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1 INTRODUCTION

The use of traditional backtracking to explore a search space top-down starts
with the initial state as the current state. Then, for each forward derivation step,
one of the operators applicable to the current state is used to derive a new
current state. This forward execution is repeated until either a solution state is
reached and success is reported, or the set of unused operators applicable to the
current state is empty. At this point, the search backtracks. The current state is
dropped, its predecessor is reinstated as the current state, and forward execution
recommences. [f backtracking beyond the initial state is required, failure to find
any more solutions is reported.

This approach does not exploit the relationships among successive states.
After reaching a failed state, the system simply returns to the previous state.
Sometimes, however, doing so cannot prevent the repetition of the same failure.
A very inefficient thrashing behaviour can result, where the system performs an
exhaustive search over a subspace which is irrelevant to the failure.

In this paper, we substantially improve the search behaviour for the case of
sequential or parallel top-down executions of Horn clause logic programs. (We
briefly indicate the extension to general theorem proving.)

To obtain this improvement, we observe that each derivation step extends
a state into a new state. A state can be considered as a set of derivation steps.
Moreover, a partial order over the derivation steps is obtained, because each new
extension is only dependent on a subset of the existing ones. On failure the
‘suspects’ are determined: those derivation steps on which the failed extension
depends which are responsible for the failure. One of them is selected as the
culprit, and that derivation step as well as any derivation steps dependent on it
are undone. All derivation steps not dependent on the undone ones are kept.

This paper is based on previous work of both authors (Bruynooghe, 1980;
1981; 1981a; Bruynooghe and Pereira, 1981; Pereira, 1979, Pereira and Porto,
1979; 1979a; 1980; 1980a; 1980b; 1982). Our method provides a top-down
form of truth maintenance applied to resolution theorem proving, which comple-
ments bottom-up truth maintenance (Doyle, 1979, 1980). It is concerned with
the backward rather than the forward component of the dynamics of logic
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control, and it relies on purely syntactic information. Consequently, it is domain
independent.

In the second section we briefly introduce logic programs; the third section
describes a theory of intelligent backtracking; the next section shows the speciali-
sation of the theory to the case of depth-first search and argues for the practicality
of our approach; we terminate with some examples, efficiency results, and draw
some conclusions.

2 LOGIC PROGRAMS

A logic program comprises a set of procedures ("Horn clauses’) and a goal state-
ment. The goal statement consists of a set of procedure calls A;. It is written
«— Ay, ..., Ay (n=1). The goals A; have the form R(ty, ..., t,) (‘negative
literals’) where R stands for an n-adic relation and the t; for terms. Terms can
be distinguished into constants (first symbol an upper-case letter), variables
(first symbol a lower-case letter) or compound terms of the form f(ty, ..., ty)
with f an m-ary function name and the t; again terms. With x;, ..., X, the
variables occurring in the above goal statement, it reads ‘find values forxy, ..., Xy
which solve problems A; and ... and A}. The goal statement is the initial state
of execution. It can be represented by an AND-tree where the goals A; are the
successors of the root node.

A procedure has the form B <— Ay, ... A, (n>= 0) with B a positive and
the A; negative literals. B is the heading and the goals A; form the body of the
procedure. A procedure reads ‘to solve problem B, solve the problems A; and . ..
and Aj.

To perform a derivation step on a goal statement «<— A, ..., A, a goal
A; = R(ty, ..., tp) is selected. A procedure for the relation R is chosen and its
variables are renamed to become unique. (We consider the procedure variables as
the local ones, those of the goal statement as the global ones.) The procedure
(‘operator’) is applicable when the goal R(t;,.. ., t,)and the heading R(sy, .. ., sp)
have a most general unifier § which matches them (Robinson, 1979). Then a
new goal statement «<— (A, ..., Aj_1, By, ..., By, Ajs, ..., Ap) @ is derived,
where the B; form the body of the chosen procedure. This derivation step is but
the result of applying the resolution principle (Robinson, 1979).

In the AND-tree ‘proof tree’, the terminal node containing the goal A; is
selected, the node is labelled with the substitution 8 and becomes a non-terminal
node with the goals B; as successors. A simple successor labelled [ ] is generated
if the body is empty. The goal statement corresponding to an AND-tree is
obtained by applying all substitutions on the conjunction of all non-[ ] terminal
nodes.

Whenever different procedures match the same goal, the search faces different
alternatives (OR-branches). Usually, depth-first search combined with back-
tracking is applied to explore the search space.

3 INTELLIGENT BACKTRACKING — A THEORY

3.1 Current Approaches in Theorem Proving
Intelligent backtracking is based on analysis of the conflicts which arise during
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the unification process. Currently, two general approaches have appeared in the
literature. An open problem is how more domain-specific information can be used
within these theories to make still better backtracking choices (cf. McCarthy,
1982).

One of them is introduced by Cox (1977), in collaboration with Pietrzy kowski
(1981) and has been further developed by Matwin and Pietrzykowski (1982;
Pietrzykowski and Matwin, 1982) while Cox (1981) also continued his investi-
gations. The other approach started with the work of Bruynooghe (1981) and
has been further developed (independently) by Bruynooghe (1980; 1981a) and
by Pereira (with collaboration from Porto) (Pereira, 1979, Pereira and Porto,
1979, 1979a; 1980; 1980a; 1980b; 1982).

This paper is an attempt to define a common more sophisticated theory
which encompasses the previous work of Bruynooghe and Pereira. A first version
will be found in Bruynooghe and Pereira (1981).

The basic principles of the Cox—Pietrzykowski- Matwin approach and the
Bruynooghe— Pereira approach are different but do not seem incompatible.
They are in fact equivalent (confirmed by Cox in a personal letter, July 1982).

Cox, Pietrzykowski and Matwin base their method on ‘deductjon plans’.
Restricting ourselves to Horn clauses, a deduction plan (‘deduction tree’ is a
more appropriate term for the restricted case) looks like a skeletal proof tree, a
proof tree with all substitutions completely ignored. (And with all necessary
renaming of variables performed.) Because deduction trees are also well suited to
explain our approach, we illustrate them in a simple example, see Fig. 1.

S(B) <--
Rluu) <~

Fig. 1 — A deduction tree for Example 1.

Our representation of proof trees is inspired by the notation of Ferguson
described by van Emden (1982).
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Example 1

<~ P(x), Q(y), R{x,y)
P(A) «<—

Q(v) «—S(v)

S(B) «—

R(u,u)«—

The unifications to be performed to establish this deduction tree as a real
proof tree are those between the following terms:

— P(x) and P(A) ‘
— Q(y)and Q(v)

— S(v) and S(B)

— R(x,y) and R(u,u)

Deduction trees are so useful to explain intelligent backtracking because
each deduction represents a whole set of derivations; not only the derivation in
the usual (for Prolog) depth-first, left-to-right order P, Q, S, R, but also any
other order allowed by the structure of the tree, e.g. Q, P, S, R. Our method is
suitable for any order, which makes it appropriate for parallel processing.

As the reader can verify, the unification will fail on the above set of terms.

The Cox—Pietrzykowski—Matwin approach of analysing a failure is based on
finding maximal subtrees such that unification is possible (‘maximal consistent
deduction trees®). (Each of them is obtained by removing a derivation step from
a ‘reduced conflict set’ (Matwin and Pietrzykowski, 1982). For the above example,
those trees are:

— the tree consisting of the nodes P, Qand S
— the tree consisting of the nodes Q, Sand R
— the tree consisting of the nodes P, Q and R.

Each of these deduction trees serves as a starting point for a continuation
of the search process. They can be handled in parallel; however, to our under-
standing, the search spaces have overlapping parts (confirmed by Matwin in a
personal letter, November, 1982).

Our approach of analysing a failure is based on the complementary idea of
finding minimal subtrees such that unification is impossible (‘minimal inconsistent
deduction trees’). Such a deduction tree is used to carefully remove a part of the
deduction tree, such that a cause of the failure is removed and the serial search
remains complete and nonredundant.

For the above example, the whole deduction tree is the single minimal
Inconsistent one.

The above description suggests that both approaches complement each other
and are not fundamentally different. However, a more thorough comparison of
both approaches is outside the scope of this paper.

Our method can also be interpreted as a reformulation, in a top-down
fashion and applied to theorem proving, of Doyle’s bottom-up truth maintenance
system (Doyle, 1979; 1980).
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3.2 How to Learn From Failures
We start with some terminology:

— A closed deduction tree: a deduction tree which represents a potential
solution (e.g. Fig. 1): each call (upper half circle) is closed with the
heading of a procedure (lower half circle).

— An open deduction tree: at least one call (upper half circle) is not closed
with the heading of a procedure (lower half circle).

— If all proposed unifications are possible, then a deduction tree is consis-
tent, it corresponds to a proof tree; otherwise, it is inconsistent.

— An open deduction tree can be extended by closing some of the open
nodes. A deduction tree is a subtree of all its extensions.

— An open deduction tree is unsolvable if it is consistent but all its
closed extensions are inconsistent.

— A deduction tree fails when either it is inconsistent or unsolvable.

ot

n this section we study how to proceed after detecting an inconsistent or
unsolvable deduction tree; the next section is devoted to adapting the unification
algorithm so that it generates inconsistent deduction trees.

The largest possible search space consists of all possible closed deduction
trees. It is infinite for recursive programs. A Prolog interpreter using naive back-
tracking does not consider such a large search space. It builds the deduction tree
step by step; after each step, it verifies whether unification is still possible. If not,
it knows that the tree fails and it never considers an extension of a failing tree.

Example 2
“— P(x),Q(x,y), R(y,2)
P(A) «— Q(B,D) «— R(E,F) «—
P(B) «— Q(C,D) «— R(A,B) «—

The deduction tree shown in Fig. 2 is inconsistent and fails. The Prolog
interpreter backtracks: it takes another procedure to close the call Q(x,y).
It will never consider the deduction tree shown in Fig. 3.

m @ R z)
" N

Fig. 2 — Open deduction for the problem of Example 2, it is a failing tree.

e (et
N, )

Fig. 3 — A closed deduction tree, an extension of the tree of Fig. 2.
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To obtain this straightforward pruning of the search tree space, the naive
interpreter enforces a total order among the nodes of the tree and keeps a list of
available procedures for each node.

We can formalise this behaviour. Having a failing tree with nodes Qq, ..., Q,
on which the procedures Py, ..., P, are applied, we can assert: ‘If the procedures
P;, ..., Py are used to solve respectively the goals Qy, ..., Qu.1, then Py is

rejected as a solution for Q.

The naive interpreter maintains this assertion without effort; it rejects P,
and tries the next available procedure to solve Q. Once it is forced to backtrack
to Q,_y,the premise becomes invalid. This is reflected by the fact that all procedures
to solve Qp become again available (if Q, is still in the tree). Moreover, the
organisation of the search is such that the premise will never become true again.

In a given failure state, the naive interpreter always considers the whole tree
as a failing tree, the principal idea behind our intelligent backtracking is the
ability to detect failing subtrees. This allows us to derive stronger assertions which
give rise to a more substantial pruning of the search space.

Example 3
— P(x), Qly,y)
P(A) Q(A,B) «—
P(B) Q(C,D) «—

Fig. 4 shows a failing deduction tree and an inconsistent subtree for the
problem of Example 3. All trees which are extensions of the failing subtree are
doomed to fail. A naive interpreter will consider such trees, e.g. using P(B)
instead of P(A).

S @

Fig. 4 (@) — A failing deduction tree. Fig. 4 (b) — A failing subtree.

This is a simple example of the famous thrashing behaviour which is at the
root of the condemned inefficiency of naive backtracking. To improve the search
behaviour, we must try to avoid extensions of inconsistent subtrees.

Example 4
«— P(x),Q(y)
a. P(A)«—
b. P(B)<«—
c. Q) <«—R(u,u)
d. R(v,w) <—S(v), T(w)
e. S(A)«—
f. S(B)«—
g. T«
h. T(D)+«—
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The deduction tree shown in Fig. S is inconsistent and fails. It has a failing
subtree consisting of the nodes Q, R, S and T. We can make the assertion: ‘If ¢
is used to solve Q, d to solve R, e to solve S and g to solve T, then the problem
has no solution’ or ‘Each deduction tree which is an extension of the tree using
c to solve Q, d to solve R, e to solve S and g to solve T is a failing tree’.

Fig. 5 — A failing deduction tree for the problem of Example 4.

Different approaches are possible in using the above knowledge to guide the
search.

(1) Store the failing subtree in a database (cf. Doyle’s ‘no good’ assertions
(Doyle, 1979, 1980)).

Verifying whether a deduction tree is an extension of one of the failing
trees in the database seems rather expensive. Especially for an inconsistent
deduction tree, it seems that rediscovering the failure by performing the
unification is more efficient than a search over the database. This is not
necessarily the case for stored unsolvable deduction trees, because there we
may have to consider a number of extensions (which can be arbitrarily
large) before we detect the unsolvability of the tree. In the extreme case of
an unsolvable problem we eventually obtain the empty tree as a failing tree.
The cost of discovering this can be large, the cost of observing that a tree is
an extension of the empty tree is small.

(2) We have chosen a more pragmatic solution, losing information from time to
time, but resulting in less overhead. Our solution is related to the behaviour
of the naive interpreter. There, on failure, we could state assertions of the
form ‘If we use the currently applied procedures to solve the subgoals
Qi, ..., Qu_ then the procedure p,, is rejected for solving Q.

Now, for a failing subtree T,, we state: ‘If we use the currently applied
procedures to solve the subgoals of T, then the problem is unsolvable’. To
remove the cause of failure, we have to remove a node from the subtree Tj,.
To obtain a complete search, it has to be a leaf. As we do not require a
fixed order among subgoals, it can be any leaf. The selected one is called the
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culprit. Suppose Q is selected as the culprit in a tree T, and Tj,_; is the tree
obtained after removal of Q,. Then, we can state the following assertion:
‘If we use the currently applied procedures to solve the nodes of T,_;, then
Pn is rejected to solve Qg

In Example 4, we can choose between S and T as culprits. Suppose we
take S, then S(A) is rejected to solve the goal S(v) because of the currently
applied procedures of Q, R and T. Extending again the node S(v), now
using S(B), results in a new failure with the same inconsistent subtree.
Again, S and T are the possible culprits. However, selecting another clause
for T will invalidate the premise of the assertion obtained from the first
failure and will return S(A) to the set of available procedures. To avoid this
loss of information, we should again select S as the culprit.

This preferential treatment of failures extends the order among subgoals.
In a failing subtree, we create order between the culprit and the other
leaves. It means that in any future failure treatment, it will be selected in
preference over all other nodes of the currently failing tree. With this
approach, we have a loss of information each time the premise of an assertion
becomes invalid, i.e. when a rejected procedure is part of some premises.

This loss of information could be prevented by turning the assertion
into a ‘no good’ assertion explicitly naming the applied procedures. We have
not explored this possibility. It requires consideration of (1) the cost of
rediscovering it, (2) the cost of storing it and verifying whether an extension
appears and (3) the probability that an extension appears.

Combining Individual Failures

Up to now, our failing subtrees were inconsistent subtrees supposedly discovered
by the unification algorithm (see next section). Here we discuss the derivation of
unsolvable subtrees.

It is possible that all procedures g; available to solve a certain goal Q become
rejected. Then, for each procedure g;, we have an assertion ‘If the currently
applied procedures are used to solve the goals of tree Tj, then g; is rejected to
solve Q. With T the subtree which is the union of all T; (the set of nodes of T is
the union of the sets of nodes of the T;), we can combine these assertions into:
‘If the currently applied procedures are used to solve the goals of tree T, then
qi, - -, qn are rejected to solve Q’; in other words, because all closed extensions
of T have to, but cannot, contain a solution of Q, T is an unsolvable subtree,
thus a failing subtree.

In Example 4, S(B) is also rejected because of the tree with nodes Q, R
and T. This is the same tree responsible for the rejection of S(A). We conclude
that this tree is unsolvable. T is its only leaf, thus it is the culprit. We obtain that
T(C) is rejected because of the currently applied procedures on Q and R. We lose
the assertions about S(A) and S(B); however, observe that the new assertion is
stronger than the lost ones (this is not always the case).

The search takes a new start with S(A) and S(B) available to solve S(v) and
T(D) to solve T(w).

When the reader continues the example, he will find an unsolvable subtree
consisting of Q and R, then an unsolvable subtree with a single node Q and
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finally the empty subtree as unsolvable one, indicating the unsolvability of the
problem. All of this without ever backtracking to the “first’ subgoal P(x).

Regquired Bookkeeping
Perhaps the reader wonders whether our assertions are more manageable than
the optimal ‘no good’ assertions. Here, we briefly discuss the required structures
to perform our intelligent backtracking.

With each call, we have associated

— aset of (pointers to) available procedures

- a{(pointer to a) currently applied procedure

- asetof (pointers to) rejected procedures plus, for each rejected procedure,
a representation of the assertion (the subtree which forms the premise
of our assertion).

To represent a subtree of a deduction tree, we observe that it is uniquely
determined by its leaves. We can take as representation a collection of nodes
containing at least all leaves. This makes the operation of taking the union of
two subtrees very simpie.

To propagate the effects of rejecting a currently applied procedure, we need
pointers to the assertions containing that procedure in their premise: another list
of pointers associated with each call. A procedure returns from the set of rejected
procedures to the set of available procedures when all its associated assertions
are removed. (These lists of pointers also represent the partial order created by
the selection of culprits.) A rejected procedure can be associated with more than
one assertion. Indeed, an inconsistent tree can have different failing subtrees
(it is also possible to extend a tree with more than one step). Each subtree
represents a conflict which has to be solved by selecting a culprit. It is possible
that the same call is selected as the culprit for two different conflicts. _

Because a rejected procedure can have different assertions, we can derive
different unsolvable subtrees for a failing tree by combining one assertion from
each rejected procedure.

3.3 How To Obtain Inconsistent Deduction Trees

The naive interpreter always considers the whole deduction tree as the only
inconsistent deduction tree. All our machinery is useless if we cannot obtain
smaller inconsistent deduction trees. That is the goal of this section. The smaller
the inconsistent deduction trees obtained, the better the behaviour.

To solve the problem of detectingall possible minimal inconsistent deduction
trees, we probably have to use the latest research results of Cox (1981).

Having no idea of the computational complexity of that approach, we
content ourselves with a more pragmatic solution, which is closer to conventional
Prolog implementations. Each deduction tree is an extension of the previousone.
Unification is incremental; it tries to establish the new part using the old part as
context. We describe a unification algorithm which generates, besides the usual
substitutions on successful completion, inconsistent deduction trees on failure.

To obtain this behaviour, we associate a deduction tree with each term
involved in the unification. With a call, we associate the nodes necessary for the
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existence of that call, i.e. those on the path from the root to the call (including
the call). With the heading of the applied procedure, we associate the empty
deduction tree (the procedure is given). (In the case of general theorem proving,
we use the minimal deduction plans resulting in the creation of both clauses
involved in the resolution step.) As a result, each substitution has an associated
deduction tree which is the minimal deduction tree necessary for obtaining that
substitution. Detection of a unification failure results in such a tree being an
inconsistent deduction tree. When the unification algorithm consults a substi-
tution component, it requires the existence of the gleduction tree associated
with it. This provides a method for obtaining the deduction trees associated
with terms.

The formal representation of the algorithm is as follows (where t—T denotes
a term t with associated deduction tree T):

(1) matching t—T; with t—T,: generate € (the empty substitution) with
deduction tree Ty U T,

(2) matching f(ty, ..., tm)—T; with g(t,...,ty)—T,: generate ‘failure’ with
T; U T; as an inconsistent deduction tree

(3) matching f(ty, ..., tp)~T; with f(r, ..
t; =/=r;): match each t;—T; with ;—T,

(4) matching x;—T; with t,—T, where t; is not a free variable and a com-
ponent x; <— t exists with deduction tree T: match t—-T; U T with
ty-To

(5) matching x, T, with t,—T, with x; a free variable: generate the com-
ponent x; «— t, with Ty U T, as deduction tree.

., )—=T; (n > 0 and some

It can be useful to go on with unification after generating a first failure:
other failures resulting in different inconsistent deduction trees can be derived.
After completing a failing unification, the minimal inconsistent deduction trees
are retained while all generated substitutions are removed.

Example 5

Unifying a term f(A, A)—0 with a term f(x,y)- {Q,S} (where we represent a
deduction tree by the set of its nodes and O denotes the empty set) with existing
substitutions x «—B—{Q, R} and y «—C —{Q}, we obtain:

— failure with deduction tree {Q, R, S}.
— failure with deduction tree {Q, S}.

Only the second one is minimal; indeed, the first is an extension of the second.

Example 6
«—P(x),Q(x)
P(A) —
Q(B)

A first step unifies P(x)— {P} with P(A)—0, resulting in x «— A—{P}. A second
step unifies Q(x)—{Q} with Q(B)—O0; it attempts to unify A—{Q,P} with B-0
and resuits in failure — {Q,P}. Notice the symmetry: both P and Q are candidate
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culprits; the inconsistent deduction tree is independent of the selection order
between P and Q.
Keeping the deduction trees as small as possible involves some pragmatics:

— which variable to bind when unifying two free variables can only be
settled later on, when one of them is bound to a term (see Pereira and
Porto (1982) for a detailed discussion),

— trying to avoid dereferencing when it enlarges the deduction tree: first
dereference variables whose final value is a free variable.

Undoing a procedure call S affects all executed calls having S in the deduction
tree of a generated substitution; they become invalid and have to be redone. To
avoid this expensive operation as much as possible, we have to consider unification
as a process which also creates a partial order to be respected when selecting a
culprit: P comes after S when S is part of a deduction tree of a substitution
component of P,

To reduce the space requiremnents, Prolog interpreters try to collapse different
nodes of the proof tree into one. Intelligent backtracking, to be optimal, limits
this possibility to the case of ‘strong determinism’: whenever all but one of the
available procedures is rejected due to the deduction tree consisting of the path
from the root node to the parent of the strong determinisitic node. To show
that such a node can be collapsed with its father, without affecting the search
behaviour, suppose a node P with son Q. Suppose T is the tree consisting of the
path from P to the root. Suppose qy, ..., qn_; are rejected due to T and q, is
the only remaining procedure. When, at a later point a failing deduction tree T;
is obtained and Q is chosen as the culprit, then g, is rejected due to T, = T; —Q.
Because T; contains Q, T, contains all nodes from Q to the root: it is an extension
of T. Qfailsand T, U T = T, is the new failing deduction tree. If Q is considered
as part of node P, then we directly obtain T; —Q = T, as a failing deduction tree.
Thus it is useless to consider strong deterministic calls as independent nodes of
the deduction tree.

3.4 Examples
(1) A goal statement +— P(x), Q(y), R(x,y)

Step 1. Execution of P(x) with a procedure P(A) «—. Unification succeeds
with x «— A—{P}.

Step 2. Execution of Q(y) with a procedure Q(B) +—. Unification succeeds
with y «<— B—{Q}.

Step 3. Execution of R(x,y) with a procedure R(C,D). Unification fails
with ‘failure’—{P, R} and ‘failure’—{Q, R}; selection of R as culprit
results in rejection of R(C, D) due to {P} and due to {Q}.

Step 4. Execution of R(x,y) with a procedure R(A,E). Unification fails
with ‘failure’—{Q,R}. We have to select R as culprit; R(A,E) is
rejected due to {Q}.

Step 5. Exhaustion of available procedures for R(x,y). Computation of
failing subtrees:

{PruiQl = {PQ}
{Qtu{Q} = {Q}
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The former being an extension of the latter, the latter is the only
minimal one. Q(B) is rejected, due to { }, the empty subtree, meaning
Q(B) cannot contribute to a solution. R(A, E) returns to the set of
available solutions, R(C, D) is still rejected because of the remaining
assertion {F}.

(2) As a more elaborate example, we show a solution to the queens problem
(for illustrative purposes limited to 3 queens). A configuration of queens is
represented by a list of numbers, each number representing the position of
a queen. The number is the row number of the queen, the column number
is the position in the list, e.g. 3.1.2.Nil represents the queens on positions
(3,1),(1,2) and (2, 3). Our solution uses the following procedures:

— Perm (x,y): the list y is a permutation of the list x.

— Del (x,y,2): the list z is obtained by removing an element x from
the list y.

— Safe (s): the list represents a safe configuration of queens.

— §(s,1): the reverse of the list | represents a configuration on columns
1 to i, s represents a configuration on columnsi+1 to n, where the
queens on s do not attack each other and do not attack the queens

on 1 (used to obtain an optimal ordering among the calls of Nodiag).

— Check (p,1,d) the reverse of 1 is a partial configuration (columns 1
to i). The distance between queen p and the last queen of that
configuration is d (p on column i+d), p does not attack the queens
of the configuration.

— Nodiag (p,g,d): d is the distance between p (the column i+d) and
g (the column i), and p does not attack q. This relation is defined
by its extension, as a database of facts.

The program:
<— Perm (1.2.3.Nil,s), Safe (s)
Perm (Nil, Nil) «—
Perm (x.y,u.v) «<— Del (u,x.y, w), Perm (w, v)
Del (x,x.y,y) <
Del (u,x.y,x.v) «— Del (u,y,v)
Safe (s) «<— S (s, Nil)
S (Nil, 1) «—
S(p.r,1) «<— Check (p,1,1),S(r,p.1)
Check (p,Nil, d) «—
Check (p,q.l,d) <—sd = d+1, Check (p,1,sd), Nodiag (p, q,d)

DR e Ao o

The state of the computation at the point where the first failure occurs
is given in Fig. 6. We have labelled all nodes. The root, which represents the
empty subtree, has the label (0); strongly deterministic nodes have the same
label as their parents; a deduction tree is represented by the labels of its
leaves. The selection of calls is as in Prolog: depth-first left to right. Each
node contains the list of available procedures, the applied procedure and the
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list of eliminated procedures with the deduction tree causing the elimination.
The arguments of Nodiag are:

pr1 = 2 (accessing the tree with leaves 7,1,3)

m

disappear, the execution of (3) has to be undone (c is eliminated, d is
available). In node (4) (a) returns to the set of available procedures and the
substitutions obtained by applying procedure (b) are invalidated because
they depend on (3), and they have to be redone. Normally, node (7) is
undone by the first backtracking; actually, it could be saved because it
does not depend on (3).

The behaviour is as desired. On detecting a conflict, the program
backtracks to the point where one of the offending queens has been generated;
optionally, it retains substantial parts of the Safe computation.

55 ) ” G q11 = 1 (accessing the tree with leaves 7,1)

5 5 ’: :f ;’ § d;; = 1 (accessing the tree with leaves 7)
e SRl ~ 292 z
f° 52 ?gh ) The call fails; the inconsistent deduction tree hasasleaves 7, 1 and 3. Selecting
& s 8 o (7) as the culprit resuits in the elimination of g due to {I,3}. Both fandg
: Ef;ﬁ %@ are eliminated, and we obtain an unsolvable deduction tree which is the
° Vheh :‘;‘ union of {1,3} and {2}, that is {I,3}. Now we select (3) as the culprit; cis

1555 &8 eliminated due to {2,1}. This means that nodes (5) and (6) completely

Checki{pyy.1.:.5d,,)
Check (pi,.Nil.d,,}
et 1-(7)

)

Check {pyo.110.1)
Check (pi1,ayy-111.dy

Check (py.14,1)
Check {pe.Nil.dg)

{sd,, = 2(7)

4 PRACTICAL EXPERIENCE

To obtain some insight into the applicability of intelligent backtracking to
Prolog interpreters, we have conducted a few experiments. We expect that the
overhead of our full theory is too large for the sequential execution of the
majority of logic programs, and that it is only advantageous in specialised
applications with a flavour of theorem proving, or for administrating backtracking
in AND-parallelism. Our main interest being in normal programs, we have
developed interpreters for a simplified version of the theory. One of the authors,
with the help of Antonio Porto, started with a simulation: an interpreter with
intelligent backtracking written in Prolog itself (Pereira, 1979, Pereira and Porto,
1979; 1979a; 1980a; 1980b; 1982). Encouraged by the results, Chris Coudron,
an undergratuate student of the other author, adapted an existing Prolog inter-
preter (in the language C) to include a simplified form of intelligent backtracking
and conducted some experiments. Given the limited amount of time, the main
goal was to obtain a working system, not a very efficient one.

In this section, we discuss the simplifications, sketch the low-level imple-
mentation and show some results.

¥s = Nil (1.3.4)
Vi - Ugvg (4))

- uy.v3 - {2)
vs = Nil - (6)

vi

b
Fig. 6 — Queens computation at the first failure.

ap bix - 3(1.3.4)
ap:.c(c-1.3.586)

el a(1.3)

Perm {x;.y;.U;.v3)
ap:bix; - 2-(1,2)
av

el:a(l)

Perm (1.2.3.Nil.sg)

Perm (x1. y.u,.v)

%3 1 43)

wie Y- (30
ne s (8
ug- % - (5)
wy - ¥s o (51}

d

d
ap  Clxe= X5 -(5)

Del(xs.xa - Ya.¥a)
Delixg. %Yo Vs)

av

4.1 Simplifications

ap:Clu- X (3)
U=

Delix1,x;.y2.ys)

av

The selection order of calls in Prolog is controlled by the programmer. Sticking
to it means that calls are executed in a strict left to right order, and that we back-
track to the most recent of candidate culprits and undo calls in a strict right to
left order. The only difference with the naive interpreter is that we backtrack
to the culprit instead of to the most recent call having untried alternatives.
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This decision resolves the most thorny and complex issues: we have neither
to bother about the partial order imposed by culprit selection nor about the
partial order imposed by execution of the unification algorithm (when it consults
arbitrary substitutions). Also, we do not have to worry about empty substi-
tutions.

What remains is the following:

~ a deduction tree associated with each substitution (binding of a variable);

— foreach calla set of available procedures, as in a standard naive interpreter;

— for each call a set of rejected procedures, each of them associated with
one or more deduction trees representing a reason for their rejection
(obtained either from the unification algorithm when detecting a failure
or from the intelligent backtracking mechanism when it detects an
unsolvable subtree and chooses that call as the culprit).

When we undo a call, we remove all information about it: the substitutions
of the applied procedures and the reasons for the rejection of the rejected
procedures. The cost of rediscovering this last piece of information can be
substantial, so we drop it because it allows us to retain the simple stack structure
of the interpreter.

Once all procedures applicable to a call are rejected, we construct unsolvable
deduction trees by taking the union of the deduction trees of the rejected
procedures. Because we never use the deduction trees of the rejected procedures,
but only the unjons, we can equally well incrementally build those unions.
Instead of having a set of deduction trees for each rejected procedure, we only
have such a set for the call as a whole. Actually, we simplify further (at the cost
of accuracy) and retain only one deduction tree for each call. In the simulation,
unification computes different failures. Each of these failures is merged with
the already obtained deduction tree and the ‘best’ resulting deduction tree is
retained. The best one is the one giving the deepest backtracking. Formally,
a tree T with nodes (in left to right order) ty, ..., t, is better than a tree S with
nodes sy, ..., sg if there exists a n 2 0 such that for 0<<i<n—1I, t,_; = s,_; and
te_n is less recent than sg_, (the last n nodes being identical). Due to lack of
development time, the low-level implementation stops unification after detecting
a first failure, and this results in the undesirable effect that the behaviour depends
on the ordering of arguments. Note that this simplification never guarantees
optimal behaviour, e.g. in the first example of Section 3.4.

To summarise, we end up with:

- a deduction tree associated with each bound variable (produced by
unification), and

— a deduction tree associated with each executed call (incrementally
built each time a procedure is rejected, and used to determine the
culprit once all procedures are rejected).

4.2 Low-level Implementation

As already explained, any considered deduction tree is a subtree of the current
proof tree and we can represent the deduction trees by sets containing at least
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all leaves. The sets themselves we have represented by binary trees with the
members of the set in the leaves (a sign bit is used to distinguish between leaves
and non-leaves). Taking the union of two deduction trees is very fast and simple:
the creation of a new binary tree with the left branch pointing to the first tree
and the right branch pointing to the second tree. However, the representation is
not minimal, some nodes can have multiple occurrences and the representation
can contain non-leaf nodes.

To reduce the size of the deduction trees of substitution components, we
observe that the deduction tree of any substitution component generated during
execution of a node Q includes node Q; as a consequence, the presence of the
ancestors of Q is unnecessary because they are implicit in Q; we can initiate
unification with an empty deduction tree for the call. Moreover, the bindings
of the variables of a call Q are in the environment of the parent of Q; looking
up such a variable means including the deduction tree associated with the
variable. This deduction tree contains at least (sometimes it is the only element)
the parent of Q, but that parent need not be included because Q is already
present. To avoid inclusion of the parent, the deduction tree of a substitution
component of a node is represented by either the node (only one leaf), or by a
binary tree with the node in the left branch and the other elements in the right
branch. When looking up a substitution component of node P, the father of Q,
we ignore P simply by taking the right branch of the binary tree representation.

The space overhead in representing the deduction trees of substitutions
consists of:

— one extra field for each variable, and
—  the space of the binary tree in cases where the deduction tree has more «
than one element in its representation.

We started with an interpreter using different space-saving techniques; i.e.
the removal of completed determinate subtrees and tail recursion optimisation.
We tried to retain these techniques. Afterwards, we considered this as a serious
design error. Starting again, we would remove all of them and concentrate on
detecting strong determinism, and only reduce the proof tree in the case of
strong determinism. The approach we were following posed several problems:

— Nodes disappear. To retain completeness, we have to add their deduction
tree to the deduction tree of their parent; as a consequence, that
deduction tree is larger than necessary. When the parent at some point
fails, the resulting unsolvable deduction tree is larger than necessary;
the backtracking is not optimal.

— Nodes disappear, but they are still present in deduction tress. Searching
all deduction trees and replacing them by their parents is too expensive.
We developed a labelling mechanism. Each node of the proof tree has
an extra label field. A table maps labels into nodes. When a node
disappears, the table is adjusted such that the label is mapped into the
parent node.

The label mechanism and its space overhead would be unnecessary had we
restricted ourselves to strong determinism.
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Each node of the proof tree has another extra field containing (a pointer
to) the associated deduction tree.

Due to the lack of time, the unification algorithm has not been adapted to
discover all failures and to select the strongest one.

We take a crude approach to all impure aspects of Prolog. We keep a marker
(initialised at the root of the proof tree). Up to the marker, we backtrack intelli-
gently, beyond the marker we fall back on the naive backtracking mechanism.
On meeting an impure feature (such as the ‘cut’) the marker is set at the current
node of the proof tree (also on finding a first solution). For the ‘cut’, we could
probably have done better, by doing complete dereferencing of all arguments of
the call and taking the resulting deduction tree as the reason for the rejection
of the procedures eliminated by the ‘cut’. For finding subsequent solutions,
we could reject a pseudo-goal with a deduction tree obtained by completely
dereferencing the arguments in the top goal.

4.3 Results (as obtained by C. Coudron)
The test programs:

(1) Acomplex query toa small database

Student (Robert, Proiog) <—
Student (John, Music) «—
Student (John, Prolog) <—
Student (John, Surf) «—
Student (Mary, Science) <—
Student (Mary, Art) <—
Student (Mary, Physics) <—

Professor (Luis, Prolog) <—
Professor (Luis, Surf) «—
Professor (Maurice, Prolog) «<—
Professor (Eureka, Music) <—
Professor (Eureka, Art) «<—
Professor (Eureka, Science) «—
Professor (Eureka, Physics) <—

Course (Prolog, Monday, Room1) «—
Course (Prolog, Friday, Rooml) «—
Course (Surf, Sunday, Beach) «—
Course (Math, Tuesday, Room!l) «—
Course (Math, Friday, Room2) «—
Course (Science, Thursday, Room 1) +«—
Course (Science, Friday, Room2) «—
Course (Art, Tuesday, Room1) «—
Course (Physics, Thursday, Room3) «—
Course (Physics, Saturday, Room2) «—

Noteq (a, b) <— Less_than (a, b)
Noteq (a,b) <— Less_than (b,a)
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The query : <— Student(stud,coursel), Course (coursel, day 1, room),
Professor(prof, course 1), Student(stud, course2), Course (course2, day?2,
room), Professor (prof, course2), Noteq(coursel, course2).

A simple solution for the queens problem (generate and test) but taking
care that the tests are in order (1,2),(1,3),(2,3),(1,4),(2,4),(3,4). ...

Queens(l, config) <— Perm(1, p), Pair(l, p, config), Safe(Nil, config)
Perm (Nil, Nil) «—

Perm(x.y,u.v) < Delete(u, .y, w), Perm (w, V)

Delete(x,x.y,y) <—

Delete(u, x.y, x.v) +— Delete(u,y,v)

Pair (Nil, Nil, Nil) «—

Pair(x.y,u v, p(x,u).w) <— Pair(y,v,w)

Safe (left,Nil) «—

Safe(left,q.r) «<— Test(left,q), Safe(q.left,r)

Test (Nil,q)
Test(r.s,q) < Test(s,q), Notondiagonal(r, q)

Notondiagonal(p(cl,r1),p(c2,r2)) +—c=cl-c2, r=rl-12, Noteq(c, 1),

=r2-rl
Noteq(a,b) «<— Less_than(a,b) nr=r2-r1, Noteq(c,nr)

Noteq(a,b) «<— Less_than(b,a)
A query (for 5 queens, one solution only)

«—— Safe(1.2.3.4.5.Nil, config),!

A clever solution for the queens problem, merging the generate and test
part, with a lot of ‘cuts’ (formulated for 5 queens)

Queens(config) <— Solution(c (0, Nil), config)

Solution (¢ (5, config), config) «— !
Solution(c(m,config),conf) «— Expand(c(m, config), c(m1,confl)),
Solution(c(m1,confl),config)

Expand(c(m,q),c(ml,p(mi,k).q)) «<— ml=m+], Column(k),
Noattack(p(ml,k

Column(1) «— (pmlR. 9

Column(2) «—

Column(3) «—

Column(4) «—

Column(5) «—

Noattack (p,Nil) «—
Noattack(p, q.1) «<— Noattack(p,1), Ok(p,q)

Ok(p(rl,c),p(r2,c)) <!, Fail
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Ok(p(rl,kl1),p(r2,k2)) «— difr=r2-r1, Abs(difr, abs), difc=k2-k1,
Abs(difc, abs), !, Fail

Ok(p.q) —

Abs(n,n) «—n>0,!
Abs(n,m) «— m=0-n

The query : <— Queens(config).

(4) A map colouring problem with a rather good order of colouring

Next(Blue, Yellow) <—
Next(Blue,Red) «—
Next(Blue, Green) «<—
Next(Yellow, Blue) «—
Next(Yellow, Red) «—
Next(Yellow, Green) <—
Next(Red, Blue) «—
Next(Red, Yellow) «—
Next(Red,Green) «—
Next(Green, Blue) «—
Next(Green, Yellow) «—
Next(Green, Red) <

r13

ri

r3

[ -

r7

rS

6

r10

E

r9

ri I

r12

Goal(rl,12,13,14,15,16,17,18,19,1r10,r11,1r12,113) «—

Next(r1,r13),
Next(r4,r10),
Next(r2,1r3),
Next(r5,16),
Next(rl, r7),
Next(r7, 18),
Next(r9,r13),
Next(r9,r12),

Next(rl,r12),
Next(r6,r10),
Next(r3,14),
Next(rS5,r13),
Next(r7,r13),
Next(r4,r9),
Next (16,111},
Next(r11,r12),

Next(r2,113),
Next(r8,r113),
Next(r3,r13),
Next(r4,15),
Next(r2,17),
Next(r9,110),

Next(110,r11),
Next(rl12,r13).

Next(r2,14),
Next(r6,113),
Next(13,15),
Next(r5,r10),
Next(r4,17),
Next(r8,19),
Next(rll,r13),

(5) The same map colouring problem with a bad order of colouring

Goal(rl,12,r3,14,15,16,17,18,19,r10,111,112,113) «—

Next(r!,r2),
Next(r5,16),
Next(r9,r13),
Next(r7,18),
Next(r6,113),
Next(r3,15),
Next(rS,r13),
Next(r5,r10),

Next(r2,13),
Next(r6,r11),
Next(r9,r10),
Next(r2,17),
Next(r2,14),
Next(r8,19),
Next(r7,r13),
Next(r10,r11),

Next(r3,r4),

Next(r11,r12),

Next(r4,110),
Next(16,110),
Next(12,14),

Next(rl,rl3),

Next(rll,rl3),

Next(rl,17).

Next (r4,15),
Next(rl12,r13),
Next(r4,17),
Next(r2,r13),
Next(r4,19),
Next(r3,113),
Next(r9,r12),

(6) A simple deterministic program to build an ordered binary tree

Tree (Nil, tree) «—
Tree(e. ], tree) <— Insert (e, tree), Tree (1, tree)
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Insert(e,t(l,e,r)) «—!
Insert(e,t(l,f,1)) «— Less_than (e, ),!, Insert(e, )
Insert(e, t{l,f, 1)} < Insert (e, 1)

Query:
56.11.78 Nil, tree)

The results, in seconds, are summarised in Table 1.

Table 1,

Standard Intelligent  Change
database query 0.72 0.58 —20%
6 queens, simple program 42.7 27.8 —36%
7 queens, simple program 40.8 7.05 —~80%
8 queens, simple program 1015 232 —77%
6 queens, clever program 14.5 28.9 +99%
7 queens, clever program 4.12 8.4 +106%
8 queens, clever program 101. 221 +119%
map colouring, good order 0.52 0.85 +63%
map colouring, bad order 697 206 —99.7%
binary tree 1.28 1.84 +44%

Taking into account that it has been a first limited effort to implement
intelligent backtracking, we are satisfied with the results. For the programs
where the intelligent backtracking only creates overhead, the time increases by
44% to 119%, while for the other programs the results are substantially better.

5 CONCLUSIONS

We have provided a general conceptual framework to describe intelligent back-
tracking in resolution theorem provers.

We have explored the application of our approach in detail for top-down,
depth-first execution of Horn clause logic programs.

Finally, in a pragmatic effort, we have written a Prolog interpreter which
uses a simplified version. Experimental results show that implementation of
intelligent backtracking at a low level is worthwhile. Such an implementation
has been obtained by a not excessive modification of an existing standard
backtracking implementation.
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