
DELTA PROLOG:

A DISTRIBUTED BACKTRACKING EXTENSION WITH EVENTS

Luls Moniz Pereira, Luls Monteiro, Jos(! Cunha, Joaquim N. Aparicio

Universidade Nova de Lisboa, Portugal

Abstract

We present Delta Prolog, a distributed logic programming language that extends Prolog
to include AND-parallelism (in a single processor or across a network of processors), inter-
process communication via message passing with two-way pattern matching, interprocess
synchronization with simultaneous message passing, and distributed backtracking among a
family of processes. The extension is achieved, at the language level, by just two additional
types of goals - - events and splits. The implementation is written part in Prolog and part
in C, with a small number of core primitives, to help portability. It is still experimental and
expected to evolve. In this work we present the language's distinguishing features, describe
i ts semantics, exhibit programs and analyse their behaviour, examine the implementation,
and mention conclusions, advantages of the approach and the next developments.

1 Summary of language concepts

Delta Prolog extends Prolog, with the following concepts [cf. LM83, LMP84] :

1- Families of processes are defined using the operators "." and " / / ' , for sequential and
parallel composition of goals. "//" is defined as a right associative operator, a / / b / / c
meaning a / / (b / / c) , and executed as a binary Prolog goal -- the split.

2- Process comuniration and synchronization is supported through event goals, a construct
based on the Distributed Logic notion of event.

3- The computation rule uses the following mechanisms :

3.1- explicit AND-parallelism "/ /" and the sequentially constraint for goal activation, with
a . b / / c ,d meaning a. (b / / c) ,d and left to right goal selection within a clause body.
3.2- interprocess synchronization and communication achieved by executing event goals.
3.3- the search rule, at present, is based on sequential search and backtracking within each
process computation, using a global control strategy with distributed backtracking when
a "family of processes" is involved.

4- a program without event or split goals is a Prolog program.

2 P rogramming model defined by the language

2.1 Pa ra l l e l i sm

A distributed Delta Prolog program is a set of clauses with usual Prolog syntax, plus the
parallel execution of goals that may communicate through events.

70

The p rog ramming model assumes the user is responsible for exploit ing the po ten t i a l pa-
ral lel ism tha t may exist in each specific problem. W h e n using G1//G2, goals GJ. and (]2 are
ac t iva ted in parallel , st i l l mean ing a conjunc t ion , the paral lel composi t ion succeeding only
if b o t h G1 and G2 succeed, wi th compat ib le bindings. If the bindings are not compa t ib l e
the following procedure takes place: G2 ini t ia tes back t rack ing and G1 awaits for the next
solution. If no more solut ions for G2 are found, G1 back t racks and G2 is re launched. If no
compat ib le solut ions are found the split goal G1//G2 fails. W h e n there occurs back t rack ing
into a split goal af ter it has solved, the same above p rocedure applies.

If a p rog ram uses no event goals, it reduces to an o rd ina ry Prolog p rog ram plus " / / "
meaning a conjunc t ion , a l though implying parallel execut ion of goals. No d i s t r ibu ted
backt racking occurs then , paralleled processes behav ing as if serialized when back t rack ing
reaches a split goal.

2.2 P r o c e s s c o m m u n i c a t i o n t h r o u g h e v e n t s

2 .2 .1 S y n c h r o n o u s e v e n t g o a l s

Events are in t roduced in Prolog by the use of "event goals". Synchronous ~event goa[s"
[LMP84] have the form Terml ! Name : Condl or Term2 ? Name : Cond2 wi th " !" and
"?" meaning complemen ta ry par ts of the event Name and being binary predica te symbols .
When no condi t ion is needed they can reduce to Term1 ! Name and Term2 ? ~ame.

Synchronous communica t i on is b inary and each process con t r ibu tes with its c o m p l e m e n t a r y
pa r t to the event. Two processes communica t ing via some event EV mus t have the goals :

P r o c e s s 1 P r o c e s s 2
Terml ! EV : Condl Term2 ? EV : Cond2

and they bo th solve iff Terml and Term2 match , and condi t ions Condl and Cond2 are
satisfied locally to each process, wi th event EV succeeding. For a sucessfull synchronous
event, the following mus t hold:

1- in the family of processes a pair of processes must t ry the event ;
2- the two "complementa ry" par ts of the event (i.e. " !" and " ? ') mus t be present ;
3- the terms presented by the pair mus t unify ;
4- in case the te rms unify, the condi t ions mus t solve (local to each process).

The absence of condi t ions means they are true. When one process first a t t e m p t s the event,
it waits unti l its p a r t n e r is ready to engage in the event. Dis t r ibu ted back t rack ing can s t a r t
for one of two reasons, be discussed later:

1- two complemen ta ry event goals are reached, bu t the event may not occur (because
unification failed or some of the condi t ions are not satisfied)
2- one process backt racks to an event t ha t has already succeeded in the pas t

2 .2 .2 A s y n c h r o n o u s e v e n t g o a l s

If synchronici ty is not required, Delta Prolog provides addi t iona l complemen ta ry events ,
T^^E and T??E, where T^^E does not wait for T??E, bu t not vice-versa. The semant ics

71

of these a synchronous events is defined in a way comparab le , respectively, to the one
for "wri te" and "read" in i /o s t reams. No special backt racking applies to event goals of
this type. Using this event type, the user may impose synchronic i ty w i t h o u t d i s t r i bu t ed
back t rack ing s imply by defining o ther event type clauses such as (E' and E ' ' are n a m e
var ian ts of E):

T !* E : - T ^" E ' . T ?? E ' ' .
T ?* E : - T ?? E ' . T ^^ E ' ' .

2 .3 O p e r a t i o n a l s e m a n t i c s o f D e l t a P r o l o g

We examine now the forward and backward componen t s of the opera t iona l semant ics . Like
the declara t ive semant ics , the opera t iona l semant ics ex tends t ha t of Prolog to account for
the two new types of goals, events and splits. The basic principles t h a t govern it are:

1- There is defined a to ta l order among each family tree of Delta Prolog processes descen-

dants from an initial root Del ta Prolog process, as follows: (a) the root process is the first
in the order (b) in a split goal a / / b , the left a rgumen t goal execution will cont inue the
process where the split goal is activat ~d, and the r ight a rgumen t goal will execute in a new
spawned Del ta Prolog process, inser ted immedia te ly to the r ight of the spawning one in
the to ta l order (c) a process is removed from the to ta l order when its spawning split goal
falls. Wi th in each process forward execut ion is as in Prolog.

2- For each root top goal, we want an exhaus t ive search for solut ions to take place. In Del ta
Prolog, backt racking follows Prolog's wi th in each process. When back t rack ing reaches
a split goal or a synchronous event between processes in the same family, d i s t r i bu t ed
backt racking is sparked off, disciplined by the rules in a subsequent section, which require
the to ta l order defined above.

3- Each process may communica te t h r ough synchronous events wi th any o the r process
in the same family, save itself; the d i s t r ibu ted backt racking discipline (cf.below) wi th in a
family ensures completeness of search except for loops and deadlocks.

4- A synchro~ious event ~ame may Not be used by more then two processes of the same
family, o therwise completeness is not gua ran teed by the search strategy. (If mul t ip le con-
sumers or producers for some term are desired, asynchronous events or a commun ica t i ons
manage r can be used.)

5- Each process may communica te wi th processes from different families t h r o u g h syn-
chronous events; no d i s t r ibu ted backt racking discipline is imposed then because no inter-
p re ta t ion of logical con junc t ion is assumed regarding families of different roots. Such event

names mus t not then be used in the same family, for the sake of completeness .

6- Each process may communica te t h rough asynchronous events witb any o the r process,
including itself; again, no d is t r ibu ted backt racking discipline applies in t h a t case.

7- Events are atomic and ins tan taneous . No synchronous events may appea r in the condi-
t ions of an event. Condi t ions are seen as an extension to the unif icat ion be tween the two
event terms, and thus allow expression of addi t ional cons t ra in t s on those terms. Conse-
quent ly condi t ions are allowed to solve once only or not at all.

72

3 Q u i c k s o r t e x a m p l e

This is an example of dynamic spawning of goals (where no events are used).
lists are used common to both goals in the split (parti t ion is defined as usual):

Difference

quicksort(Unsorted,Sorted) :- qsort(Unsorted.Sorted-[]).

qsort([AIUnsorted],Sorted-L) :-

partition(Unsorted. A.Smaller. Larger).

qsort(Smaller.Sorted-[AISortedlarger])//

qsort(Larger,Sortedlarger-L).

qsort([],L-L).

4 D i s t r i b u t e d b a c k t r a c k i n g

When introducing the parallel composition of goals in Delta Prolog, and further requiring
that it read like a conjuntive goal, an option must be made about the following point :
should G1//G2 be able to perform an exhaustive search of the solutions space of goals G1
and G2, the same way ProIog does for G1 ,G2 ? (we defer this discussion till later).

When both processes part icipat ing in an event move forward in their (sequential) compu-
tations, and later on one of them backtracks to its event goal, what should happen ? The
process simply backtracks past that point without warning its par tner ; or a well-defined
strategy controls the global evolution of the concurrent processes, through distr ibuted
backtracking. The first option was taken in the first version as described in [LMP84].
It is the easiest to implement, and gives the user full responsability for the control of
the concurrent evolution of the processes. Before seeing the general control strategy for
multiple processes used in the current version, let us see a simple example:

a(X) :- aa(X) , t(X) ! ev. and an(1), bb(i).

b(X) :- bb(X) , t(X) ? ev. aa(2), bb(2).

Let the top goal be a (X) / / b (Y) and let us follow its step by step execution.

1) Root process Pl at the split goal launches P2 to solve b(Y) and itself solves a(X)
2) P1 s o l v e s a a (1) , t h e n tries t (1) ! e v a n d P 2 s o l v e s b b (i) , then tries t (1) ? ev
3 and 3') event , v succeeds with P1 solving t (t) ! ev and P2 solving t (1) ? ev
4) the top goal solves with a (1) / / b (t)
5) If another solution is sought the backtracking starts; as P2 is on the right, it 's its
responsability to find an al ternat ive to the previous event; so P2 backtracks to bb(Y) and
P1 retries t (t) ! ev
6') P2 solves bb(2) and proceeds to the event goal t (2) ? ev
7 and 7') The event can not succeed since the terms do not unify
8) As Pl is on the left, it waits on the event for an al ternat ive and P2 backtracks again
9') P2 fails its top goal b(Y). As Pt is waiting for an event, P l backtracks from t (1) ! ev
and P2 restarts its top goal anew.
10 and 10') P1 backtracks, solves aa (2) , tries t (2) ! ev. P2 solves b b (t) , tries t (1) ? ev
11 and 11') The event cannot succeed since the terms do not unify

73

12) Again, Pl waits a t t (2) ! ev and P2 back t racks
13') P2 solves b b (2) in backtracking, then tries t (2) ? ev
14 and 14') Event ev succeeds wi th Pl solving t (2) ! ev and P2 solving t (2) ? ev
15) The top goal solves wi th a (2) / / b (2) .
16) If yet a n o t h e r solution is required P2 back t racks to bb(Y) and Pl retr ies t (2) ! ev
17') P2 fails top goal b(Y); as before, it r es ta r t s anew and Pl back t racks f rom t (2) ! ev
18) Pl fails a (X) , then fails the top goal.

4 .1 T h e r u l e s o f d i s t r i b u t e d b a c k t r a c k i n g

W h e n a process fails in the course of a normal compu ta t i on , it s t a r t s backt rack ing . If
it reaches a synchronous event in backt racking, the event mus t be undone , and for th is
reason the o the r process pa r t i c ipa t ing in the event mus t j u m p back to t h a t event while
undoing all the subsequen t compu ta t i on . The p r ob l em of d i s t r ibu ted back t r ack ing is t h a t
of guaran tee ing the completeness of the search space of all processes, so t h a t possible
solut ions are not passed over unnot iced. The ma in decision to be taken, then , concerns
the s t ra tegy of recovering from an undone event (any o ther goal be ing local to a single
process, its backt racking is governed by the under ly ing Prolog in te rpre te r) . Th i s only
applies to synchronous events between two processes in the same family, i.e. w i th the same
root ancestor . W h e n events are asynchronous , or synchronous between events in different
families, no d i s t r ibu ted backt racking discipline is imposed (i.e. such goals in a process are
backtracked over, j u s t like any o ther goal). T he reason we make the d is t inc t ion is t h a t we

in terpre t a family of processes as solving a logical conjunc t ion of goals. Processes no t in the
same family are not necessarily in te rpre ted as pa r t i c ipa t ing in a logical con junc t ion . One
immedia te possible extension is to allow for syntac t ica l ly d is t inguished synchronous events
to which no d i s t r ibu ted backt racking discipline is appl ied, whe the r or no t the p a r t i c i p a t i n g
processes are in the same family. This will allow for more efficiency when so desired, as
there will be no d i s t r ibu ted back t rack ing overheads in t ha t case, nor the need to use the
"cut" to cur ta i l it.

A synchronous event is the jo in t resolut ion of two complemen ta ry event goals in d i s t inc t
processes. To undo the event, one of the event goals mus t be re t r ied (i.e. l aunched in the
same condi t ions as in the last t ime), and the o the r one must fail, giving rise to back t r ack ing
in the cor responding process. The problem is then which goal is re t r ied and which one
fails. There is a subs id iary problem, related to the fact tha t , when a process j u m p s back

to a past event and undoes the compu ta t i on thencefrom, it may in pa r t i cu la r j u m p over
(undo) some o the r events, w i th consequences to the in tervening processes. In the sequel we
establ ish an overall d i s t r ibu ted backt racking s t r a t egy t ha t re ta ins comple teness of search,
except for deadlocks and non - t e rmina t ing computa t ions . We d i s t inguish th ree execu t ion
modes of Del ta Prolog programs: forward execut ion, backt racking and j u m p i n g back.
Forward execut ion has been explained before at some length. We concen t ra t e now on the
descript ion of backt racking and j u m p i n g back. We recall here some basic pr inciples:

1- All processes exist ing at any one t ime have a unique root ances tor process.
2- There is defined a total order among all processes with the same root which are act ive
at any momen t . We refer to this order as the left-r ight order.
3- Any synchronous event name is shared by only two dis t inct processes (i.e. events are

74

necessarily binary and with the same partner; subsequent research will delve into the
problem of allowing other event types).

The general rule for undoing an event, to be explained in more detail below, is that the
event goal in the left process is retried and the event goal in the right process fails. A
similar lef t / r ight-based rule will be used for jumping back. To simplify the presentat ion,
we assume there are no "cuts" in the program. The effect of the "cut" on dis t r ibuted
backtracking will be discussed at the end of the section on jumping back.

4 .1 .1 B a c k t r a c k i n g

What happens if process P a t tempts goal g and fails (we consider only synchronous events
in one family):

1- If g is a non-event goal, P backtrackings controlled by the underlying interpreter.
2- If g is an event goal, let Q be the other process trying to part icipate in the event. Of P
and Q, the left process retries its event goal and becomes a waiting process, while the right
process backtracks in search of communicat ion alternatives (both must solve for the AND
to succeed).

We now describe the backtracking procedure. Suppose a process P starts backtracking,
either because some ordinary goal in P has failed, or because P is searching for communi-
cation alternatives with a waiting process Q. It is important to differentiate between the
two reasons, since the first concerns the process P alone, while the second involves another
process 0 waiting to communicate with P. We shall say respectively that P backtracks freely
or backtracks to satisfy a request from O.

While backtracking is governed by the underlying Prolog interpreter, two cases may arise
which need added control: backtracking eventually reaches an event, or process P fails. Let
us analyse the two cases in turn. We start with the first one, viz. when backtracking of P
reaches an event. Let R be the other process participating in that event. We distinguish
two subcases, depending on whether P is backtracking freely or to satisfy a request from
Q. (The reader may find it useful to sketch on paper the situations that follow. On a first
reading he may assume there are only two processes, and read items 1 and 2.2 below,
skipping the other subcases of 2 and the section on jumping back.)

1- If P is backtracking freely, R jumps back to the corresponding event goa l (The j u m p
back procedure will be described in the next section; if P and P~ are the only processes,
however, P~'s jumping back consists simply in undoing all the computa t ion from the P-R
event onwards.) Of P and R, the left process retries its event goal, and the right process
backtracks beyond the event goal and tries to satisfy the request from the left process.

2- If P is trying to satisfy a request from Q, however, then Q must be to the left of P. Four
cases may arise, depending on the relative lef t / r ight position of P~ with respect to Q and P:

2.1- If R is to the left of Q then Q fails the waiting event goal and starts to backtrack freely,
while P restarts anew at the goal immediately after the P-R event. The reason for this
choice is the following. P is not able to satisfy Q's request unless the P-R event is undone.
However, since R is to the left of Q, the P-R event should not be undone before all search
possibilities to its right have been exhausted. Therefore, the only possibility left is for Q

75

to bac t rack freely f rom the P-Q event and to re launch P anew after the P-R event , so t h a t
for o ther q a l t e rna t ives all P a l te rna t ives af ter P-R are available.

2.2- If g--Q we conc lude t h a t P has not been able to satisfy Q's request in the con tex t
es tabl i shed by the previous communica t i on between P and Q. Ra the r t h a n undo ing the
new event backt racked to by P, it is Q's t u r n to t ry and make ano the r request . Thus Q fails
f rom the event goal and s ta r t s backt racking freely, while P s ta r t s anew immedia te ly af ter
the new event it back t racked to.

2 .3- If R is be tween Q and P we have two possibili t ies: e i ther to undo the event be tween
P and g, or to force the backt racking of Q. The undo ing of the P-R event depends on
the possible consequences of g 's j u m p i n g back to t h a t event . [f g 's j u m p i n g back is no t
possible (see the sect ion on j u m p i n g back) then Q has to backt rack freely while P r e s t a r t s

anew immedia te ly af ter the P-R event . Otherwise the P-R event will be undone , R retr ies
the cor responding event goal and P backt racks f rom the event to satisfy R's reques t .

2 .4- The case in which R is to the r ight of P is s imilar to the previous one, except t h a t , when
the event P-R has to be undone, P retr ies the cor responding event goal and g back t racks

from it.

We now describe the consequences of a top goal fai lure of process P:

1- Assume first P was bac t racking freely. If P is the only process in existence then it mus t
be the root process, and the execut ion as a whole fails. If not , P is one of the processes
associated wi th the execution of a split goal g / / h (it does not m a t t e r which) , and the
immedia te effect of P's failure is to fail the a forement ioned goal.
2- If P was t ry ing to satisfy a request of ano the r process Q, t hen Q fails the co r r e spond ing
event goal and backt racks freely, and P res tar t s anew its top goal.

4 .1 .2 J u m p i n g b a c k

We have seen t ha t backt racking of one process may force ano the r process to j u m p back
to a given event, undoing all the com pu t a t i on theacef rom. The c o m p u t a t i o n t h a t m u s t
be undone may compr ise a n u m b e r of events wi th still o ther processes, which accordingly
have to undo the cor responding computa t ions , and so on. This j u m p i n g back p rocedure is

no t always possible, as we shall see below. A process R first j u m p s back in response to a
d e m a n d or iginated in ano the r process P. The process P or ig ina t ing the d e m a n d may have
been backt racking freely or to satisfy a request f rom ano the r process Q. In any case, the
immedia te reason for the d e m a n d is t ha t , in its backt racking, P has reached an event wi th
g, which consequent ly mus t j u m p back to the cor responding event goal whenever possible.
The undoing of all the com pu t a t i on of g from the event P -g onwards may possibly resul t
in the undoing of o ther events, wi th the cor responding j u m p i n g back of the processes
par t ic ipa t ing in those events, and so on.

To analyse the s i tua t ion we cons t ruc t a j u m p back tree wi th the j u m p i n g back processes
as follows. The root of the tree is labeled with the P - g event. For each process $ which
communica ted wi th g af ter the P -g event (if any), t he re is a son of the root labeled by the
earliest g-S event which occurred after the P -g event. The procedure i tera tes for the sons
of the root, and so on. A node labelled by X-Y will be called a j u m p back node for process
¥. The meaning of such a node is tha t process X forces process Y to j u m p back to the X-Y

76

event . T h e purpose of t he j u m p back t ree is to centra l ize all the in fo rmat ion concern ing
the processes which have to j u m p back. (This is needed only to simplify the p resen ta t ion ;
the imp lemen ta t ion of the j u m p i n g back procedure needs not cons t ruc t the t ree explicitly.)
W h a t if some process Z has two j u m p back nodes X-Z, Y-Z ? (Note tha t , by the cons t ruc t ion
of the j u m p back tree, X and Y are d i s t inc t processes). As Z par t i c ipa ted in b o t h events,
one was executed before the o ther in Z's compu ta t i on , say X-Z was executed before Y-Z.

This fact has two consequences. Firs t , X-Z does not occur in the sub- t ree roo ted at Y-Z
(the reason is t ha t , as each event in the tree was executed before its sons, by t r ans i t iv i ty
it was executed before all its successors). Second, the j u m p back in format ion con ta ined in
the sub- t ree rooted at Y-Z (viz. the processes which have to j u m p back due to the fact
t h a t Z j u m p s back at least to the event Y-Z) is a l ready con ta ined in the sub t r ee rooted at
X-Z. Since anyway Z has to j u m p back at least to the event X-Z, the in fo rmat ion recorded
by the sub- t ree rooted at Y-Z is r e d u n d a n t , and so this sub- t ree may be dele ted f rom the
j u m p back tree. Thus , given all j u m p back nodes for a process, the sub- t rees rooted at
all bu t the one cor responding to the earl iest event may be discarded, since no relevant
in format ion is lost. Thus each process is left wi th a unique j u m p back node. We still call
j u m p back tree to this modified tree.

If P has been backt racking freely, the j u m p i n g back is always possible, while if P has been
backt racking to satisfy a request from Q it is not possible if Q or some process to the left
of Q has a j u m p back node. The reason for the la t ter case is t h a t if P is not able to satisfy
a request f rom Q wi thou t interfering wi th Q itself or the processes to the left of Q, then
Q's request can not be satisfied at all - - otherwise some events would be u n d o n e prior to
the exhaus t ion of all search possibili t ies to thei r r ight. The appropr ia te measures to be
taken in this s i tua t ion have been descr ibed in the previous backt racking sect ion. When
the second case is possible, a single procedure applies to b o t h cases, to be descr ibed now.
W h a t happens to R has been spelled out in the backt racking section. We now proceed to

the sons of the root , to the sons of the sons, and so on. Consider an a r b i t r a r y j u m p back
node S-T for process T in the j u m p back tree. We dis t inguish two cases, depend ing on
whe the r S is to the left or to the r ight of T.

1- If S is to the left of T, T res tar ts anew immedia te ly after the first event preceeding the
S-T event, or, in case such an event does not exist, T res ta r t s anew at its top goal. The

reason for this choice is to make avai lable all T a l te rna t ives for c o m m u n i c a t i o n when S
tries la ter to communica te with T (r emember t ha t a r ight process has, by convent ion , the
responsabi l i ty of supply ing a left process wi th communica t ion a l ternat ives) .
2- If S is to the r ight of T, T retries the S-T event. (This t ime, T waits for S to supply it
wi th the communica t ion al ternat ives.)

The effect of the "cut" on backt racking is as follows. Suppose in the course of back t rack ing
process P reaches a "cut" . The desired behaviour is exactly as if an imag ina ry leftmost
process had backtracked to an imaginary event jus t before the "cut" , therefore provoking
a j u m p i n g back of P to t ha t event.

4 .2 O r d e r e d p e r m u t a t i o n s o r t e x a m p l e o f d i s t r i b u t e d b a c k t r a c k i n g

Two processes coopera te to sort a list us ing d is t r ibu ted backtracking. One process (perra)
makes successive pe rmuta t i ons of the list sending each element , as they became available,

77

to the o the r process (ord) , which tests t h e m wi th regard to order . As soon as the o rder is
v iola ted backt racking s ta r t s , so t ha t a p e r m u t a t i o n does not have to be comple ted before

it is rejected.

sort(L,S) :- perm(L,S) / / ord(S). (st)

perm([].[]) :- [] ! ev. (pt)

perm([H[T],[EJS]) :- choose(E.[HJT].R). E ! ev. perm(R.S). (p2)

choose(H,[HIT],T).
c h o o s e (X , [H J T] . [H J L]) : - c h o o s e (X . T . L) .

(p3)
(p4)

The o r d process will receive element by e lement , admi t ing t h e m only if they are ordered.

ord(S) :- Y ? eV : (number(Y)). ord([Y],S). (oi)

ord([]) :- Y ? ev : (Y == []). (02)

ord(L,S) :- Y ? ev : (number(Y), admit(Y.L.NL)), ord(NL.S). (03)

ord(S.S) :- Y ? ev : (Y == []). (o4)

admit (Y , [H [T] , [H I R]) :- admit(Y,T,R).

admit(Y.[E].[E,Y]) :- Y >= E.

Note t ha t we could j u s t as well have s o r t (L . S) : - o r d (S) / / p e r m (L . S) .

Consider the top goal for s i : s o r t ([3 , 1 . 2] , S) , where S will be come [1 . 2 , 3] .

0) The s o r t ([3 , 1 , 2] .S) matches s l ; next the split goal is act ivated.

1) p e r m ([3 , 1 , 2] .S) ma tches p2 and 3 is chosen as the first e lement to send.
1') o r d (S) matches o l and waits at the event goal.

2) perm solves event 3 ! ev, then recurses wi th p e r m ([i , 2] .S) .
2') o rd solves event 3 ? ev : number (3) t hen recurses wi th oral([3] .S) .

The event has succeeded wi th the exchange of the n u m b e r 3.

3) p e r m ([i , 2] .S) ma tches p2, chooses 1, then tries the event 1 ! ev.
3') o r d ([3] .S) matches 03 and tries Y ? ev : number (Y) , a d m i t (Y , [3] .NL).

4 and 4') The event fails as 1 is not admi t ed to the list [3] .

5) perm is the left process so it waits t ry ing the event goal 1 ! ev.
5') As o rd is the process on the right, it s t a r t s backtracking, t rying to find an a l t e rna t ive
to the event.

6') o r d ([3] .S) matches now 04, t rying event goal Y ? ev : Y==[].

7 and 7') The event fails again in the o rd ' s side because 1 == [] fails.

8) perm stays t rying 1 ! ev in clause p2.
8') o rd has no a l te rna t ives for o r d ([3] ,S) , and fails to the event goal where it received

the n u m b e r 3, in clause o l .

9 and 9') o rd has no way to solve the event goal, so i t 's perm's t u rn to find an a l te rna t ive .

78

10) perm s ta r t s backt racking from 1 ! ev.
10') o rd s t a r t s anew after the event 3 7 ev : n u m b e r (3) .

11) perm chooses 2 and tries 2 ! e v .

11') again o r d ([3] ,S) matches 03 and tries Y ? ev : number (Y) , a d m i t (Y . [3] ,NL).

12 and 12') the event fails as 2 is not adm i t ed in the list [3] .

13) perm is on the left and s tays t rying 2 ! ev.

13') o rd s t a r t s backt racking from the event and matches 04, t hen tries Y ? ev.

14 and 14') the event fails in the o rd ' s side because 2 == [] fails.

15) perm is on the left and stays t rying 2 ! ev.
15') o rd s t a r t s backt racking and as it has no more a l ternat ives to o r d ([3] . S) , it back t racks
to the event 3 ? ev : n u m b e r (3) .

16 and 16') o r d has no way to solve the event goal, so it 's perm's t u rn to find an a l te rna t ive .

17) perm s t a r t s bckt racking from the event goal is t rying 2 ! ev.

17') o rd s t a r t s anew after the "exchange" of the 3.

18) perm has no a l te rnat ives to choose and fails perm([3J .S) .

19 and 19') As perm has no a l ternat ives , the "exchange" of the 3 must be undone .

20) perm retries 3 ! sv.
20') o rd s t a r t s backt racking past 3 ? ev : n u m b e r (3) .

21') o r d (S) matches o2 and tries Y ? ev : Y = = [] .

22 and 22') event fails as 3 == [J fails in the o rd ' s side.

23) as o rd has no a l te rnat ives for the first event , is perm's t u rn to s ta r t backt racking .
23') o r d (S) s t a r t s anew, matches o l , t hen tries Y ? ev : number(Y) .

24) perm choose s 1 and tries 1 ! ev.

25) perm solves 1 ! ev, then recurses wi th p e r m ([3 , 2] ,S) .
25') o rd solves 1 ? ev : n u m b e r (l) , then recurses with o r d ([1] ,S) .

26) p e r m ([3 , 2] ,S) matches p2 chooses 3 then tries 3 ! ev.
26') o r d ([1] , S) matches o3 and tries event goal Y ? ev : number (Y) , a d m i t (Y , [1] , N L) .

27) perm solves event goal 3 ! ev, then recurses with p e r m ([2] ,S) .
27') o rd solves event goal 3 ? ev : n u m b e r (3) , a d m i t (3 , [1] , [1 , 3]) , then recurses wi th
o r d ([1 , 3] ,S) .

28) p e r m ([2] ,S) matches p2, chooses 2, t hen tries 2 ! ev.
28') o r d ([1 , 3] , S) m a t c h e s o 3 , t h e n t r i e s Y ? ev : number (Y) , a d m i t (Y , [1 , 3] , N L) .

29 and 29') The event fails because the condi t ion admit(P. . [1 ,3] ,NL) fails, in o rd ' s side.

30) perm is on the left and stays trying 2 ! ev.
30') o rd s ta r t s backt racking from the event and matches clause 04.

31') o r d t r i e s Y ? ev : Y==[].

32 and 32') Event fails.

33) perm is on the left and stays trying 2 ! ev.
33') o rd ini t ia tes backt racking from the failed event.

79

34 and 34') As o rd has no al ternatives after the "exchange" of the 3 perm must try to find
an al ternat ive after the "exchange" of the number 3.

35) penn starts backtracking past 2 ! ev.
35') o rd starts anew after receiving 3, matches 03 and waits at the event.

36) perm has no further numbers to choose, fails perm([2] .S) reaching 3 ! ev.

37) perm is on the left and tries again 3 ! ev.
37') ord must undo the reception of the number 3, backtracking past the event 3 ? ev.

38) penn waits at 3 ! ev.
38') o r d ([i] ,S) matches 04 and tries event Y ? ev : Y==[].

39 and 39') Event fails.

40') o rd backtracks past the event, fails o r d ([1] .S) , reaching 1 ? ev.

41) As o rd has no more al ternatives after the reception of 1, perm must s tar t backtracking
past 3 ! ev.
41') ord waits for alternatives from perm.

The "exchange" of number 3 has been undone,

42 perm backtracks from 3 ! ev, and chooses 2, then tries 2 ! ev.
42' o rd is Waiting at Y ? ev : number(Y), admi t (Y. [1] .NL).

43 perm solves 2 ! ev, then recurses with penn([3] .S).
43' ordsolves 2 ? ev : number (2) , a d m i t (2 , [1] . [1 , 2]) , then recurses with o r d ([1 , 2] .S

44 perm([3] .S) matches p2, chooses 3, then tries 3 ! ev.
44' oral(E1.2] .S) matches o3 and tries Y ? ev : number(Y), admi t (Y, [1 ,2] .NL).

45 perm solves 3 ! ev and recurses with perm([] .S).
45' o rd solves 3 ? ev : number (3) , a d m i t (3 . [1 . 2] . [l . 2 , 3]) , then recurses wi th
o r d ([1 , 2 . 3] .S).

46) pe rm([] .S) matches p l , then tries [] ! ev.
46') o r d ([1 . 2 , 3] . S) matches 03 then tr iesY ? ev : number(Y), a d m i t (Y . E 1 . 2 , 3] . N L) .

47 and 47') Event fails because condition number([]) fails.

48) perm is on the left and stays trying [] l ev.
48') ord fails the event goal and starts backtracking, matching now 04.

49) perm solves [] ! ev, succeeding perm([] . []).
49') o rdso lves [] ? e v t [] = = [] , s u c c e e d i n g o r d (E t . 2 . 3] . [1 . 2 . 3]) .

50) the call perm([3] ,S) succeeds with perm([3] . [3]).
the call perm([3.2] .S) succeeds with perm(E3.2] . [2,3]).
the call perm([3. i .2] ,S) succeeds with perm([3. t ,2] , [1 , 2 . 3]).
50') the call o r d ([1 . 2] .S) succeeds with o r d ([1 . 2] , [1 . 2 , 3]) .
the call o r d ([1] .S) succeeds with o r d ([1] , [1 . 2 . 3]) .
the call o rd (S) succeeds with o r d ([i ,2 .3]).

perm([3 ,1 .2] . S) / l o r d (S) succeeds with perm([3 ,1 .2] . [1 , 2 , 3]) / / o r d ([l , 2 ,3]), then
sort(E3,1,2] ,S) succeeds with sort([3,1,2] , [t,2,3]).

The same example could be written without executing the conditions in the events but after

80

them. There would be more interaction between processes because of more backtracking
into events. Conditions on events allow decreasing the amount of interaction.

5 I m p l e m e n t a t i o n i s s u e s

5.1 L a n g u a g e e n v i r o n m e n t .

Delta Prolog relies on the development of a prototype that runs on top of an existing Pro-
log interpreter and operating system, and is easily integrated into different Prolog systems.
The environment provides other tools (like debuggers, editors, and graphics all interfacing
with Prolog), with the purpose of having an integrated logic programming environment.
The event based communication appears to be adequate to build interfaces between het-
erogeneous systems, allowing for instance, for distributed database access. Since the be-
ginning we have decided that the prototypes should have most of their code written in
Prolog, so that it is easy to modify them, experimenting with alternative solutions, and
at the same time supporting their incremental extension; this was a high priority goal,
to be achieved even at the expense of a decreased efficiency in the implementation. The
current implementation of Delta Prolog is based upon the Edinburgh C Prolog interpreter,
and consists of the following levels: a Delta Prolog layer (event goals and process dis-
tribution), a C Prolog layer (C Prolog extended with predicates for process control and
interprocess communication on one machine or across network), and an operating system
layer (any multiprocessed operating system also supporting network operation (currently
running under VAX/VMS ~-DECnet and easily ported to BSD UNIX 4.2).

5.2 B ina ry events i m p l e m e n t a t i o n

Events provide for bidirectional synchronous interprocess communication, using the uni-
fication mechanism. In order to implement it we must have a system facility that allows
establishment of a two-way communication channel between two unrelated processes. In
our implementation there are a few "built-in" predicates, extending Prolog so that the
high level protocol supporting "!" and "?" is currently written in Prolog. Further re-
quirements are assumed for binary event implementation, namely that the above specified
channel must be a "point-to-point" connection between two processes only, i.e. an ex-
clusion mechanism must guarantee no third process interferes during a currently active
event protocol. Actually, for the current Delta Prolog implementations, we use mailboxes
under VAX/VMS and sockets under UNIX 4.2. In Delta Prolog there is no need for shared
memory to support the communication model. The only requirement is a communication
medium allowing message passing between processes, on the same machine or network.

5.3 Con t ro l s t r a t e g y

5.3.1 Pa ra l l e l i sm

At system level a "process" corresponds to the execution of an instance of a C Prolog
interpreter, suitably extended to support interprocess communication and process control.
This is an expensive way to obtain parallelism but, besides the reduction in implementation

81

effort, it eases the experimenting with distinct mechanisms for parallel goal execution. At
the language level we have parallel execution of goals, through an explicit parallel AND
" / / " . Current ly Delta Prolog uses the approach of having a goal G1 solved "locally" by
the process invoking G1//G2, while goal G2 is solved by a child process. In any case,
the execution of G2 is performed under the control of a small manager (writ ten in Delta
Prolog), which is activated from the spawned process ' input channel (where its creator
writes a top goal), and receives and solves goals, sending solutions back, or advising that
no more are available.

5.3.2 D i s t r i b u t e d backtracking

The algori thm is based on the establ ishment of a linear order among processes, such that
the search made by one process is dependent on the choices made by "earlier" processes
in the order. To record the order among processes, we have a global s t ructure , accessible
to all in mutual exclusion, which is updated on launching a new parallel " / / " composi t ion
of goals, and consulted in cases of communicat ion failure or backtracking to a previous
communicat ion point, so that each process knows what to do without the need for an
overall manager. Additionally, each process keeps local information on the event goal
invocation numbers and process identifications for all its communicat ions that proviously
took place. The following system facilities must be provided :

1- a mechanism for asynchronously interrupting a Prolog process, including the suppor t
for interrupt handling, inside each Prolog process.
2- mechanisms for backtracking control, local to each Prolog process.

Point 1 is dealt with a built-in predicate s e n d i n t e r r u p t (p r o c e s s , t e rm) , which interrupts
a Prolog process, and additionally sends it a Prolog term, that the dest inat ion process may
read on receiving the interrupt. The coherence of the Prolog computa t ion is preserved by
having the interrupt being handled at well defined points within the Prolog interpreter .
On catching an interrupt the C code activates a predefined goal that is responsible for
the actual interrupt handling, the handler being wri t ten in Protog. In our system, a
process reads a term from a communicat ion channel dedicated to interrupt control, and
proceeds depending on the term received. Current ly this term usually makes the process
consider backtracking, but other possibilities are open. Point 2 is supported by the built- in
predicates : goa lno(N) returns the invocation number for the current goal (i.e. itself) ;
r e t r y (N) recommences the execution at the goal whose invocation number is N, undoing
all until that point.

6 C u r r e n t w o r k

We are experimenting with a choice operator ": :" [HOARE85], providing for non-detercninis
in the selection of a goal expression among several alternatives. The first goal in each alter-
native is an event goal. A process executing this construct waits until one of these events
succeeds . For all purposes the al ternat ive thus selected replaces the choice construct text
in the program; e.g. a buffer process is:

82

b u f f e r ([]) : -
buf fe r ([HIT]) :-

X ? pu t . b u f f e r (i X]) .
H ? ge t , buf fe r (T)

:: X ? pu t . append([HIT],[X].NB), buffer(NB).

Other current work relates to the following topics:

1- Porting Delta Prolog to Unix, installing it in heterogeneous computer networks and
augmenting its efficiency at bottlenecks, as well as defining a Delta Prolog abstract machine
and portability conditions to other Prologs.
2- Experience with large programs, different application areas and programming styles
(such as object oriented) and also coupling it to logic programming environments and tools.
3- Compare it extensively with other concurrent logic programming languages.

7 Conc lus ions and fu ture research

7.1 Advan tages of De l ta Pro log

Delta Prolog subsumes full Prolog augmenting its expressiveness, not limiting it. Its declar-
ative semantics has a sound theoretical foundation and its operational semantics is well-
defined. It already provides AND-parallelism on a single machine or across a network of
processors and it allows interprocess communication via message passing, including two-
way pattern matching, and thus interprocess synchronization. It includes automatic dis-
tributed backtracking among processes communicating through synchronous events. Note
that in the case of communication via asynchronous events there is no distributed back-
tracking, and thus none of its overheads.

It can be ported without much effort, and is amenable to heterogeneous network implemen-
tation. Common memory is not a requirement but it can be made good use of if available
(allowing unification of free variables in events, v:nd thus streams shared through events).
Note that slot-filling is possible, as when difference lists are shared by different processes,
even if common memory is not available (cf. quicksort example above).

'/.2 Efficiency a n d the l anguage mode l

A suitable compromise must be found by the programmer between the complete search
posited by synchronous events usage, and efficiency. As far as distributed backtracking
is concerned, one must be aware that the amount of interactions between processes may
become a limiting factor in system performance. If completeness is not a requirement,
asynchronous events can be used, even to the extent of imposing synchronism, but without
backtracking overheads (cf. section 2.2.2). However, distributed backtracking can be
further improved upon using the techniques of [LMP 82, BRU84]. In order to get an
efficient implementation one must have a dedicated run time environment, which integrates
the described mechanisms for inter-process communication and process control. As most
of the other Delta Prolog requirements are the same as for Prolog, a possible direction is to
suitable extend the Warren abstract machine with the required features for Delta Prolog
support. Another implementation issue is to get an efficient network implementation,
which is not so difficult if one uses the strategy for handling clusters of processes on each

83

node (sharing memory) and communicating through message-passing between separate
machines. Of course, the ultimate performance factor depends on the nature of the problem
being solved, more or less amenable to distributed processing. But that issue is left to the
programmer's responsability.

A c k n o w l e d g e m e n t s

To JNICT and MIE in Portugal, as well as DEC for their support.

References

[BRU84] Bruynooghe, M. ; Pereira L. M., "Deduction revision through intelligent back-
tracking" in "Implementations of Prolog" (Campbell ed.) Ellis Horwood 1984
[HOARE85] Hoare, C.A.R. "Communicating sequential processes" Prentice-Hall, 1985
[JC,JNA84] Cunha, J. C. ; Aparicio, J. N., "Delta Prolog implementation: progress report
no.I", Universldade Nova de Lisboa, December 1984
[JC,JNA85] Cunha, J. C. ; Aparicio, J. N., "Delta Prolog implementation: progress report
no.2", Universidade Nova de Lisboa, July 1985
[LM83] Monteiro, L. "A proposal for distributed programming in logic", in "Implementa-
tions of Prolog" (Campbell ed.) Ellis Horwood 1984
[LMP821 Pereira M. L. ; Porto, A. "Selective Backtracking" in "Logic Programming"
(Clark, Tarnlund eds.) Academic Press 1982
[LMP84] Pereira, L. M.; Nasr, R. "Delta Protog: a distributed logic programming lan-
guage", in "Proceedings of FCGS", Tokyo, November 1984.

