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Abstract  

We present Delta Prolog, a distributed logic programming language that extends Prolog 
to include AND-parallelism (in a single processor or across a network of processors), inter- 
process communication via message passing with two-way pattern matching, interprocess 
synchronization with simultaneous message passing, and distributed backtracking among a 
family of processes. The extension is achieved, at the language level, by just two additional 
types of goals - -  events and splits. The implementation is written part in Prolog and part 
in C, with a small number of core primitives, to help portability. It is still experimental and 
expected to evolve. In this work we present the language's distinguishing features, describe 
i ts  semantics, exhibit programs and analyse their behaviour, examine the implementation, 
and mention conclusions, advantages of the approach and the next developments. 

1 Summary  of language concepts  

Delta Prolog extends Prolog, with the following concepts [cf. LM83, LMP84] : 

1- Families of processes are defined using the operators "." and " / / ' ,  for sequential and 
parallel composition of goals. "//" is defined as a right associative operator, a / / b / / c  
meaning a / / ( b / / c ) ,  and executed as a binary Prolog goal -- the split. 

2- Process comuniration and synchronization is supported through event goals, a construct 
based on the Distributed Logic notion of event. 

3- The computation rule uses the following mechanisms : 

3.1- explicit AND-parallelism "/ /"  and the sequentially constraint for goal activation, with 
a . b / / c  ,d meaning a. ( b / / c )  ,d and left to right goal selection within a clause body. 
3.2- interprocess synchronization and communication achieved by executing event goals. 
3.3- the search rule, at present, is based on sequential search and backtracking within each 
process computation, using a global control strategy with distributed backtracking when 
a "family of processes" is involved. 

4- a program without event or split goals is a Prolog program. 

2 P rogramming  model  defined by the language 

2.1 Pa ra l l e l i sm 

A distributed Delta Prolog program is a set of clauses with usual Prolog syntax, plus the 
parallel execution of goals that may communicate through events. 
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The  p rog ramming  model  assumes the  user is responsible  for exploit ing the  po ten t i a l  pa- 
ral lel ism tha t  may exist  in each specific problem.  W h e n  using G1//G2, goals GJ. and  (]2 are 
ac t iva ted  in parallel ,  st i l l  mean ing  a conjunc t ion ,  the  paral lel  composi t ion succeeding only  
if b o t h  G1 and  G2 succeed,  wi th  compat ib le  bindings.  If the  bindings are not  compa t ib l e  
the following procedure  takes place: G2 ini t ia tes  back t rack ing  and  G1 awaits  for the  next  
solution.  If no more solut ions  for G2 are found,  G1 back t racks  and G2 is re launched.  If no 
compat ib le  solut ions are found the split  goal G1//G2 fails. W h e n  there occurs  back t rack ing  
into a split  goal af ter  it has  solved, the  same above p rocedure  applies. 

If a p rog ram uses no event  goals, it reduces to an  o rd ina ry  Prolog p rog ram plus " / / "  
meaning  a conjunc t ion ,  a l though  implying parallel  execut ion  of goals. No d i s t r ibu ted  
backt racking  occurs then ,  paralleled processes behav ing  as if serialized when  back t rack ing  
reaches a split  goal. 

2.2 P r o c e s s  c o m m u n i c a t i o n  t h r o u g h  e v e n t s  

2 .2 .1  S y n c h r o n o u s  e v e n t  g o a l s  

Events  are in t roduced  in Prolog by the  use of "event goals".  Synchronous  ~event goa[s" 
[LMP84] have the form Terml ! Name : Condl or Term2 ? Name : Cond2 wi th  " !"  and  
"?" meaning  complemen ta ry  par ts  of the  event  Name and  being binary  predica te  symbols .  
When  no condi t ion  is needed they can reduce to Term1 ! Name and Term2 ? ~ame. 

Synchronous  communica t i on  is b inary  and  each process con t r ibu tes  with  its c o m p l e m e n t a r y  
pa r t  to the event.  Two processes communica t ing  via some event  EV mus t  have  the  goals : 

P r o c e s s  1 P r o c e s s  2 
Terml ! EV : Condl Term2 ? EV : Cond2 

and  they bo th  solve iff Terml and Term2 match ,  and  condi t ions  Condl and  Cond2 are 
satisfied locally to each process, wi th  event EV succeeding.  For a sucessfull synchronous  
event,  the following mus t  hold: 

1- in the family of processes a pair  of processes must  t ry  the  event ; 
2- the two "complementa ry"  par ts  of the  event  (i.e. " !"  and  " ? ' )  mus t  be present  ; 
3- the  terms presented by the  pair mus t  unify ; 
4- in case the  te rms unify, the  condi t ions  mus t  solve (local to each process). 

The  absence of condi t ions  means they are true. When  one process first a t t e m p t s  the  event,  
it waits unti l  its p a r t n e r  is ready to engage in the event.  Dis t r ibu ted  back t rack ing  can s t a r t  
for one of two reasons,  be  discussed later: 

1- two complemen ta ry  event goals are reached, bu t  the  event may not  occur  (because 
unification failed or some of the condi t ions are not satisfied) 
2- one process backt racks  to an event t ha t  has already succeeded in the  pas t  

2 .2 .2  A s y n c h r o n o u s  e v e n t  g o a l s  

If synchronici ty  is not  required,  Delta  Prolog provides addi t iona l  complemen ta ry  events ,  
T^^E and T??E, where T^^E does not wait  for T??E, bu t  not  vice-versa. The  semant ics  
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of these a synchronous  events  is defined in a way comparab le ,  respectively,  to the  one 
for "wri te" and  "read" in i /o  s t reams.  No special  backt racking  applies to event  goals of 
this  type. Using this event  type, the  user  may impose  synchronic i ty  w i t h o u t  d i s t r i bu t ed  
back t rack ing  s imply by defining o ther  event  type  clauses such as (E'  and  E ' '  are n a m e  
var ian ts  of E): 

T !* E : -  T ^" E ' .  T ?? E ' ' .  
T ?* E : -  T ?? E ' .  T ^^ E ' ' .  

2 .3  O p e r a t i o n a l  s e m a n t i c s  o f  D e l t a  P r o l o g  

We examine  now the  forward  and  backward  componen t s  of the  opera t iona l  semant ics .  Like 
the  declara t ive  semant ics ,  the  opera t iona l  semant ics  ex tends  t ha t  of Prolog to account  for 
the two new types of goals, events and  splits.  The  basic principles t h a t  govern it are: 

1- There  is defined a to ta l  order  among each family tree of Delta Prolog processes descen- 

dants  from an initial root  Del ta  Prolog process,  as follows: (a )  the  root  process is the  first 
in the order  (b )  in a split  goal a / / b ,  the  left a rgumen t  goal execution will cont inue  the  
process where the split  goal is activat ~d, and  the r ight  a rgumen t  goal will execute  in a new 
spawned Del ta  Prolog process, inser ted immedia te ly  to the  r ight  of the spawning  one in 
the to ta l  order  (c) a process is removed from the to ta l  order  when its spawning  split  goal 
falls. Wi th in  each process forward execut ion is as in Prolog. 

2- For each root  top goal, we want  an exhaus t ive  search for solut ions to take place. In Del ta  
Prolog, backt racking  follows Prolog's  wi th in  each process. When  back t rack ing  reaches 
a split  goal or a synchronous  event between processes in the same family, d i s t r i bu t ed  
backt racking  is sparked off, disciplined by the rules in a subsequent  section,  which  require  
the to ta l  order  defined above. 

3- Each process may communica te  t h r ough  synchronous  events wi th  any o the r  process 
in the same family, save itself; the d i s t r ibu ted  backt racking  discipline (cf.below) wi th in  a 
family ensures  completeness  of search except  for loops and  deadlocks.  

4- A synchro~ious event  ~ame may Not be used by more  then two processes of the  same  
family, o therwise  completeness  is not  gua ran teed  by the  search strategy.  (If mul t ip le  con- 
sumers  or producers  for some term are desired, asynchronous  events  or a commun ica t i ons  
manage r  can be used.) 

5- Each process may communica te  wi th  processes from different families t h r o u g h  syn- 
chronous  events;  no d i s t r ibu ted  backt racking  discipline is imposed then because no inter-  
p re ta t ion  of logical con junc t ion  is assumed regarding families of different roots.  Such event  

names mus t  not  then be used in the same family, for the  sake of completeness .  

6- Each process may communica te  t h rough  asynchronous  events  witb  any o the r  process,  
including itself; again, no d is t r ibu ted  backt racking  discipline applies in t h a t  case. 

7- Events  are atomic and  ins tan taneous .  No synchronous  events may  appea r  in the  condi-  
t ions of an event.  Condi t ions  are seen as an  extension to the  unif icat ion be tween  the  two 
event terms,  and  thus  allow expression of addi t ional  cons t ra in t s  on those terms.  Conse- 
quent ly condi t ions  are allowed to solve once only or not  at  all. 
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3 Q u i c k  s o r t  e x a m p l e  

This is an example of dynamic spawning of goals (where no events are used). 
lists are used common to both goals in the split (parti t ion is defined as usual): 

Difference 

quicksort(Unsorted,Sorted) :- qsort(Unsorted.Sorted-[]). 

qsort([AIUnsorted],Sorted-L) :- 

partition(Unsorted. A.Smaller. Larger). 

qsort(Smaller.Sorted-[AISortedlarger])// 

qsort(Larger,Sortedlarger-L). 

qsort([],L-L). 

4 D i s t r i b u t e d  b a c k t r a c k i n g  

When introducing the parallel composition of goals in Delta Prolog, and further requiring 
that  it read like a conjuntive goal, an option must be made about  the following point : 
should G1//G2 be able to perform an exhaustive search of the solutions space of goals G1 
and G2, the same way ProIog does for G1 ,G2 ? (we defer this discussion till later). 

When both processes part icipat ing in an event move forward in their (sequential) compu- 
tations, and later on one of them backtracks to its event goal, what  should happen ? The 
process simply backtracks past  that  point without  warning its par tner  ; or a well-defined 
strategy controls the global evolution of the concurrent processes, through distr ibuted 
backtracking. The first option was taken in the first version as described in [LMP84]. 
It is the easiest to implement,  and gives the user full responsability for the control of 
the concurrent evolution of the processes. Before seeing the general control strategy for 
multiple processes used in the current version, let us see a simple example: 

a(X) :- aa(X) , t(X) ! ev. and an(1), bb(i). 

b(X) :- bb(X) , t(X) ? ev. aa(2), bb(2). 

Let the top goal be a ( X ) / / b ( Y )  and let us follow its step by step execution. 

1 ) Root process Pl  at the split goal launches P2 to solve b(Y) and itself solves a(X) 
2 )  P1 s o l v e s a a ( 1 ) , t h e n  tries t ( 1 )  ! e v a n d P 2 s o l v e s b b ( i ) ,  then tries t ( 1 )  ? ev 
3 and 3') event , v  succeeds with P1 solving t ( t )  ! ev and P2 solving t ( 1 )  ? ev 
4 ) the top goal solves with a ( 1 ) / / b ( t )  
5 ) If another solution is sought the backtracking starts; as P2 is on the right, it 's its 
responsability to find an al ternat ive to the previous event; so P2 backtracks to bb(Y) and 
P1 retries t ( t )  ! ev 
6') P2 solves bb(2)  and proceeds to the event goal t ( 2 )  ? ev 
7 and 7') The event can not succeed since the terms do not unify 
8 ) As Pl is on the left, it waits on the event for an al ternat ive and P2 backtracks again 
9') P2 fails its top goal b(Y). As Pt  is waiting for an event, P l  backtracks from t ( 1 )  ! ev  
and P2 restarts its top goal anew. 
10 and 10') P1 backtracks, solves aa (2 ) ,  tries t ( 2 )  ! ev. P2 solves b b ( t ) ,  tries t ( 1 )  ? ev  
11 and 11') The event cannot succeed since the terms do not unify 
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12 ) Again, Pl  waits  a t  t ( 2 )  ! ev and  P2 back t racks  
13') P2 solves b b ( 2 )  in backtracking,  then  tries t ( 2 )  ? ev  
14 and  14') Event  ev succeeds wi th  Pl  solving t ( 2 )  ! ev and  P2 solving t ( 2 )  ? ev  
15 ) The  top goal solves wi th  a ( 2 ) / / b ( 2 ) .  
16 ) If yet a n o t h e r  solution is required P2 back t racks  to bb(Y) and  Pl  retr ies t ( 2 )  ! ev  
17') P2 fails top goal b(Y);  as before, it r es ta r t s  anew and Pl  back t racks  f rom t ( 2 )  ! ev  
18 ) Pl  fails a (X) ,  then  fails the  top goal. 

4 .1  T h e  r u l e s  o f  d i s t r i b u t e d  b a c k t r a c k i n g  

W h e n  a process fails in the  course of a normal  compu ta t i on ,  it s t a r t s  backt rack ing .  If 
it reaches a synchronous  event  in backt racking,  the  event mus t  be undone ,  and  for th is  
reason the o the r  process pa r t i c ipa t ing  in the  event  mus t  j u m p  back to t h a t  event  while  
undoing  all the  subsequen t  compu ta t i on .  The  p r ob l em of d i s t r ibu ted  back t r ack ing  is t h a t  
of guaran tee ing  the  completeness  of the  search space of all processes,  so t h a t  possible  
solut ions are not  passed over unnot iced.  The  ma in  decision to be taken,  then ,  concerns  
the s t ra tegy of recovering from an undone  event  (any o ther  goal be ing  local to  a single 
process, its backt racking  is governed by the  under ly ing  Prolog in te rpre te r ) .  Th i s  only 
applies to synchronous  events between two processes in the same family, i.e. w i th  the  same  
root  ancestor .  W h e n  events are asynchronous ,  or synchronous  between events  in different  
families, no d i s t r ibu ted  backt racking  discipline is imposed (i.e. such goals in a process  are 
backtracked over,  j u s t  like any o ther  goal). T he  reason we make the  d is t inc t ion  is t h a t  we 

in terpre t  a family of processes as solving a logical conjunc t ion  of goals. Processes no t  in the  
same family are not  necessarily in te rpre ted  as pa r t i c ipa t ing  in a logical con junc t ion .  One  
immedia te  possible  extension is to allow for syntac t ica l ly  d is t inguished synchronous  events  
to which no d i s t r ibu ted  backt racking  discipline is appl ied,  whe the r  or no t  the  p a r t i c i p a t i n g  
processes are in the  same family. This  will allow for more efficiency when  so desired,  as 
there  will be no d i s t r ibu ted  back t rack ing  overheads  in t ha t  case, nor  the  need to use the  
"cut" to cur ta i l  it. 

A synchronous  event  is the jo in t  resolut ion of two complemen ta ry  event  goals in d i s t inc t  
processes. To undo  the event,  one of the  event goals mus t  be re t r ied (i.e. l aunched  in the  
same condi t ions  as in the last  t ime),  and  the  o the r  one must  fail, giving rise to back t r ack ing  
in the  cor responding  process. The  problem is then  which goal is re t r ied and  which  one 
fails. There  is a subs id iary  problem,  related to the  fact tha t ,  when  a process j u m p s  back 

to a past  event  and  undoes the  compu ta t i on  thencefrom,  it may in pa r t i cu la r  j u m p  over 
(undo) some o the r  events,  w i th  consequences to the  in tervening  processes. In the  sequel  we 
establ ish an  overall  d i s t r ibu ted  backt racking s t r a t egy  t ha t  re ta ins  comple teness  of search,  
except for deadlocks and  non - t e rmina t ing  computa t ions .  We d i s t inguish  th ree  execu t ion  
modes  of Del ta  Prolog programs:  forward execut ion,  backt racking  and  j u m p i n g  back.  
Forward execut ion has been explained before at  some length. We concen t ra t e  now on the  
descript ion of backt racking and  j u m p i n g  back. We recall here some basic pr inciples:  

1- All processes exist ing at  any one t ime have a unique  root  ances tor  process.  
2-  There  is defined a total  order  among  all processes with  the  same root  which  are act ive 
at  any momen t .  We refer to this  order  as the  left-r ight  order.  
3- Any synchronous  event name  is shared  by only two dis t inct  processes (i.e. events  are 
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necessarily binary and with the same partner;  subsequent research will delve into the 
problem of allowing other  event types). 

The  general rule for undoing an event, to be explained in more detail  below, is that  the 
event goal in the left process is retried and the event goal in the right process fails. A 
similar lef t / r ight-based rule will be used for jumping  back. To simplify the presentat ion,  
we assume there are no "cuts" in the program. The effect of the "cut" on dis t r ibuted 
backtracking will be discussed at the end of the section on jumping  back. 

4 .1 .1  B a c k t r a c k i n g  

What  happens if process P a t tempts  goal g and fails (we consider only synchronous events 
in one family): 

1- If g is a non-event goal, P backtrackings controlled by the underlying interpreter.  
2- If g is an event goal, let Q be the other  process trying to part icipate  in the event. Of P 
and Q, the left process retries its event goal and becomes a waiting process, while the right 
process backtracks in search of communicat ion alternatives (both must solve for the AND 
to succeed). 

We now describe the backtracking procedure. Suppose a process P starts backtracking, 
either because some ordinary goal in P has failed, or because P is searching for communi-  
cation alternatives with a waiting process Q. It is important  to differentiate between the 
two reasons, since the first concerns the process P alone, while the second involves another  
process 0 waiting to communicate  with P. We shall say respectively that  P backtracks freely 
or backtracks to satisfy a request from O. 

While backtracking is governed by the underlying Prolog interpreter,  two cases may arise 
which need added control: backtracking eventually reaches an event,  or process P fails. Let 
us analyse the two cases in turn. We start  with the first one, viz. when backtracking of P 
reaches an event. Let R be the other process participating in that  event. We distinguish 
two subcases, depending on whether P is backtracking freely or to satisfy a request from 
Q. (The reader may find it useful to sketch on paper the situations that  follow. On a first 
reading he may assume there are only two processes, and read items 1 and 2.2 below, 
skipping the other subcases of 2 and the section on jumping back.) 

1- If P is backtracking freely, R jumps back to the corresponding event goa l  (The j u m p  
back procedure will be described in the next section; if P and P~ are the only processes, 
however, P~'s jumping  back consists simply in undoing all the computa t ion  from the P-R 
event onwards.) Of P and R, the left process retries its event goal, and the right process 
backtracks beyond the event goal and tries to satisfy the request from the left process. 

2- If P is trying to satisfy a request from Q, however, then Q must be to the left of P. Four 
cases may arise, depending on the relative lef t / r ight  position of P~ with respect to Q and P: 

2.1-  If R is to the left of Q then Q fails the waiting event goal and starts  to backtrack freely, 
while P restarts anew at the goal immediately after the P-R event. The reason for this 
choice is the following. P is not able to satisfy Q's request unless the P-R event is undone. 
However, since R is to the left of Q, the P-R event should not be undone before all search 
possibilities to its right have been exhausted. Therefore, the only possibility left is for Q 
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to bac t rack  freely f rom the  P-Q event  and  to re launch P anew after  the  P-R event ,  so t h a t  
for o ther  q a l t e rna t ives  all P a l te rna t ives  af ter  P-R are available.  

2.2-  If g--Q we conc lude  t h a t  P has not  been able to satisfy Q's request  in the  con tex t  
es tabl i shed  by the  previous communica t i on  between P and  Q. Ra the r  t h a n  undo ing  the  
new event backt racked  to by P, it is Q's t u r n  to t ry  and  make ano the r  request .  Thus  Q fails 
f rom the  event goal and  s ta r t s  backt racking  freely, while P s ta r t s  anew immedia te ly  af ter  
the  new event it back t racked  to. 

2 .3-  If R is be tween  Q and  P we have two possibili t ies:  e i ther  to undo the  event  be tween  
P and  g, or to force the  backt racking of Q. The  undo ing  of the  P-R event  depends  on  
the  possible consequences  of g 's j u m p i n g  back to t h a t  event .  [f g 's  j u m p i n g  back is no t  
possible (see the  sect ion on j u m p i n g  back) then  Q has to backt rack  freely while P r e s t a r t s  

anew immedia te ly  af ter  the  P-R event .  Otherwise  the  P-R event  will be  undone ,  R retr ies  
the  cor responding  event  goal and  P backt racks  f rom the  event  to satisfy R's reques t .  

2 .4-  The  case in which R is to the  r ight  of P is s imilar  to the  previous  one, except  t h a t ,  when  
the event  P-R has  to be undone,  P retr ies the cor responding  event goal and  g back t racks  

from it. 

We now describe the  consequences of a top goal fai lure of process P: 

1- Assume first P was bac t racking  freely. If P is the  only process in existence then  it mus t  
be the  root  process,  and  the execut ion as a whole fails. If not ,  P is one of the  processes 
associated wi th  the  execution of a split  goal g / / h  (it does not  m a t t e r  which) ,  and  the  
immedia te  effect of P's failure is to fail the  a forement ioned  goal. 
2- If P was t ry ing  to satisfy a request  of ano the r  process Q, t hen  Q fails the  co r r e spond ing  
event  goal and backt racks  freely, and  P res tar t s  anew its top goal. 

4 .1 .2  J u m p i n g  b a c k  

We have seen t ha t  backt racking  of one process may force ano the r  process to j u m p  back 
to a given event,  undoing  all the com pu t a t i on  theacef rom.  The  c o m p u t a t i o n  t h a t  m u s t  
be undone  may compr ise  a n u m b e r  of events  wi th  still  o ther  processes, which  accordingly  
have to undo the  cor responding  computa t ions ,  and  so on. This  j u m p i n g  back p rocedure  is 

no t  always possible,  as we shall  see below. A process R first j u m p s  back in response  to a 
d e m a n d  or iginated in ano the r  process P. The  process P or ig ina t ing  the d e m a n d  may  have  
been  backt racking  freely or to satisfy a request  f rom ano the r  process Q. In any  case, the  
immedia te  reason for the  d e m a n d  is t ha t ,  in its backt racking,  P has reached an  event  wi th  
g, which consequent ly  mus t  j u m p  back to the  cor responding  event  goal whenever  possible.  
The  undoing of all the  com pu t a t i on  of g from the event  P -g  onwards  may  possibly  resul t  
in the  undoing of o ther  events,  wi th  the  cor responding  j u m p i n g  back of the  processes  
par t ic ipa t ing  in those  events,  and  so on. 

To analyse the s i tua t ion  we cons t ruc t  a j u m p  back tree wi th  the  j u m p i n g  back processes 
as follows. The  root  of the  tree is labeled with the  P - g  event.  For each process $ which  
communica ted  wi th  g af ter  the  P -g  event  (if any),  t he re  is a son of the  root  labeled by  the  
earliest  g-S event  which occurred after the  P -g  event.  The  procedure  i tera tes  for the  sons 
of the  root,  and  so on. A node labelled by X-Y will be called a j u m p  back node for process  
¥. The  meaning  of such a node is tha t  process X forces process Y to j u m p  back to the  X-Y 
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event .  T h e  purpose  of t he  j u m p  back t ree  is to centra l ize  all the  in fo rmat ion  concern ing  
the  processes which have to j u m p  back. (This  is needed only to simplify the  p resen ta t ion ;  
the  imp lemen ta t ion  of the  j u m p i n g  back procedure  needs not  cons t ruc t  the  t ree  explicitly.) 
W h a t  if some process Z has  two j u m p  back nodes X-Z, Y-Z ? (Note tha t ,  by the  cons t ruc t ion  
of the  j u m p  back tree,  X and  Y are d i s t inc t  processes).  As Z par t i c ipa ted  in b o t h  events,  
one was executed before the  o ther  in Z's compu ta t i on ,  say X-Z was executed  before Y-Z. 

This  fact has  two consequences.  Firs t ,  X-Z does not  occur in the sub- t ree  roo ted  at  Y-Z 
( the reason is t ha t ,  as each event in the  tree was executed before its sons,  by t r ans i t iv i ty  
it was executed before all its successors). Second, the  j u m p  back in format ion  con ta ined  in 
the  sub- t ree  rooted at  Y-Z (viz. the  processes which have to j u m p  back due to the  fact 
t h a t  Z j u m p s  back at  least to the event  Y-Z) is a l ready con ta ined  in the  sub t r ee  rooted  at  
X-Z. Since anyway Z has to j u m p  back at  least to the  event  X-Z, the in fo rmat ion  recorded 
by the  sub- t ree  rooted at  Y-Z is r e d u n d a n t ,  and  so this  sub- t ree  may be dele ted f rom the  
j u m p  back tree. Thus ,  given all j u m p  back nodes for a process, the  sub- t rees  rooted  at 
all bu t  the  one cor responding  to the  earl iest  event  may be discarded,  since no relevant  
in format ion  is lost. Thus  each process is left wi th  a unique j u m p  back node.  We still call 
j u m p  back tree to this  modified tree. 

If P has  been backt racking  freely, the  j u m p i n g  back is always possible, while if P has been 
backt racking  to satisfy a request  from Q it is not possible if Q or some process  to the  left 
of Q has  a j u m p  back node.  The  reason for the  la t ter  case is t h a t  if P is not  able to satisfy 
a request  f rom Q wi thou t  interfering wi th  Q itself or the  processes to the  left of Q, then  
Q's request  can not  be satisfied at  all - -  otherwise some events  would be u n d o n e  prior  to 
the  exhaus t ion  of all search possibili t ies to thei r  r ight.  The  appropr ia te  measures  to be 
taken  in this  s i tua t ion  have been descr ibed in the  previous backt racking  sect ion.  When  
the  second case is possible,  a single procedure  applies to b o t h  cases, to be descr ibed  now. 
W h a t  happens  to R has  been spelled out  in the  backt racking  section. We now proceed to 

the  sons of the  root ,  to the sons of the  sons, and  so on. Consider  an a r b i t r a r y  j u m p  back 
node S-T for process T in the j u m p  back tree. We dis t inguish  two cases, depend ing  on 
whe the r  S is to the  left or to the r ight  of T. 

1- If S is to the left of T, T res tar ts  anew immedia te ly  after  the first event  preceeding the 
S-T event,  or, in case such an  event does not  exist,  T res ta r t s  anew at  its top goal. The  

reason for this  choice is to make avai lable  all T a l te rna t ives  for c o m m u n i c a t i o n  when  S 
tries la ter  to communica te  with  T ( r emember  t ha t  a r ight  process has, by convent ion ,  the 
responsabi l i ty  of supply ing  a left process wi th  communica t ion  a l ternat ives) .  
2- If S is to the r ight  of T, T retries the S-T event.  (This t ime, T waits for S to supply  it 
wi th  the  communica t ion  al ternat ives.)  

The  effect of the "cut" on backt racking  is as follows. Suppose in the course of back t rack ing  
process P reaches a "cut" .  The  desired behaviour  is exactly as if an imag ina ry  leftmost 
process had  backtracked to an imaginary  event jus t  before the "cut" ,  therefore  provoking 
a j u m p i n g  back of P to t ha t  event. 

4 .2  O r d e r e d  p e r m u t a t i o n  s o r t  e x a m p l e  o f  d i s t r i b u t e d  b a c k t r a c k i n g  

Two processes coopera te  to sort  a list us ing d is t r ibu ted  backtracking.  One process  (perra) 
makes successive pe rmuta t i ons  of the list sending each element ,  as they became  available, 
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to the  o the r  process (ord) ,  which tests  t h e m  wi th  regard  to order .  As soon as the  o rder  is 
v iola ted backt racking  s ta r t s ,  so t ha t  a p e r m u t a t i o n  does not  have to be comple ted  before 

it is rejected. 

sort(L,S) :- perm(L,S) / /  ord(S). (st) 

perm([].[]) :- [] ! ev. (pt) 

perm([H[T],[EJS]) :- choose(E.[HJT].R). E ! ev. perm(R.S). (p2) 

choose(H,[HIT],T). 
c h o o s e ( X , [ H J T ] . [ H J L ] )  : -  c h o o s e ( X . T . L ) .  

(p3)  
(p4) 

The  o r d  process will receive element  by e lement ,  admi t ing  t h e m  only if they are ordered.  

ord(S) :- Y ? eV : (number(Y) ). ord([Y],S). (oi) 

ord([]) :- Y ? ev : ( Y == [] ). (02) 

ord(L,S) :- Y ? ev : (number(Y), admit(Y.L.NL) ), ord(NL.S). (03) 

ord(S.S) :- Y ? ev : ( Y == [] ). (o4) 

admit (Y , [H [ T] , [H I R] ) :- admit(Y,T,R). 

admit(Y.[E].[E,Y]) :- Y >= E. 

Note t ha t  we could j u s t  as well have s o r t ( L . S )  : -  o r d ( S )  / /  p e r m ( L . S ) .  

Consider  the  top goal for s i :  s o r t  ( [ 3 , 1 . 2 ]  , S) ,  where S will be come [ 1 . 2 , 3 ] .  

0) The  s o r t (  [ 3 , 1 , 2 ]  .S) matches  s l  ; next  the  split  goal is act ivated.  

1 ) p e r m ( [ 3 , 1 , 2 ]  .S) ma tches  p2 and  3 is chosen as the  first e lement  to send.  
1') o r d ( S )  matches  o l  and  waits at the  event  goal. 

2 ) perm solves event 3 ! ev, then recurses wi th  p e r m ( [ i , 2 ]  .S) .  
2') o rd  solves event 3 ? ev  : number (3)  t hen  recurses wi th  oral( [3] .S) .  

The  event has succeeded wi th  the  exchange of the  n u m b e r  3. 

3 ) p e r m ( [ i , 2 ]  .S) ma tches  p2, chooses 1, then  tries the event  1 ! ev. 
3') o r d ( [ 3 ]  .S) matches  03 and  tries Y ? ev : number (Y) ,  a d m i t ( Y ,  [3] .NL). 

4 and  4') The  event fails as 1 is not admi t ed  to the list [3] .  

5 ) perm is the  left process so it waits t ry ing the  event goal 1 ! ev. 
5') As o rd  is the process on the right,  it s t a r t s  backtracking,  t rying to find an  a l t e rna t ive  
to the  event.  

6') o r d ( [ 3 ]  .S) matches  now 04, t rying event  goal Y ? ev : Y==[]. 

7 and  7') The  event fails again  in the o rd ' s  side because 1 == [] fails. 

8 ) perm stays t rying 1 ! ev  in clause p2. 
8') o rd  has no a l te rna t ives  for o r d (  [3] ,S) ,  and  fails to the  event  goal where  it received 

the  n u m b e r  3, in clause o l .  

9 and  9') o rd  has no way to solve the event goal, so i t 's  perm's  t u rn  to find an a l te rna t ive .  
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10 ) perm s ta r t s  backt racking  from 1 ! ev. 
10') o rd  s t a r t s  anew after  the  event 3 7 ev  : n u m b e r ( 3 ) .  

11 ) perm chooses 2 and  tries 2 ! e v .  

11') again o r d (  [3] ,S) matches  03 and  tries Y ? ev  : number (Y) ,  a d m i t ( Y .  [3] ,NL). 

12 and  12') the  event fails as 2 is not adm i t ed  in the  list [3] .  

13 ) perm is on the  left and  s tays t rying 2 ! ev. 

13') o rd  s t a r t s  backt racking  from the event  and  matches  04, t hen  tries Y ? ev. 

14 and  14') the  event fails in the o rd ' s  side because  2 == [] fails. 

15 ) perm is on  the  left and  stays t rying 2 ! ev. 
15') o rd  s t a r t s  backt racking  and as it has no more  a l ternat ives  to o r d  ( [3] . S) ,  it back t racks  
to the event  3 ? ev : n u m b e r ( 3 ) .  

16 and  16') o r d  has  no way to solve the event  goal, so it 's perm's  t u rn  to find an  a l te rna t ive .  

17 ) perm s t a r t s  bckt racking  from the  event  goal is t rying 2 ! ev. 

17') o rd  s t a r t s  anew after  the  "exchange" of the  3. 

18 ) perm has no a l te rnat ives  to choose  and  fails perm( [3J .S) .  

19 and  19') As perm has no a l ternat ives ,  the  "exchange"  of the  3 must  be undone .  

20 ) perm retries 3 ! sv.  
20') o rd  s t a r t s  backt racking past  3 ? ev : n u m b e r ( 3 ) .  

21') o r d ( S )  matches  o2 and  tries Y ? ev  : Y = =  [] .  

22 and  22') event  fails as 3 == [J fails in the  o rd ' s  side. 

23 ) as o rd  has no a l te rnat ives  for the first event ,  is perm's t u rn  to s ta r t  backt racking .  
23') o r d ( S )  s t a r t s  anew, matches  o l ,  t hen  tries Y ? ev : number(Y) .  

24 ) perm choose s  1 and  tries 1 ! ev. 

25 ) perm solves 1 ! ev, then  recurses wi th  p e r m ( [ 3 , 2 ]  ,S) .  
25') o rd  solves 1 ? ev  : n u m b e r ( l ) ,  then recurses with  o r d ( [ 1 ]  ,S) .  

26 ) p e r m ( [ 3 , 2 ]  ,S) matches  p2 chooses 3 then  tries 3 ! ev. 
26') o r d ( [ 1 ] , S )  matches  o3 and  tries event  goal Y ? ev : number (Y) ,  a d m i t ( Y , [ 1 ] , N L ) .  

27 ) perm solves event goal 3 ! ev, then recurses with  p e r m ( [ 2 ]  ,S) .  
27') o rd  solves event goal 3 ? ev : n u m b e r ( 3 ) ,  a d m i t ( 3 ,  [1] , [ 1 , 3 ] ) ,  then  recurses wi th  
o r d ( [ 1 , 3 ]  ,S) .  

28 ) p e r m ( [ 2 ]  ,S) matches  p2, chooses 2, t hen  tries 2 ! ev. 
28') o r d ( [ 1 , 3 ] , S )  m a t c h e s o 3 ,  t h e n t r i e s  Y ? ev  : number (Y) ,  a d m i t ( Y , [ 1 , 3 ] , N L ) .  

29 and 29') The  event fails because the condi t ion  admit(P. .  [ 1 ,3 ]  ,NL) fails, in o rd ' s  side. 

30 ) perm is on the left and  stays trying 2 ! ev. 
30') o rd  s ta r t s  backt racking from the event  and  matches clause 04. 

31') o r d t r i e s Y  ? ev : Y==[]. 

32 and 32') Event  fails. 

33) perm is on the  left and  stays trying 2 ! ev. 
33') o rd  ini t ia tes  backt racking from the  failed event.  
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34 and 34') As o rd  has no al ternatives after the "exchange" of the 3 perm must try to find 
an al ternat ive after the "exchange" of the number  3. 

35 ) penn starts backtracking past 2 ! ev. 
35') o rd  starts anew after receiving 3, matches 03 and waits at the event. 

36 ) perm has no further numbers to choose, fails perm( [2] .S) reaching 3 ! ev. 

37 ) perm is on the left and tries again 3 ! ev. 
37') ord  must undo the reception of the number  3, backtracking past  the event 3 ? ev. 

38 ) penn waits at 3 ! ev. 
38') o r d ( [ i ]  ,S) matches 04 and tries event Y ? ev : Y==[]. 

39 and 39') Event fails. 

40') o rd  backtracks past the event,  fails o r d ( [ 1 ]  .S) ,  reaching 1 ? ev. 

41 ) As o rd  has no more al ternatives after the reception of 1, perm must s tar t  backtracking 
past 3 ! ev. 
41') ord  waits for alternatives from perm. 

The "exchange" of number 3 has been undone, 

42 perm backtracks from 3 ! ev, and chooses 2, then tries 2 ! ev. 
42' o rd  is Waiting at Y ? ev  : number(Y),  admi t (Y.  [1] .NL). 

43 perm solves 2 ! ev, then recurses with penn( [3]  .S).  
43' ordsolves  2 ? ev  : number (2) ,  a d m i t ( 2 ,  [1] . [ 1 , 2 ] ) ,  then recurses with o r d ( [ 1 , 2 ]  .S 

44 perm([3]  .S) matches p2, chooses 3, then tries 3 ! ev. 
44' oral(E1.2] .S) matches o3 and tries Y ? ev : number(Y),  admi t (Y,  [1 ,2]  .NL). 

45 perm solves 3 ! ev and recurses with perm([ ]  .S).  
45' o rd  solves 3 ? ev : number (3) ,  a d m i t ( 3 . [ 1 . 2 ] . [ l . 2 , 3 ] ) ,  then recurses wi th  
o r d ( [ 1 , 2 . 3 ]  .S).  

46 ) pe rm([ ]  .S) matches p l ,  then tries [] ! ev. 
46') o r d ( [ 1 . 2 , 3 ] . S )  matches 03 then tr iesY ? ev : number(Y),  a d m i t ( Y . E 1 . 2 , 3 ] . N L ) .  

47 and 47') Event  fails because condition number( [] ) fails. 

48 ) perm is on the left and stays trying [] l ev. 
48') ord  fails the event goal and starts backtracking, matching now 04. 

49 ) perm solves [] ! ev, succeeding perm( [] . [] ). 
49') o rdso lves  [] ? e v  t [ ] = = [ ] , s u c c e e d i n g o r d ( E t . 2 . 3 ] . [ 1 . 2 . 3 ] ) .  

50 ) the call perm( [3] ,S) succeeds with perm( [3] .  [3] ). 
the call perm( [3.2]  .S) succeeds with perm( E3.2] . [2,3]  ). 
the call perm( [3. i .2] ,S) succeeds with perm( [3. t ,2] , [ 1 , 2 . 3 ]  ). 
50') the call o r d ( [ 1 . 2 ]  .S) succeeds with o r d ( [ 1 . 2 ]  , [ 1 . 2 , 3 ] ) .  
the call o r d ( [ 1 ]  .S) succeeds with o r d ( [ 1 ]  , [ 1 . 2 . 3 ] ) .  
the call o rd (S)  succeeds with o r d (  [ i  ,2 .3 ]  ). 

perm( [3 ,1 .2 ]  . S ) / l o r d ( S )  succeeds with perm( [3 ,1 .2 ]  . [ 1 , 2 , 3 ]  ) / / o r d (  [ l ,  2 ,3]  ),  then 
sort(E3,1,2] ,S) succeeds with sort( [3,1,2] , [t,2,3]). 

The same example could be written without executing the conditions in the events but after 
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them. There would be more interaction between processes because of more backtracking 
into events. Conditions on events allow decreasing the amount of interaction. 

5 I m p l e m e n t a t i o n  i s s u e s  

5.1 L a n g u a g e  e n v i r o n m e n t .  

Delta Prolog relies on the development of a prototype that runs on top of an existing Pro- 
log interpreter and operating system, and is easily integrated into different Prolog systems. 
The environment provides other tools (like debuggers, editors, and graphics all interfacing 
with Prolog), with the purpose of having an integrated logic programming environment. 
The event based communication appears to be adequate to build interfaces between het- 
erogeneous systems, allowing for instance, for distributed database access. Since the be- 
ginning we have decided that the prototypes should have most of their code written in 
Prolog, so that it is easy to modify them, experimenting with alternative solutions, and 
at the same time supporting their incremental extension; this was a high priority goal, 
to be achieved even at the expense of a decreased efficiency in the implementation. The 
current implementation of Delta Prolog is based upon the Edinburgh C Prolog interpreter, 
and consists of the following levels: a Delta Prolog layer (event goals and process dis- 
tribution), a C Prolog layer (C Prolog extended with predicates for process control and 
interprocess communication on one machine or across network), and an operating system 
layer (any multiprocessed operating system also supporting network operation (currently 
running under VAX/VMS ~-DECnet and easily ported to BSD UNIX 4.2). 

5.2 B ina ry  events  i m p l e m e n t a t i o n  

Events provide for bidirectional synchronous interprocess communication, using the uni- 
fication mechanism. In order to implement it we must have a system facility that allows 
establishment of a two-way communication channel between two unrelated processes. In 
our implementation there are a few "built-in" predicates, extending Prolog so that the 
high level protocol supporting "!" and "?" is currently written in Prolog. Further re- 
quirements are assumed for binary event implementation, namely that the above specified 
channel must be a "point-to-point" connection between two processes only, i.e. an ex- 
clusion mechanism must guarantee no third process interferes during a currently active 
event protocol. Actually, for the current Delta Prolog implementations, we use mailboxes 
under VAX/VMS and sockets under UNIX 4.2. In Delta Prolog there is no need for shared 
memory to support the communication model. The only requirement is a communication 
medium allowing message passing between processes, on the same machine or network. 

5.3 Con t ro l  s t r a t e g y  

5.3.1 Pa ra l l e l i sm 

At system level a "process" corresponds to the execution of an instance of a C Prolog 
interpreter, suitably extended to support interprocess communication and process control. 
This is an expensive way to obtain parallelism but, besides the reduction in implementation 
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effort, it eases the experimenting with distinct mechanisms for parallel goal execution. At 
the language level we have parallel execution of goals, through an explicit  parallel AND 
" / / " .  Current ly Delta Prolog uses the approach of having a goal G1 solved "locally" by 
the process invoking G1//G2, while goal G2 is solved by a child process. In any case, 
the execution of G2 is performed under the control of a small  manager  (writ ten in Delta 
Prolog), which is activated from the spawned process '  input channel (where its creator 
writes a top goal), and receives and solves goals, sending solutions back, or advising that  
no more are available. 

5.3.2  D i s t r i b u t e d  backtracking 

The algori thm is based on the establ ishment of a linear order among processes, such that  
the search made by one process is dependent  on the choices made by "earlier" processes 
in the order. To record the order among processes, we have a global s t ructure ,  accessible 
to all in mutual  exclusion, which is updated  on launching a new parallel " / / "  composi t ion 
of goals, and consulted in cases of communicat ion  failure or backtracking to a previous 
communicat ion point, so that each process knows what to do without  the need for an 
overall manager.  Additionally, each process keeps local information on the event goal 
invocation numbers and process identifications for all its communicat ions  that  proviously 
took place. The  following system facilities must be provided : 

1- a mechanism for asynchronously interrupting a Prolog process, including the suppor t  
for interrupt handling, inside each Prolog process. 
2- mechanisms for backtracking control, local to each Prolog process. 

Point 1 is dealt with a built-in predicate s e n d i n t e r r u p t  ( p r o c e s s  , t e rm) ,  which interrupts  
a Prolog process, and additionally sends it a Prolog term, that  the dest inat ion process may 
read on receiving the interrupt. The coherence of the Prolog computa t ion  is preserved by 
having the interrupt  being handled at well defined points within the Prolog interpreter .  
On catching an interrupt the C code activates a predefined goal that  is responsible for 
the actual interrupt  handling, the handler being wri t ten in Protog. In our  system, a 
process reads a term from a communicat ion channel dedicated to interrupt  control,  and 
proceeds depending on the term received. Current ly  this term usually makes the process 
consider backtracking, but other possibilities are open. Point 2 is supported by the built- in 
predicates : goa lno(N)  returns the invocation number for the current  goal (i.e. itself) ; 
r e t r y ( N )  recommences the execution at the goal whose invocation number  is N, undoing 
all until that  point. 

6 C u r r e n t  w o r k  

We are experimenting with a choice operator  ":  :" [HOARE85], providing for non-detercninis 
in the selection of a goal expression among several alternatives.  The first goal in each alter- 
native is an event goal. A process executing this construct  waits until one of these events 
succeeds . For all purposes the al ternat ive thus selected replaces the choice construct  text  
in the program; e.g. a buffer process is: 
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b u f f e r ( [ ] )  : -  
buf fe r ( [HIT])  :-  

X ? pu t .  b u f f e r ( i X ] ) .  
H ? ge t ,  buf fe r (T)  

::  X ? pu t .  append([HIT],[X].NB), buffer(NB).  

Other current work relates to the following topics: 

1- Porting Delta Prolog to Unix, installing it in heterogeneous computer networks and 
augmenting its efficiency at bottlenecks, as well as defining a Delta Prolog abstract machine 
and portability conditions to other Prologs. 
2- Experience with large programs, different application areas and programming styles 
(such as object oriented) and also coupling it to logic programming environments and tools. 
3- Compare it extensively with other concurrent logic programming languages. 

7 Conc lus ions  and fu ture  research 

7.1 Advan tages  of De l ta  Pro log  

Delta Prolog subsumes full Prolog augmenting its expressiveness, not limiting it. Its declar- 
ative semantics has a sound theoretical foundation and its operational semantics is well- 
defined. It already provides AND-parallelism on a single machine or across a network of 
processors and it allows interprocess communication via message passing, including two- 
way pattern matching, and thus interprocess synchronization. It includes automatic dis- 
tributed backtracking among processes communicating through synchronous events. Note 
that in the case of communication via asynchronous events there is no distributed back- 
tracking, and thus none of its overheads. 

It can be ported without much effort, and is amenable to heterogeneous network implemen- 
tation. Common memory is not a requirement but it can be made good use of if available 
(allowing unification of free variables in events, v:nd thus streams shared through events). 
Note that slot-filling is possible, as when difference lists are shared by different processes, 
even if common memory is not available (cf. quicksort example above). 

'/.2 Efficiency a n d  the  l anguage  mode l  

A suitable compromise must be found by the programmer between the complete search 
posited by synchronous events usage, and efficiency. As far as distributed backtracking 
is concerned, one must be aware that the amount of interactions between processes may 
become a limiting factor in system performance. If completeness is not a requirement, 
asynchronous events can be used, even to the extent of imposing synchronism, but without 
backtracking overheads (cf. section 2.2.2). However, distributed backtracking can be 
further improved upon using the techniques of [LMP 82, BRU84]. In order to get an 
efficient implementation one must have a dedicated run time environment, which integrates 
the described mechanisms for inter-process communication and process control. As most 
of the other Delta Prolog requirements are the same as for Prolog, a possible direction is to 
suitable extend the Warren abstract machine with the required features for Delta Prolog 
support. Another implementation issue is to get an efficient network implementation, 
which is not so difficult if one uses the strategy for handling clusters of processes on each 



83 

node (sharing memory) and communicating through message-passing between separate 
machines. Of course, the ultimate performance factor depends on the nature of the problem 
being solved, more or less amenable to distributed processing. But that issue is left to the 
programmer's responsability. 
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