DELTA-PROLOG : A DISTRIBUTED LOGIC PROGRAMMING LANGUAGE

Luls Moniz Pereira

Departamento de Informatica
Universidade Nova de Lisboa

"The river spread into a mesh of criss-crossing
distributing the flow of water concurrently into the sea"

ABSTRACT

Delta-Prolog, a distributed logic
programming language based on Monteiro's
Distributed Logic (DL), is presented and
contrasted to Shapiro's Concurrent "Prolog”
(CP). Delta-Prolog is an extension to Prolog,
presently implemented over C-Prolog under
VAX/VMS, but easily ported to other Prologs
and operating systems. It relies on the
single notion of event for both process
communication and synchronization, and
multiple processes can . Dbe launched,
interactively or from within another one, and
run on several processors spread across a
network, or as multiple jobs on the same
machine. Consequently, parallelism can be
obtained for the forward direction, though
parent and child processes are serialized on
backtracking. The motivation for this work
was to develop an immediate efficient working
prototype approximation to DL which also
provides an alternative to CP (without its
overheads and complexity of implementation)
subsuming Prolog, which CP does not. We begin
with an introduction to DL, and then go on to
show how Delta-Prolog approximates it and
exhibit some examples. Next, implementation
issues are addressed. A comparison to CP
follows, and finally some remarks are made
regarding future work.

1 DISTRIBUTED LOGIC

Unlike most concurrent logic programming
languages Delta-Prolog has a strong foundation
in logic, which is briefly reviewed in this
section. Delta-Prolog is founded on
Distributed Logic (DL) (Monteiro 1981-84),
which extends Horn Clause Logic (HCL) in two

Roger Nasr

v

Artificial Intelligence Technology Group
Digital Equipment Corporation
2825 Monte da Caparica, Portugal Hudson, MA 01749, USA

to form a delta,

3C

ways : (1) first, by distinguishing between
sequential and parallel composition of goals,
denoted ',' and '/' ; (2) second, by
introducing the time related notion of event,
which provides both for process communication
and synchronization, in the programming
language interpretation of the logic.

There is not much to say about the first
point: instead of the single and-connective
of HCL, DL has two connectives with distinct
operational meanings, as explained below.
Operationally, the next goal selected for
reduction in a goal statement is arbitrary,
except for the sequentiality constraint. For
example, in the goal expression (a/b),(c/d)
goals a and b may both be selected, but not c
or d.

The introduction of events is
accomplished by using "event goals”. These
are goals of the particular forms G ! E or

G?E , where! and ? are binary predicate
symbols (the event "modes", said to Dbe
"complementary” - the assymmetry is required

only because of implementational constraints)
; G is any term (the event "pattern") ; and
E is an atom (the event '"name" ; it can
conceivably be generalized to any term to
account for communication hierarchies).

A selectable goal G ! E may be reduced
iff a complementary goal G' ? E may be
selected such that G and G' are unifiable ;
if this is the case, both goals are reduced to
"true".

We thus see how the ideas of
synchronization and communication are embodied
in event goals. Synchronization relies on the
fact that an event goal must be reduced
simultaneously with a complementary event goal
; communication is the outcome of the
unification of the event patterns. Notice
that, since G and G' are arbitrary terms
(which may include variables) communication in
DL is very general.

Declaratively, an event goal is a formula
which is true only at the moment of occurrence
of the event it describes. In DL it cannot be
proved that an event goal is true, but some
logical consequences may be derived from the
assumption that given sequences of events
("event histories”) are true. Thus, the basic

semantic statement of DL is w|=g , asserting
that the truth of (ground) goal statement g is
a logical consequence of the truth of (ground)
history w. The semantic implication |=
satisfies the following axioms and rules :

(1) el=e for every ground event goal e

(2) |=e/e' for any two complementary
ground event goals e and e', where
the null history has been omitted
from the assumptions

(3) if w|=g and w'|=g' then w,w'|=q,q’
and z|=g/qg', where z is an
arbitrary interleaving of w and w'
where complementary events may be
connected by '/’

(4) if w|=w' and w'|=g then w|=g

(5) if a<-g is a ground clause and
w|=g then w|=a

A few comments are in order. (l) states that
the truth of e at any given moment may be
deduced from the truth of e at that moment.
The meaning of (2) is that the communication
specified by the two complementary events may
occur at any moment. (3) gives the logical
meaning of ',' and '/'. (4) 1is simply the
transitivity of |= . And finally (5) gives
the meaning of a clause.

The relation |= allows the declaration of
a set of clauses of DL in a manner analogous
to the semantics of HCL. The completeness
theorem states that for a given set of clauses
we have |=g iff the goal statement <-g can be
refuted.

Let us now mention some extensions to the
basic formalism. Event goals may be written
G!E :C or G?E :C, where C 1is a predicative
condition (goal statement) on the variables of
G ; the interpretation of the construct is
that the event only takes place if <-C is
refuted.

The events modelled by ! and ? may be
called binary, since two complementary event
goals must be reduced simultaneously. More
generally, n-ary event goals may be
considered, with only a slight modification of
the theory of binary events. Further

additions such as termination conditions lie
outside the scope of this paper.

2. DELTA-PROLOG

Delta-Prolog aims to implement DL to some
extent, by enlarging Prolog to accomodate the
DL notions of event and process distribution.
Presently, it's implemented as an extension to
C-Prolog under VAX/VMS, and can run a program
as several processes spread across a network,
or as multiple jobs on the same processor.
Each process is under the control of a
C-Prolog interpreter instance. Porting
Delta-Prolog to other Prologs and operating
systems should not be difficult (cf. section
5).

The motivation for this work was to
develop an immediate efficient working
prototype that approximates DL and provides an
alternative to Concurrent "Prolog” (CP)
(Shapiro 1983) (without its overheads and
complexity of implementation) that subsumes
Prolog, which CP does not. A more extensive
comparison to CP is provided in the sequel.

Full DL requires binary and multiple
events, multi-process access to shared memory,
process creation, distributed backtracking
(Bruynooghe and Pereira 1984) or OR
paralellism, and the ability to express
terminating conditions. Let's examine how
Delta-Prolog tackles these issues :

3. BINARY EVENTS

Binary event occurrence is expressed by
goals of the form T!E:C or T?E:C, occurring
anywhere in a clause body, where T 1is any
term, E is a binary event name (a Prolog
atom), and C a predicative condition. ':' has
a higher precedence than '!' or '?'. C can be
omitted, the two forms becoming T!E and T?E.
The 'cut' is not allowed in event conditions.

A goal S!E:SC solves only when some
complementary goal R?E:RC is also reached in
some other process, S unifies with R, and then
SC and RC evaluate both to true. The same
holds for R?E:RC with respect to S!E:SC.
Aside from the synchronization feature, it's
as if each of the two event goals was replaced

by (S=R,RC,SC) where the clauses for RC and SC
are defined in different processes.

While a complementary goal has not been
reached, either type of event goal hangs.
When both complementary goals are reached, but
S does not match R or one of SC or RC fails,
then R?E:RC fails and S!E:SC hangs waiting for
a complementary goal to be reached again.
However, if S and R match but the special goal
'reject' 1is activated within RC or SC, then
both event goals fail.

Of course, S!E:SC should not hang
eternally if there are no possible alternative
complementary events. As a stopgap solution,
the 'reject' predicate has been introduced for
user controlled failure (at his risk because
completeness may be impaired).

The above assymmetry in the hanging is
necessary to guarantee completeness of search,
by having one process hang while backtracking
is used by the other to explore alternatives.
In theory, it need not be decided beforehand
which complementary event will hang and which
will fail. A thorough treatment of this
problem will rely on dependency information,
as in (Bruynooghe and Pereira 1984). When
that's done, then both complementary events
may have the same form. The assymmetry in the
syntax comes from the way events are
implemented at present, by means of reads and
writes into mailboxes (cf. below), where one
complementary event takes attempts to read
from and the other takes the initiative to
write into a mailbox. (Note that an arbitrary
number of processes may be attempting to
participate in some binary event E ; however
this possibility should be principled within
the general case of multiple events ; cf.
section 6).

Corresponding to '!' and '?', we have
additionally introduced the event complements
T*"E:C and T??E:C, as well as the
unconditional varieties, for those cases where
it is not required or desired for '!' to hang
in wait for '?'. Of course, '??' must still
wait for '""' . The semantics for these new
predicates 1is defined in a way comparable to
the one for I1/0 streams.

4. EXAMPLES OF PROCESS COMMUNICATION

4.1 Squares Example

The first example shows how two processes
cooperate to compute the squares according to
the formula

2 2
K = (K-1) + (2K-1) for K>0

The process launched with ':-squares.' on one
terminal successively computes and writes the
next square, using the previous square plus
the next odd number computed by the process
launched with ':-odds.' on another terminal,
which also writes the odds on that terminal.
Communication takes place through a succession
of events called 'mail’.

squares :- write(0), nl, sq(0).

sq(Q) :- I ? mail,
R is Q+I, write(R), nl,
sg(R).

odds :- odd(l).

odd(I) :- I ! mail,
J is I+2, write(I), nl,
odd(J).

4.2 'Counter' Example

The next example concerns a 'counter'
object, cf. (Shapiro and Takeuchi 1983),
expressed as a perpetual process that receives
from a separate terminal process commands C
with the form of 'Command ! cmd' events. The
counter is launched with ':-c(0).' .

terminal:- read(C), C, write(C), nl, terminal.

c(S):- clear ? cmd, c(0).

c(S):- up ? emd, U is S+1, c(U).
c(S):- down ? cmd, D is S-1, c(D).
c(S):- show(S) ? cmd, c(S).

c(S):- abolish ? cmd.

c(S):- X ? cmd : reject.

When a command ‘show(S) ! cmd' is issued, the
counter process 1is hanging at event goal

'clear ? cmd' in the 1lst clause. Failure to
bind 'show(S)"' to 'clear’ provokes
backtracking to the next counter clause, and
so on until the 4th clause is reached. Then
the two event goals solve, and terminal
receives the value of S. If some
unprocessable command is issued the event in
the 1last clause for counter will accept it,
fail, and cause failure of the terminal
process.

4,3 Two Sets Example

Another example regards two non-empty
disjoint sets of integers SO0 and TO. The
objective is two determine two sets S and T
such that :

(1) SsOUTO=SUT

(2) cardinality(S)
cardinality(T)

cardinality(S0) and
cardinality(T0) and

(3) every element of S is less than every
element of T.

The problem is solved by creating two
processes, 'proc_t' and 'proc_s', where
'proc_t' takes a set, starting with TO, and
computes its minimum element, while 'proc_s'
takes a set, starting with S0, and computes
its maximum element. Then the two elements
are exchanged between 'proc_t' and ’'proc_s'.
If the minimum of one is less than the maximum
of the other, the exchange is accepted and
they both recurse on their new sets ;
otherwise the exchange is unaccepted, and both
stop, having computed their final values T and
S.

proc_t(T0,T) :- min(TO,Y,R),
exchange(X,Y¥) ? mail,
cont_t(X,Y,R,T).

cont_t(X,Y,R,[Y|R]) :- x<¥, !.
cont_t(X,Y,R, T) :- proc_t([X[R],T).

min([w|s],X,[W|Ql) :- in(S,X,Q), W>X, !.
min([X|s],X, S).

proc_s(S0,S) :- max(S0,X,Q),
exchange(X,Y) ! mail,
cont_s(X,Y¥,Q,S).

cont_s(X,Y,Q,[x]|Q]) :- x<¥, !.
cont_s(X,Y,Q, S) :- proc_s([Y|Q],s).

max([W|s],X, [W|Q]) :- max(S,X,Q), W<X, !.
max([XIS],X, s).

4.4 Buffer Example

Our next example shows a buffer process
that may accept 'get' requests, even though it
may be empty, according to a LIFO scheduling
discipline. This is achieved by having the
'out' predicate call as a condition on the
request event, and by having the notion of
negative buffer contents. Thus, a 'get’
request 1is only answered when the 'out' call
is satisfied, which in turn only happens when
enough 'put's' are performed from some other
processes to make the buffer positive again.
This example shows how the completion of some
event can be made to depend on another one.

b(B):- get(X) ? io: out(X,B,C), b(C).

b(B):- put(X) 7 io, in(X,B).

in(x, -[(x]).
in(X, B) :- append(B,[X],C), b(C).

out(X,[x|B]l, B).
OUt(xr [] [[]) Hd b('[X]).
out(X, -B , -B) :- b(-[X]).

4.5 Collection of Solutions Example

Our next example shows eager and lazy
processes for producing collections of
solutions (Kahn 1984). Some consumer process
can send requests of the form

'solutions(G,M) ™" eagerall' or
'solutions(G,M) ~" lazyall'

through mailboxes eagerall or lazyall, where G
is a goal and M is a mailbox through which the
solutions for G will arrive as a succession of
events, computed eagerly or lazily. The
consumer process can use M whenever it wants a
next solution. The semantics of this

mechanism is the same as that for streams,
where M is the stream name. By convention, []
terminates the sequence of available
solutions. Once the producer has complied
with a request it stands in wait for another
one. More elaborate collectors are easily
envisaged.

eager :- repeat,
solutions(G,M) ?? eagerall,
(G, G~ M, fail ; [] ~~ M), fail.

lazy:- repeat,
solutions(G,M) ?? lazyall,
(G, G! M, fail ; [] ! M), fail.

4.6 Object Manager Example

Our final example concerns an object
manager for several object processes. One
simply adds to it all clauses for the objects.
The manager receives requests of the form
'Message ! ObName' from the event named
'obmgr' ; as a condition on this event, it
then finds, within the resolvent 'Obs', an
outstanding recursive call for the object
receiving messages through 'Obname' ; next it
searches for a clause for that object and
processes it up to the recursive object call ;
the object recursive call is then retained in
the manager's recursive call resolvent 'Obs’,
which contains all the outstanding recursive
object calls. Only then is the 'obmgr' event
terminated and the original request answered.
The event may, of course, fail. Note that a
'reject’' from an object causes the manager to
issue a 'reject'. Thus, one can avoid having
one Prolog process for each object. For
example, to manage the buffer and counter
objects above, the manager is started with :

':-obmgr((io/b([]),cmd/c(0))).’

obmgr (Obs) :-
(Message ! ObName) ? obmgr :
(replace(Obs,ObName/Ob,NObs, ObName/NOb),
process(0Ob,Message!Obname, NOb,RIC),
RIC),
obmgr (NObs) .

replace((0Ob,0Obs),0b, (NOb,Obs),NOb) :- !.

replace((0Ob,0bs), X,(0Ob,NObs),NOb) :-
replace(Obs « X, NObs ,NOb) .

replace(Ob ,Ob, NOb ,NOb) .

process(0Ob,M,NOb,RIC) :-

functor (Ob,F,N),

functor (Skel,F,N),

clause(Ob,Body),

solve(Body,M, Skel,NOb,Cut,RJ),

(nonvar(Cut), !, fail ; true),

(nonvar(RJ), RJIC=reject ;
var(RJ), RJC=true).

solve((A,B),M,5,NOb,Cut,RJ) :- !,
solve(A,M,S,NOb,Cut,RJ),
(nonvar(Cut) ;
solve(B,M,S,NOb,Cut,RJ)).

solve(true, , , , ,)

solve(! , ,_,_,Cut,_) :- true ; Cut=nonvar.

solve((A;B),M,S,NOb,Cut,RJ) :- !,
(solve(A,M,S,NOb,Cut,RJ) ;
solve(B,M,S,NOb,Cut,RJ)).

solve(X?MX:C,M!MB, , , ,RJ) :- !,
X=M, MX=MB, check reject(C,RJ).

solve(X?MX,M!MB, , , ,) :- !
X=M, MX=MB,

14

/* detects object recursive call : */
solve(S,_,S,S,_,_) = !.

solve(G,M,S,NOb,Cut,RJ) :-
clause(G,B),
solve(B,M,S,NOb,Cut,RJ),
(nonvar(Cut), !, fail ; true).

solve(G, , , , ,) :-

\+ current_pred(_,G), G.

check_reject((A;B),R) :- !,
(check_reject(A,R) ;
check_reject(B,R)).
check reject((A,B),R) :- !,
check reject(A,R), check reject(B,R).
check_reject(!,) :-
write('forbiden ! in event condition'),
abort.
check_reject(true, _)
check_reject(C,nonvar)
check_reject(C, _)

ss oo oo

- C==reject.
—Co

4.7 Perpetual Events

Note that new facts can be considered
as perpetual events, that avoid the use of
‘assert' :

fact(T!E) :~ T!E, fact(T!E).

Event E is forever ready to offer pattern T to
whatever process cares to receive it.

5. BINARY EVENT IMPLEMENTATION

The two system predicates '!' and '?2'
have been added to C-Prolog, making
transparent use of mailboxes to achieve
interprocess communication. On execution, by
a process PR, of a goal of the form R?E:RC,
two mailboxes are created (if not already in
existence), whose names are variants of E, say
sE and rE. The mailbox creation is done
through appropriate system service calls.
Next, PR hangs until it can read some term S
from rE. After S is read, the unification of
S with R 1is attempted. If it fails S is
written back into rE and the goal R?E:RC
fails. Should unification succeed, then RC is
evaluated.

Meanwhile, the process PS that wrote S
into rE, by means of goal S!E:SC, is hanging,
waiting for confirmation that S was accepted
(i.e. S unified with R and RC evaluated to
true). This confirmation is accomplished by
having process PS read SR (the result of PR's
unifying of § with R) from mailbox sE ; SR is
then unified by PS with S, so that two-way
pattern-matching is achieved (modulo the
absence-of -common-memory limitation, which
precludes unification of two uninstantiated
variables). Next PS evaluates condition SC.
If it fails a message 1is sent to PR,
reject(R), through mailbox rE, which makes
PR's R?E:RC goal fail, and PS writes S once
again into rE and hangs, waiting for a
complementary event in some process to come
along and carry through (albeit in the same PR
process, after it backtracks to a next clause
choice) ; otherwise, success is reported to
PR through the same mailbox rE and both events
solve. Of course, process PR is made to wait
for this confirmation of acceptance from PS,
by hanging on a read from rE, expecting a term
W which it binds to R, and succeeds, or 1is

reject(R), and fails. The binding of W to R
is necessary inasmuch SC may have further
instantiated R.

During evaluation of RC, in the preceding
description, the 'reject' goal may arise. 1In
that case, both R?E:RC and S!E:SC are caused
to fail ; this is accomplished by having PR
write into sE 'reject(S)', instead of SR, so
that PS can confirm that the rejection refers
to its event half (rather than to some other
process's event half rejection), and fail its
S!E:SC goal. ‘'reject' may also be used in SC,
with the same effect of making both
complementary event goals fail. Conditions
are evaluated using a mini-interpreter in
Prolog that disallows 'cut's to occur within
them.

In the foregoing discussion, it is
indifferent whether the two mailboxes for E
are first created by PR or PS, The whole
communication protocol 1is written in Prolog,
and can easily be ported and changed or
enhanced to accomodate for variations, or for
n-ary events. The only additions to C-Prolog
consist in extending see(_) and tell(_) to
recognize mailbox names of the form mbx(E),
and have them create two mailbox variants, SE
and rE, if they're not already in existence,
by means of appropriate system service calls.
The interface code is in Prolog and carries
out the above protocol simply by using the
C-Prolog I/0 predicates, with the mailboxes
specified as the see and tell files. Also
needed is a subroutine to kill a mailbox given
its name, so that cleaning up can take place
when appropriate.

Useful for writing DL software and
operating systems in particular, but not
required for the above event implementation,

are the two predicates
'contains_info(Mailbox)' and
'requests_info(Mailbox)', which allow a

process to know, without hanging, whether
Mailbox contains information and whether some
process is hung waiting for information to be
put into Mailbox. These, again, use "Device
Control Block" probing system service calls.

The two system predicates '""' and '??'
are, implementation wise, specializations of
'!'"and '7?'.

6. MULTIPLE EVENTS

There is at present no special provision
to cater for multiple events. There are still
choices to be made regarding the way the
'reject' feature (cf. below) and other issues
will be dealt with in multiple events. One
scheme is to have a multiple event implemented
as a circular sequence of binary events.

7. COMMON MEMORY

Delta-Prolog makes do without common
memory. This precludes shared streams amongst
processes, and precludes the binding together
of uninstantiated variables in events.

8. PROCESS CREATION AND ITS IMPLEMENTATICN

Processes may be individually created and
launched by the programmer, or spawned and
launched from within another process. 1In this
case, input/output to and from the child
process is assigned by the parent to two
mailboxes. Goals to the child are sent by the
parent via the event mechanism (cf. below) to
a monitor clause which is added to the child
process. This clause is activated as soon as
the child is spawned. Thereafter it can
repeatedly accept goals from the parent,
process them and send solutions back or advise
that no more are available.

Three basic system predicates are
provided : for spawning a process, for
launching a goal in a spawned process, and for
gleaning solutions to goals launched 1in
spawned processes. A syntax more congenial to
DL can be built on top of these basic
predicates.

'spawn(Job,Node,Files)' creates and runs
a C-Prolog job named Job at network Node,
which consults the list Files. 1/0 from that
job is assigned to mailboxes named iJob and
oJob. Two mailboxes named rJob and sJob are
also created to allow for launching goals and
receiving solutions through the event
mechanism (cf.below). The implementation of
'spawn' draws on VAX/VMS and DECNET-VMS system
service calls.

The two following clauses are
automatically added to the Job program (though
they are hidden from the remaining program by
having them retract themselves, but we do not
show that here) :

Job :- [Files], repeat, go.

go:- launch(G) ? Job,
(G, solution(G) ! Job,
Option ? Job,
(Option==reset, !, fail
Option==halt, halt
Option==backtrack, fail

S’ we we

.
[

solution(fail) ! Job, fail).

These clauses are responsible for
interfacing with the parent process, which to
do so uses the two system predicates defined
by the clauses :

launch(G,Job) :
launch(G) ! Job ;

solution(S) ? Job,
(S==fail ; reset ! Job), !, fail.

solutions(G,Job) :-
repeat,
solution(S) ? Job,
(S==fail,!, launch(G) ! Job, fail
S=G
backtrack ! Job, fail

N’ wme wme

A typical program clause that uses them
looks like :

fork(Gl,G2) :-
spawn(job,node, [file]),
launch(G1, job),
G2,
solutions(Gl, job).

The best way to really understand how it
works 1is to imagine execution of this clause,
and to consider all the alternatives in
'launch’ and 'solutions'. These clauses make
specific choices regarding the interaction of

processes, and are made available to
facilitate the programmer's effort. Other
interface clauses can be provided by him
relying on the same primitives.

The above code shows that spawned
processes and their parents can run forward in
parallel, but they are automatically
serialized on backtracking, as in (Furukawa et
al. 1982). This 1is necessary because of
completeness. One process must wait for
another to explore its subspace of solutions
before it considers another solution in its
own subspace. An efficient solution to this
problem is obtainable through distributed
backtracking, by using the theory in
(Bruynooghe and Pereira 1984). (However, in
Delta-Prolog, individual interactively
launched jobs can be explicitly made to
backtrack by the programmer in a 'ad hoc'
fashion by using the 'reject' feature or by
writing different interface clauses. In this
case, the completeness of the solution set is
his responsability.)

8.1 Sieve of Primes Example

The method known as 'the sieve of
Eratosthenes’' will be used to generate the
primes greater than 1. It consists in sifting
from the 1list of positive integers greater
than 1 all the multiples of any of its
elements.

The Delta-program starts by launching a
process to create the integers and send them
through events named 'i', and proceeds to sift
those integers. When 'sift' receives an
integer through event 'I' (initially 'I' 1is
'i') a prime 'P' has been found and is output
; next 'sift' creates a filter process for
'P' that will receive subsequent integers from
'Tl' ; when one of these is a multiple of 'P’,

‘filter' simply ignores it ; otherwise,
'filter' sends it to 'sift' through an event
named 'R'. 'generate_unique_name'’ is a

predicate that generates a unique identifier
used for a job or an event name when needed.

/* file primes */
primes :- create_integers(2,i), sift(i).

sift(I) - P ? I,
write(P), nl,
create filter(I,P,R),
sift(R).

create_integers(N,I) :-
spawn(job,=, [integers]),
launch(integers(N,I), job).

create filter(I,P,R) :-
generate_unique name(Job),
spawn(Job,=, [filter]),
generate_unique_name(R),
launch(filter(I,P,R),JOb).

/* tile filter */

filter(I,P,R) :-

filter(1,P,R) : - N 2?2 I :
(
filter(I,P,R).
/* file integers */

integers(N,I) :- N ! I,
M is N+1, integers(M,I).

9. TERMINATING CONDITIONS

Terminating conditions are not tackled at
all, though their use can be skirted through
reprogramming.

10. COMPARISON TO CONCURRENT "PROLOG"

We consider Delta-Prolog (DP) a superior
alternative to Concurrent "Prolog" (CP). Many
reasons may be adduced :

CPl - The name is misleading. Concurrent
"Prolog" is not an extension to Prolog ; on
the contrary, it forks away from it: absence
of backtracking means 1less freedom in the
writing of CP programs and deadlock problems
which have to be solved explicitly by the
programmer ; "read-only" wvariables destroy
program reversibility ; completeness is worse
than for Prolog.

DP1 - Delta-Prolog subsumes full Prolog, and
is a simple, natural and powerful extension to
it, that can solve the problems Concurrent
"Prolog" programs express (contrast our
'counter' example above with the CP version in
(Shapiro and Takeuchi 1983)).

CP2 - Exhibits ad-hoc improvised semantics,
and a never-ending pletora of constructs. Too
many operational semantics fine details must
be kept in mind. For example, exportation of
guard evaluated bindings only takes place
after commitment ; but if those bindings are
incompatible with any new external bindings
the process fails, and other guards no longer
have the opportunity to commit.

DP2 - Is based on Distributed Logic, which
possesses rigorous semantics defined as an
extension to classical Horn Clause Logic
semantics.

CP3 - Communication amongst processes is
through streams only. Because the number of
streams of a process is fixed initially,
communication with a new process, or diversion
of input from one process to another, require
expensive and non-user transparent sStream
merging, extra programming effort, and make
object-oriented programming difficult.

Concurrent "Prolog" streams demand shared
memory, and the synchronization mechanism of
read only variables destroys two-way pattern
matching at the principal functor level. An
additional predicate, wait(), is required for
synchronization.

DP3 - Communication and synchronization are
both simultaneously achieved through the
single notion of event, which retains two-way
matching. Common memory is not a requirement
(but where available it can enhance
communication to include streams, which may be
set up wvia an event). Multiple process
communication doesn’'t require extra
facilities. Any waiting for communication 1is
taken care at a low-level, and so does not
have to be explicitly programmed.

CP4 - Has not been compared to other
concurrency-expressing formalisms.

DP4 - Distributed Logic has been shown to be a
general theory of concurrency, encompassing
many known formalisms such as classical
automata (including Turing machines), Petri
nets, flow and path expressions, and Milner's
concurrent processes ; cf. (Monteiro 1983).

CP5 - Needs OR processing.

DP5 - Does not need OR processing, though it
can be used to implement it.

CP6 - At present, it is only simulated by an
interpreter written in Prolog, and has no real
concurrency ; processes do busy-waits for
each other.

It poses a number of simultaneously
difficult implementation problems: fairness
of "guard" evaluation ; fast process creation
; deadlock handling ; correct "otherwise"
feature ; invisibility of bindings before
commitment ; "early write" wvariables ;
difficult debugger.

DP6 - Already runs simultaneous processes, On
several processors spread accross a network
(including local area networks), or processes
can also run in multiple jobs on a single
processor. Synchronization obtains through
mailbox 1I/0 that hangs without busy-waiting.
Multiple processes can be used for user
controlled OR-processing.

11. FURTHER DEVELOPMENTS AND FUTURE WORK

Further developments will concentrate on
improving and creating user transparent
library interfaces to the basic communication
and process distribution mechanisms, and
building software utilities ; in particular,
multiple events and alternative communication
schemes, as well as object-oriented
programming software, and distributed database
access. This will become incorporated into a
usable extension to C-Prolog. We are
presently exploring the applications, in
particular natural language processing and
knowledge-based systems.

Future work will be concerned with an
ongoing project to make Delta-Prolog evolve
toward the full general model of Distributed
Logic (including some new features) engineered
into an amenable programming environment. The
implementation will include distributed
backtracking in the spirit of (Bruynooghe and
Pereira 1984), distributed debugging as an
enhancement to (Pereira 1984), and will rely
both on an abstract machine definition and on
a multi-processor shared memory architecture.
An option to shared memory is shared
references.

ACKNOWLEDGEMENTS

This work was accomplished mainly during Luils
Moniz Pereira's stay at DEC's Artificial
Intelligence Technology Group, Hudson MA, USA.
Roger Nasr was responsible for most of the
newly required C-Prolog access to the VAX/VMS
system. Special thanks are due to Michael Poe
and Digital's Norma Abel, Mahendra Patel and
Robert Boers for their valuable support and
encouragement. Thanks are also due to JNICT
(Junta Nacional de Investigagao Cientifica e
Tecnoldgica, Portugal) for their financial
support, to Luls Monteiro for his comments and
Distributed Logic work, and to José Cardoso e
Cunha, Pedro Medeiros and Joaquim Nunes for
subsequent improvements to the implementation.

REFERENCES

Bruynooghe,M., Pereira,L.M.
Deduction revision by intelligent
backtracking, in "Implementations of Prolog”

J.Campbell ed., Ellis Horwood 1984.

Furukawa,K., Nitta,K., Matsumoto,Y.

Prolog interpreter based on concurrent
programming, Proc. 1st Int. Logic
Programming Conf., Marseille 1982.

Kahn,K.M. A primitive for the control of
logic programs, Int. Symp. on Logic
Programming, Atlantic City 1984.

Monteiro,L. A proposal for distributed
programming in logic, in "Implementations of
Prolog"” J.Campbell ed., Ellis Horwood 1984.

Monteiro, L. Uma ldogica para processos
distribuildos, Ph.D. thesis, Dept.
Informatica, Universidade Nova de Lisboa,
1983.

Monteiro,L. An extension to Horn clause logic
allowing the definition of concurrent
processes. in "Formalization of programming
concepts”, Lecture Notes in Computer Science
no.107, 1981.

Monteiro,L. A Horn-clause 1like 1logic for
specifying concurrency, Proc. 1lst Int. Logic
Programming Conf., Marseille 1982.

Monteiro,L. A small interpreter for
distributed logic, Logic Programming
Newsletter 3, 1982,

Monteiro,L. A new proposal for concurrent
programming in logic, Logic Programming
Newsletter 1, 1981.

Pereira,L.M. Rational debugging of logic
programs, Submitted for publication, 1984.

Shapiro,E. A subset of concurrent Prolog and
its interpreter, ICOT Technical report TR-003,
1983.

Shapiro,E., Takeuchi,A.

Object-oriented programming in Concurrent
Prolog, New Generation Computing vol.l, no.z2,
1983.

