity]

{r(f(f(0))), p(f(f(0))), p(f(0))} # p(0) [1,3,2]
{r(f(f(0))), p(f(f(0))), p(f(0)), p(0)} # ∂ [1,3,2] by D4.1.2
Δ [1,3,2] by D2'

4.2. Mapping SLWV derivations to SL ones

Let α ∅ β denote a valid SL-resolution step between consecutive resolvents α and β
and ∅* its transitive closure.

Proposition: Let a ∅* b, R be a SL-derivation6 D of b,R from a. Then there is a SL-
derivation D' of ¬a,R from ¬b (named its inversion).
Proof: (by induction on the number of steps of the derivation D) Induction base:
suppose that D is a ∅ b,R. Then a was resolved upon by a program clause a ♦ b,R.
Consider the variant ¬b ♦ ¬a,R. Forthwith, D' is obtained. Otherwise, suppose that
a ∅* b,R in more than one step. Look for the step of D in which b was introduced,
say, by a clause C of the general form c ♦ Η ,b,B (c is then the immediate ancestor
of b). So D has the form a ∅* c, F ∅ Η ,b,B,F ∅* b,R (where R = B,F). We have two
cases: either H is void or not.

6 We assume that a leftmost selection function is used. However, the argument could be easily
extended.

8

In the first case, C is c ♦ b,B. By induction hypothesis, the inversion D* ¬c ∅* ¬a, F
of a ∅* c, F exists. Consider the clause variant ¬b ♦¬c,B (clause inversion step).
Then D' is ¬b ∅ ¬c,B ∅* ¬a,F,B.

If H is non void, notice that Η ,b,B,F ∅* b,R contains a refutation H ∅* Δ of H. Now,
he have two subcases: either this refutation contains ancestor cancelation steps or
not so. In the latter case, D' is ¬b ∅ H,¬c,B ∅* ¬c,B∅* ¬a,F,B, where the underlined
steps are the refutation of H in D. Otherwise, suppose the subderivation H ∅* Δ
uses ancestor cancelations (in this case, due to the derivation chain inversion, the
ancestors used will no longer be available). However, the particular ancestor used
in such a step must be some literal resolved with a program clause in the segment a
∅* c,F : this literal will appear complemented in some resolvent of the inversion ¬c
∅* ¬a,F, at some clause inversion step. So, when including the subderivation
H ∅* Δ in D' we must, so to speak, defer those ancestor cancelation steps by
reordering the resolvent, so as to later eliminate them by a simple merge operation
immediately after the step where the (now complemented) ancestor is
introduced.❏

Example: Let Π = { p ♦ a,b ; a ♦ c,d ; c ♦ ¬a }. Let D be p ∅* d,b be p ∅ a,b ∅ c,d,b
∅ ¬a,d,b ∅ d,b. Note the underlined step; ¬a canceled with its ancestor a. Now D'
is ¬d ∅ c,¬a ∅ ¬a,¬a ∅ ¬p,b. The underlined step contains an implicit merge
operation; in this example no deferring was needed, because the matching ancestor
was already present.

A SL derivation can be obtained for every (left) SLWV derivation by removing
every cancelation performed between existing disjunctive branches7. Such
cancelations always occur (cf. fig. 1).

The basic translation step

 For every cancelation in the stated conditions, consider the proof obtained by
inserting the inverted derivation below the step where the cancelation actually
occurs (cf. fig. 2).

7 Branches neither ending in Δ nor taking part in some cancellations are irrelevant to a particular
proof.

9

¬b,R b,T

α

β

SL segments
SLWV segments

T,R

¬b,R ,T

α

β

T, R

b

¬α,R,T

b

¬α,R,T

 fig 1 fig 2

Using a left selection function8 , β ∅* α ∅* ¬b,R is an SL derivation. By the
proposition above, the inverse derivation D* b ∅* ¬α, R exists, which in fig 2 has
been used to reduce b in the right branch of the disjunct. Note that D* can still use
cancelation with ancestors in β ∅* α freely, since this segment, while possibly taking
part in α ∅* ¬b,R, is not affected by the inversion. The resulting proof will then
become β ∅* α ∅* b,T ∅* ¬α,R,T ∅ T,R, where the underlined step is an ancestor
cancelation upon α. If there are no more cancelations involving the inverted branch
α ∅* ¬b,R (crossed over in the figure), it can be removed (cf. footnote, previous
page).

To translate some SLWV proof to a SL one, we iteratively apply the simple
translation step described above. After every simple translation step, the original
proof contains one less "cross" cancelation between disjunctive branches so, when
the process terminates, we have a pure SL derivation.

Example: Let Π = { p ♦ a,b ; p ♦ ¬a,b ; p ♦ ¬b }. We have the following SLWV
derivation tree for p (with three cancelations) in fig. 3.

8 As the actual implementation does.

10

a,b ¬b¬a,b

p

b,b

b

Δ

p

¬a,b ¬b

b,b

b

Δ

¬p,b,b

Δ

p

¬a,b ¬b

b,b

b

¬p,b,b

¬p,b

¬a,b

¬p,b,b

p

b,b

b

¬p,b

¬p

Δ

 fig 3 fig 4 fig 5 fig 6

Note that p ∅ a,b is pure SL and takes part in a cancelation (on a). After a simple
translation operation (with inversion ¬a ∅¬p,b) we get the proof of fig 4.

 Since there are no more cancelations involving this branch, we remove it from
the proof. Next, we consider first the innermost cancelation on b (note that the
branch up to the outermost cancelation is not pure SL). Using the inversion b ♦¬p,
we arrive at the proof displayed in fig 5. Using the same procedure, the proof of fig
6 is obtained. This final derivation is a pure SL proof, as claimed above.

4.3. Mapping SL derivations to SLWV ones

5. Defining negative definite program clauses

Up to now we have considered only program clauses with positive head literals.
However, a clause ¬H♦ B can be soundly rewritten as ⊥♦H, B where ⊥ is a new
logical constant standing for 'false'. This suggests the translation of every negative
definite clause in a corresponding clause for ⊥. Now Π |- g iff |- Π -> g iff |- (Π
& ¬ g)∅ ⊥ .

Thus Π |- g iff |- Π U {⊥♦ g}∅⊥, so Π |- g iff Π U {⊥♦ g} |- ⊥. Now, a proof of
⊥ in this setting has as first two lines
 1. ⊥
 2. {⊥} g

Thus, whenever programs with negative definite clauses are defined, in
establishing a derivation we can start as usual from the relevant literal to be proved
(such literal can now freely be either positive or negative), but considering ⊥ as a
"root" ancestor.

11

Note however that a tradeoff exists when this approach is applied for the
leftmost/ancestor-order. For when a clause ¬p ♦ B is written, it will be not used for
reducing ¬p until the search space related to all ancestors below ⊥ is exhausted.

Nevertheless, consider the following L-Resolvent { ⊥, a1,a2,…ak } # ¬p, and
suppose the original clause set contained some clauses of the form ¬p ♦Bi. Those
clauses have been rewritten as ⊥♦p ,Bi. However, since we are reducing the outer
literal of the L-Resolvent, we can safely apply the original variant ¬p ♦ B to obtain {
⊥, a1,a2,…ak ,¬p} # B. Note that this procedure is actually a shortcut for the
(permissible) derivation :

(⊥, a1,a2,…ak)¬p
(⊥, a1,a2,…ak,¬p) (p,B) (reducing ⊥)
(⊥, a1,a2,…ak,¬p)p(⊥, a1,a2,…ak,¬p)B (&-Rule)
(⊥, a1,a2,…ak,¬p) B (cancelation)

Additionally, since we are now considering reductions with clauses for ¬p (a
certain subset of the clauses for ⊥), the ¬p introduced in {⊥, a1,a2,…ak ,¬p} # B can
be envisaged as a ⊥¬p (e.g, as if clauses for ⊥ of the form ⊥♦p ,Bi were "marked"
⊥¬p♦p ,Bi) in such a way that alternative clauses for ¬p obtained by the ancestor-
order strategy will be used before any other clauses for ⊥9.

6. Disjunctive answers

The intuitive desired meaning of a disjunctive answer is readily shown with an
example. Suppose we have the program:
Π = { nomoney(john) ♦ ¬nomoney(mary), nopay(father); nopay(father) },

meaning that john or mary (or both) have no money if their father is not paid, and
their father is not paid. The query ♦nomoney(X), intends to ask about who has no
money. As in the program there is no X such that nomoney(X) can be derived, the
answer to that query is no. But we know that one of john or mary have no money;
more generally, there may be a set of terms such that at least one of them has some
property or obeys some relation. A disjunctive answer to the (disjunctive) query ⁄♦
nomoney(X) in Π should be X=john or X=mary, denoting that
nomoney(john) ⁄ nomoney(mary) is a logical consequence of Π.

Our purpose in this section is first to present a definition of answers and of
disjunctive answers. We will then argue that SLWV, due to its logic programing
like strategy, is suitable to capture the concept of disjunctive answer by informally
describing how it can provide such answers.

9 Eg. { ⊥, a1,a2,…ak } # ¬p ∅ { ⊥p, a1,a2,…ak,⊥¬p } # B.

12

Definition: An answer to a query ♦P(X) in a program Π is a substitution σ (for the
variables of P(X)) such that Π ≈ ¬P(X)σ is inconsistent.

This can be seen as the usual definition of an answer to a query. We now extend
this definition to disjunctive answers.

Definition: A disjunctive answer to a query ⁄♦P(X) is a finite set of substitutions Σ
such that Π ≈Error!
In other words, Σ is a disjunctive answer to a query ⁄♦P(X) such that
Error!) P(X)σ is a logical consequence of Π.

To solve the problem of how to find such answers we prove a proposition that
states when there exists a disjunctive answer to a query.

Proposition: There exists a disjunctive answer Σ to a query ⁄♦P(X) in Π iff tg (top
goal) is a logical consequence of Π ≈ {tg ♦ P(X)} (tg being a new predicate symbol,
not occuring elsewhere in Π).

Proof: According to Herbrand's theorem [Chang73], Π1 = Π ≈ tg ♦ P(X)
derives tg iff there exists a finite subset of Π2 = Π ≈ tg ♦P(X)σ1≈…≈tg ♦P(X)σn≈…
(σ1, …, σn, … being all the possible Herbrand Universe substitutions for P(X))
deriving tg (regarding that the top goal tg does not introduce new symbols on Π1).
Let S be the finite subset S of { P(X)σ1, …, P(X)σn, … } made out from the bodies of
clauses with head tg from the finite subset of Π2 that derives it. As tg does not
occur in Π, for it to be derived from Π2, according to the resolution principle, the
disjunction of the elements of S, must logically follows from Π2. Thus the set of
substitutions applied to P(X) on S is, by definition, a disjunctive answer Σ to a
query ⁄♦P(X) in Π. ❏

Based on this proposition, for resolving a query ⁄♦P(X) in SLWV we implicitly add
to the program the clause tg ♦P(X) and consider the new query ♦tg, keeping track
of the substitutions for P(X) everytime the system uses this special clause. Given the
procedural aspects of SLWV execution, memory of such substitutions can be easily
kept.

Example: Reconsider the program given at the beginning of this section and the
query ⁄♦nomoney(X). A derivation for this query, based on SLWV plus an
additional (rightmost) set to keep track of the substitutions and the special clause tg
♦ nomoney(X) is10:

1. {}#tg ## {}
2. {tg}# nm(X) ## {nm(X)}

10 For the sake brevity, in this derivation nm stands for nomoney, np for nopay, j for john, m for
mary and f for father.

13

3. {tg, nm(j)}# ¬nm(m) {tg, nm(j)}# np(f) ## {nm(j)}
4. {tg, nm(j), ¬nm(m)}# nm(X) {tg, nm(j)}# np(f) ## {nm(j),nm(X)}
5. {tg, nm(j), ¬nm(m)}# nm(m) {tg, nm(j)}# np(f) ## {nm(j),nm(m)}
6. {tg, nm(j),np(f)} # δ ## {nm(j),nm(m)}
7. Δ ## {nm(j),nm(m)}

As expected, a disjunctive answer for the query is {X/john,X/mary}.

7. On the implementation of SLWV

Next we present a simple executor for the method above, relying on a
preprocessing of clauses and on the addition of a few specific kernel predicates
written in Prolog11. For simplicity we won't consider the kind of answers described
in last section.

We begin with a description of the external syntax of programs. Afterwards we
describe the preprocessor and internal syntax. Then we present two new
mechanisms to execute preprocessed programs, cancel and climb, their
implementation in Prolog, and give some ideas on how the executor can be thought
in terms of a low level implementation, comparing the two new mechanisms with
existing ones in Prolog. Finally we explain how to avoid duplicate solutions.

7.1. External syntax

A program is a set of clauses of the form head :- body where head is a literal body is
a literal or a conjunction of literals. head :- true can also be represented as head .
This syntax extends Horn clauses to allow negative literals anywhere and
subsumes normal programs.

7.2. Preprocessing

In order to have a single positive literal in the head each clause ¬ L :- Body is
transformed into false :- L, Body. Introducing a topgoal :- G is equivalent to
introducing the clause G ⁄ false, as seen in section 5 above.

According to the method, calls for a goal must be associated with a label set and a
clause ordering. As no clauses have a negative head, for greater efficiency in
applying clauses by rule D4.1.2, and also for faster application of D4.1, we
represent the label set PN by two lists, P and N: P with the positive and N with the
negative literals. In each goal, additionally to P and N, we introduce a further
parameter C, specifying the clauses it can use. When C is unbound, every clause for
it is to be considered.

11 The complete code is available on request.

14

Consequently, each clause is augmented by the preprocessor with the three
argument variables P, N and C. Hence, each clause with p(X) as head

p(X) :- bp(Y), ¬ bn(Z), … is transformed into
p(X,P,N,index):- bp(Y,[x-p(X)|P],N,_), $neg(bn(Z,[x-p(X)|P],N,_)),…

where index is the number of this clause, starting with 0, in the sequence of clauses
for p(X).

In all goals, x-p(X) is fronted to p: the tag x is used to state that literal p has been
reduced. Suspended literals12 contain a free variable parameter instead; this
parameter is used to check for reduction by cancelation of goals with
complementary ones either in P or N (cf. 7.3 below), by binding it to x when
cancelation occurs.

$neg is a specific predicate enveloping the atom of each negated goal, to be
explained later.

In order to enable access to the underlying Prolog in our programs, literals of the
form call(Goal) are preprocessed simply to Goal.

The splitting of proof branches (D3) is guaranteed by Prolog's execution of the
conjunction.

7.3. The cancel mechanism

To insure application of rule D4.1, when trying to solve a goal one has, first of all,
to check for a cancelation in PN. This mechanism can be seen as a match of a
suspended literal with the head of the clause contrapositive with the negation of
the goal at the head (cf. section 4.2 above).

So for each predicate p(Y), the preprocessor adds, as a first clause for p:
p(Y,_,N,_) :- member(x-p(Y),N). [CR]

where the symbol x indicates, by binding within the list element, that a cancelation
has occurred.

For negative goals we add, as first clause for $neg, a clause similar to [CR].

7.4. The climb mechanism

When solving a goal p(Y), after trying all clauses with this literal at the head, to
insure the complete application of rule D4.1.2, the executor must try alternative

12 By a suspended literal we mean a non-ancestor literal that was introduced in the label set,
according to D4.1.2.

15

clauses for the ancestors, in order to find an alternative disjunctive branch
containing a literal ¬p(Z). We call this the climb mechanism. To invoke this
mechanism, the preprocessor adds, as the last clause for every p(X):
 p(X,P,N,_) :- climb(P,N,p(X)). [CC]

where climb is a specific predicate, that in turn chooses an element of the P label
set and reconsiders it (as we don't have preprocessed negated heads) on its
alternative clauses.
 climb(P,N,G) :-
 choose_one(P,AnsPred,ClauseNumber,NewP),
 translate(AnsPred,[X-G|NewP],N,ClauseNumber,AnsGoal),
 AnsGoal,
 X == x.

To insure that in the present derivation the original goal actually cancels, as
explained before in 7.2, a check for the binding of X with x is performed.

translate is a fact predicate with an instance introduced for each program
predicate by the preprocessor. It transforms elements of P or N into the form of
preprocessed predicate calls (i.e. p(X,P,N,C)) given P,N, and C, and vice-versa. p(X)
introduces:
 translate(p(X), P, N, C, p(X,P,N,C)) :- !.

As this problem is the same for negative literals, we have as last clause for $neg,
similar to [CC].

The predicate choose_one(P,AnsPred,ClauseNumber,NewP) chooses from P the
ancestor alternative clause with AnsPred at the head and number ClauseNumber,
and builds for it the new P list NewP. Here various search strategies can apply. The
simplest one seams to choose the next clause for the closest ancestor, and then the
others by backtracking in this order. A possible alternative is to choose first clauses
that lead directly to the complementary literal. This alternative is much more
efficient, but has to keep information about the call graph, which may be worth
considering if a low level implementation is produced.

In fact, we can think about this mechanism as an elaboration of the standard Prolog
backtracking that keeps some information about the failed branch. This information
is mainly about variable bindings and failed goals (corresponding here to
suspended literals). This fact, supported with the similarity between the cancel
mechanism and the matching of goals with clause heads, suggests a low level
implementation (eventually based on some modification in a virtual Prolog
machine).

7.5. Avoiding duplicate solutions

16

The climb mechanism, conjoint with backtracking, introduces the problem of
undesirable repeated solutions. For example, consider the following program:
 (1) p :- q. (2) p :- ¬q.

with the top goal ?- p. In the first solution p calls q using (1), q invokes the climb
mechanism and succeeds by cancelling with ¬q of (2). By backtracking p calls ¬q
using (2), q invokes the climb mechanism and succeeds by cancelling with q of (1),
reaching this way the second solution. In fact this solution is exactly the one
reached at the beginning.

Another way to see the problems, is to say that it happens because both, negative
and positive literals, can invoke the climb mechanism. In fact if only one type of
literals could invoke the climb, no such problem could arise. But if we only allow
climbing on, say, positive literals there is no chance for these literals to cancel,
because there are never negative suspended literals. So the type of literals that can
invoke the climb mechanism has no need for the cancel mechanism. We can be
more specific by saying that for each predicate name either there exists the climb
mechanism for positive literals and the cancel mechanism for negative ones or vice-
versa. For each one, according to a static analysis of the problem, we can choose the
alternative that seams to be the most efficient.
With a low level implementation this problem disappears, because there is only
one mechanism that subsumes climb and backtracking.

8. Conclusions

We've defined a new theorem proving method that allows for procedural logic
programing with classical negation. In particular, Horn clause programs under this
system, have a trace that can be mapped quite directly to SLDNF ones.
Implementationwise, these programs don't make calls to kernel predicates, so their
runtime under our executor is comparable to that under normal Prolog.
We showed how for disjunctive answers our theorem prover is suitable.
For its simplicity and Prolog-like strategy, our method turns out to be attractive for
programing in clausal logic, being well suited to extend Prolog programming with
classical negation. Furthermore, procedural information regarding clause and goal
orders is adhered to, which is still a desireble feature of logic programing.

Comparing this method with the ones presented in [Love87,Stic85,Stic86], we find
that it has the advantage of not needing contrapositives variants.
Another method for Logic Programming with negation that doesn't make use of
contrapositives is that of [Plai88]. This method builds for each problem a deduction
system where the rules and axioms depend on the clause set. This approach seems
to be more complex than ours and has an execution trace very different from

17

Prolog. It presents a significant overhead in the execution of definite clause
programs.
The method described in [Mant88], has the advantage of being both very simple
and efficient (at least for a certain class of programs), though, as it is based on
model elimination, the user doesn't have control over the execution order.

Acknowledgements

We thank ESPRIT Basic Research Project COMPULOG (no. 3012), Instituto
Nacional de Investigação Científica, and Gabinete de Filosofia do Conhecimento
for their support.

References
[Chan73] Chang C. and R. Lee.: Symbolic Logic and Mechanical Theorem Proving, Academic

Press, New York, 1973.
[Eshg89] Eshghi, K. and R. Kowalski.: Abduction Compared with Negation as Failure, Logic

Programming: Proceedings of the Sixth International Conference, (Levi and Martelli
eds.), MIT Press, 1989.

[Lloy87] Lloyd, J.: Foundations of Logic Programming , second edition, Springer-Verlag, 1987.
[Love87] Loveland, D.W.: Near Horn Prolog. In J. Lassez, editor,Logic Programming:

Proceedings of the Fourth International Conference, pages 456-469, The MIT Press,
1987.

[Mant88] Manthey, R. and F. Bry: SATCHMO: a theorem prover implemented in Prolog. In
Proceedings of CADE 88 (9th Conference on Automated Deduction) , Argonne,
Illinois, 23-26 May, LNCS, Springer Verlag.

[Pere90] Pereira L., L. Caires and J. Alferes: Classical Negation in Logic Programs. In
Proceedings of the Seventh "Seminário Brasileiro de Inteligência Artificial" ,
Campina Grande PB, Brazil, Nov. 90.

[Plai88] Plaisted, D. A.: Non-Horn clause logic Programing without Contrapositives. Journal of
Automated Reasoning 4 (1988) pages 287-325.

[Shut77] Shutte, K.: Proof Theory. Springer-Verlag, 1977.
[Stic85] Stickel, M.E. et al: An Analysis of Consecutively Bounded Depth-First Search with

Applications in Automated Deduction, Proceedings of the Ninth International Joint
Conference of Artificial Intelligence, Los Angeles California, August 85.

[Stic86] Stickel, M.E.: A Prolog Technology Theorem Prover: Implementation by an extended
Prolog Compiler, Proceedings of the Eigth International Conference in Automated
Deduction, Oxford, England, July 86.

