
Intention-based Decision Making for Strategic Scenarios
Dynamics via Computational Logic

The Anh Han1 and Luı́s Moniz Pereira2

1 AI lab, Computer Science Department, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium; email: h.anh@ai.vub.ac.be

2 Centro de Inteligência Artificial (CENTRIA), DI/FCT, Universidade Nova de Lisboa
2829-516 Caparica, Portugal; email: lmp@fct.unl.pt

Abstract. We provide a characterization of different strategic scenarios within
our Logic Programming based (previously implemented) evolution prospection
system, and describe how to express and enact therein intention-based decision
making supported by computational logic. The evolution prospection system had
already implemented several kinds of environment triggering constructs—such as
different forms of preferences and integrity constraints—and has also been em-
powered with an ability to take into account intentions of others in the decision
making process, by means of an intention recognition system. Herein we general-
ize, extend, and explore how the system can be further used for decision making
in different strategic dynamic scenarios, namely games, where strategies can be
conceived as the intentions of co-players.
Keywords. Intention-based decision making, Game Theory, Evolution Prospec-
tion, Logic Programming, Intention Recognition.

1 Introduction
In strategic and economic situations as typically modeled using the game theoretical
framework [13], the achievement of a goal by an agent usually does not depend uniquely
on its own actions, but also on the decisions and actions of others—especially when the
possibility of communication is limited [21,17]. The knowledge about the intentions of
others in such situations could enable a recognizing agent to plan in advance, either to
secure a successful cooperation or to deal with potential hostile behaviours, and thus
to take the best advantage of such knowledge [4,22,7]. Additionally, in more realistic
settings where deceit may offer additional profits, agents often attempt to hide their real
intentions, change or abandon them along the way when needed, make others believe
in the bogus ones, and even go to the extent of defaulting on commitments [11,7]. Un-
doubtedly, in all such dynamic situations an ability to recognize intentions of others and
their own dynamics and take them into account when making decisions is crucial, em-
powering its holders with significant net benefit or evolutionary advantages. In addition,
there is a large body of literature on experimental economics that shows the importance
of intention-based decision making in diverse kinds of strategic games, such as the Pris-
oner’s Dilemma [5] and the Ultimatum game [18]. Furthermore, computational models
show that the taking into account of the ongoing strategic intentions of others is crucial
for agents’ success in the course of a diversity of dynamic, strategic scenarios [9,10,7].



Relying on our previously implemented Evolution Prospection (EP) system [15],
herein we generalize and extend it, and explore different ways in which the system
can be used for knowledge representation and reasoning in strategic dynamic scenarios,
and, more importantly, how intention-based modelling can be useful therein. EP is an
implemented, Logic Programming (LP) based system for decision making [15,17] (de-
scribed in Section 2). An EP agent can prospectively look ahead a number of steps into
the future to choose the best course of action choice evolution that satisfies a goal. This
is achieved by designing and implementing several kinds of prior and post preferences
on abductive hypotheses generated scenarios [1], and several other useful environment-
triggering constructs for decision making. To take into account intentions of others in
the decision making process, EP has been extended with an intention recognition sys-
tem, also implemented in LP, thus providing for a coherent integration [8] (Section 3).

2 Evolution Prospection and Extensions

The implemented Evolution Prospection (EP) system has proven useful for decision
making [15,17]. It is implemented on top of ABDUAL, a preliminary implementation
of [1], using XSB Prolog [23]. We next describe the constructs of EP, to the extent we
use them here. We also describe novel extensions for its application in diverse game
scenarios, where strategies are recognized as intentions, illustrating with examples. A
full account, including its semantics, can be found in [15].

Language Let L be a first order language. A domain literal in L is a domain atom A
or its default negation not A. The latter is used to express that the atom is false by
default (Closed World Assumption). A domain rule in L is a rule of the form: A ←
L1, . . . , Lt (t ≥ 0), where A is a domain atom and L1, . . . , Lt are domain literals. An
integrity constraint (IC) in L is a rule with an empty head. A (logic) program P over L
is a set of domain rules and integrity constraints, standing for all their ground instances.

Here one considers solely Normal Logic Programs (NLPs), those whose heads of
rules are positive literals, or empty. One focuses furthermore on abductive logic pro-
grams [1], i.e. NLPs allowing for abducibles – user-specified positive literals without
rules, whose truth-value is not fixed. Abducibles instances or their default negations
may appear in bodies of rules, like any other literal. They stand for hypotheses, each
of which may independently be assumed true, in positive literal or default negation
form—in order to produce an abductive solution to a query. A detailed definition is in
[1].

Active Goals In each cycle of its evolution the agent has a set of active goals or desires.
The on observe/1 predicate is introduced, which is considered as representing active
goals or desires that, once triggered by the observations figuring in its rule bodies,
cause the agent to attempt their satisfaction by launching all the queries standing for
them, or using preferences to select them. The rule for an active goal AG is of the form:
on observe(AG) ← L1, ..., Lt (t ≥ 0), where L1,...,Lt are domain literals. When
starting a cycle, the agent collects its active goals by finding all the on observe(AG)
that hold under the initial theory without performing any abduction, then finds abductive
solutions for their conjunction.



Preferring Abducibles An abducible A can be assumed only if it is a considered one,
i.e. if it is expected in the given situation, and, moreover, there is no expectation to the
contrary: consider(A)← expect(A), not expect not(A), A.

The rules about expectations are domain-specific knowledge contained in the theory
of the program, and effectively constrain the hypotheses available in a situation. Note
that for each abducible a consider-rule is added automatically into the EP program.

Handling preferences over abductive logic programs has several advantages, and
allows for easier and more concise translation into NLPs than those prescribed by more
general and complex rule preference frameworks. The advantages of so proceeding
stem largely from avoiding combinatory explosions of abductive solutions, by filtering
irrelevant as well as less preferred abducibles [14].

To express preference criteria among abducibles, it is envisaged an extended lan-
guage L?. A preference atom in L? is of the form a / b , where a and b are abducibles.
A preference rule in L? is of the form: a / b← L1, ..., Lt (t ≥ 0), where L1, ..., Lt are
domain literals over L?. The formal semantics of this rule is given in [14]. A priori pref-
erences are used to produce the most interesting or relevant conjectures about possible
future states. They are taken into account when generating possible scenarios (abductive
solutions), which will subsequently be preferred amongst each other a posteriori.

Example 1 (Choose a move). Let us consider a scenario where one needs to choose a
move, say from the set {a1, a2, a3}. Typically, not all theoretically definable moves or
acts are actually available as real behavioral choices. So one needs to decide on the set of
available moves. Moreover, if one can assign some cost (e.g. lesser costs for moves that
require less resources [19]), then one prefers the move that is less costly. The following
EP program enables the decision making process.

1. abds([move/1]).
2. on_observe(choose).

choose <- move(a1). choose <- move(a2). choose <- move(a3).
<- move(a1), move(a2). <- move(a1), move(a3).
<- move(a2), move(a3).

3. expect(move(X)). unavail(move(a2)).
4. %cost(a1,1). cost(a2,3). cost(a3,5).
5. expect_not(X) <- unavail(X).
6. move(X) <| move(Y) <- cost(X,C1), cost(Y,C2), C1 < C2.

This program has three abducibles, move(a1), move(a2), and move(a3) (line 2), and
all of them are expected (line 3). But the move a2 is not available, and therefore not
expected (line 5). Hence, the program has two abductive solutions, one with move(a1)
the other with move(a3).

If one can assign cost to each move (uncomment line 4), the a prior preference rule
in line 6 is activated, which defeats the solution where only move(a3) is present, due
to the impossibility of simultaneously abducing move(a1) (line 2).

A Posteriori Preferences Having computed possible scenarios, represented by abduc-
tive solutions, more favorable scenarios can be preferred a posteriori. Typically, a poste-
riori preferences are performed by evaluating consequences of abducibles in abductive



solutions. An a posteriori preference has the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj , Aj)

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means that
Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of abductive
solutions Ai and Aj , respectively, without any further abduction when testing for the
side-effects. Optionally, in the body of the preference rule there can be any Prolog pred-
icate used to quantitatively compare the consequences of the two abductive solutions.

Implementing Maximin and Minimax Decision Rules These decision rules do not take
uncertainty into account. They are widely used in decision theory, game theory, statis-
tics and philosophy for maximizing the minimum gain (maximin) or minimizing the
maximum possible loss (minimax) [13].

One now shows how to implement these rules, extending the power of the Evolution
Prospection system [15]. The maximin (minimax) orders abductive solutions by their
worst-case (best-case, respectively) consequences, i.e. the consequences with smallest
(greatest, respectively) utility. The a posteriori preference using maximin as decision
rule has the form: Ai � Aj ← min utility(Ai, Ui), min utility(Aj , Uj), Ui > Uj ,
which says that Ai is preferred to Aj a posteriori if a consequence of Ai with minimal
utility has greater utility than a consequence of Aj with minimal utility.

Respectively, the a posteriori preference using minimax as decision rule has
the form: Ai � Aj ← max utility(Ai, Ui), max utility(Aj , Uj), Ui < Uj . It
means that Ai is preferred to Aj a posteriori if a consequence with maximal utility
of Ai has smaller utility than a consequence with maximal utility of Aj . Predicates
min utility/2 and max utility/2 are built-in predicates of our system.

Example 2 (Maximin Rule). The following example of a zero-sum game [13], where
two players A and B make simultaneous moves, illustrates maximin solutions. Suppose
A has three choices (a1, a2 and a3) and B has two choices (b1 and b2). The payoff ma-
trix for B is described below in line 7. Then, the maximin choice for B is b2 since B
gains at least 1. The EP program encoding the maximin choice of B follows

1. abds([b1/0, b2/0]).
expect(b1). expect(b2).

2. on_observe(b_choose).
b_choose <- b1. b_choose <- b2.

3. c(b1,a1) <- b1. c(b1,a2) <- b1. c(b1,a3) <- b1.
4. c(b2,a1) <- b2. c(b2,a2) <- b2. c(b2,a3) <- b2.
5. Ai << Aj <- min_utility(Ai, V1),

min_utility(Aj, V2), V1 > V2.

beginProlog. % beginning of just Prolog code
6. consequences([c(b1,a1), c(b1,a2), c(b1,a3),

c(b2,a1), c(b2,a2), c(b2,a3)]).
7. util(c(b1,a1),3). util(c(b1,a2),-1). util(c(b1,a3),6).

util(c(b2,a1),3). util(c(b2,a2), 5). util(c(b2,a3),1).
endProlog. % end of just Prolog code



There are two abducibles, b1 and b2, both are expected and have no counter-expectation.
Thus, there are two possible abductive solutions for the only active goal b choose.
Next, the a posteriori preference in line 5 is taken into account, ruling out the one
having greater worst-case utility consequence, obtained using the built-in predicate
min utility/2. Thus, it is easily seen that b1 is ruled out by this preference. In short,
the final (maximin) choice of B is b2.

Note that usual (XSB) Prolog code can be embedded in an EP system by putting
it between two reserved predicates beginProlog/0 and endProlog/0 (lines 6-7). In line
6, the reserved predicate consequences/1 is employed to declare the list of relevant
consequences being evaluated. Another reserved predicate, util/2, defines the utility of
each consequence in that list (line 7).

Generalized A Posteriori Preferences. A posteriori preferences between two abduc-
tive solutions is enacted by comparing a pair of consequences of each abductive solu-
tion. However, more often than not, one abductive solution might have several relevant
consequences that contribute to make it either more or less preferred than the other ab-
ductive solution it is being compared to. All those relevant consequences are needed to
be taken into account for decision making. This is similar to the problem addressed in
standard decision theory [6] which is to decide between two actions by evaluating each
action’s relevant consequences based on an utility function mapping consequences to
utilities, typically assumed to be real valued, and a given decision rule.

There have been many decision rules studied in the literature. The best-known one
is expected utility maximization, which we adopt here to extend the EP system for mak-
ing decision under uncertainty [6]. In general, as for any type of decision rules, it has
a set of relevant consequences plus a real-valued utility function mapping those con-
sequences to real numbers [6]. This decision rule also requires a probability measure
that characterizes the decision maker’s uncertainty with respect to the consequences
of a hypothetical abductive solution. It orders the abductive solutions according to the
expected utility1 of their consequences given the probability measure, having the form:

Ai � Aj ← expected utility(Ai, Ui), expected utility(Aj , Uj), Ui > Uj

where Ai, Aj are abductive solutions. This means that Ai is preferred to Aj a posteriori
if the expected utility of relevant consequences of Ai is greater than the expected utility
of the ones of Aj .

We modify the previous example (Example 2) to illustrate how to derive a decision
that maximizes expected payoff.

Example 3 (Choose a move based of maximizing expected utility). Suppose one can
assign a probability distribution over the choice of the opponent (i.e. player A’s), that
is, the probability with which the opponent chooses a particular move. Let

8. pr(a1, 0.1). pr(a2, 0.4). pr(a3, 0.5).
9. prc(c(_,X), P) :- pr(X, P).

1 The expected utility of a set of consequences C given a probability measure Pr mapping
the consequences to probability values, i.e. Pr : C → [0, 1], and given a utility function U
mapping consequences to real-value utilities, i.e. U : C → R, is obtained by the formula:
E(C, Pr, U) =

P
X∈C Pr(X)U(X).



These facts and rule continue the EP program in Example 2. The probability distribution
over the choices of player A is given in line 8 (as Prolog code). The probability of the
consequences in line 6 are derived using the Prolog rule in line 9. Their occurrence
probability is captured using the reserved predicate prc/2, the first argument of which
is some consequence being instantiated during the computation of the built-in predicate
expected utility/2, and the second argument the corresponding probability value.

The a posteriori preference in line 5 from the previous example is replaced with

5. Ai << Aj <- expected_utility(Ai, U1),
expected_utility(Aj, U2), U1 > U2.

Now the second abductive solution with b2 is ruled out because it leads to smaller
expected payoff (2.8) than that of the one with b1 (2.9).

As will be seen later on, the probability distribution over the possible choices of a
co-player can be given by an intention recognition system. In contradistinction to the
usual approach of simply counting prior occurrences of each choice (for instance in the
repeated interaction setting) [13], using an intention recognition method to derive the
probability distribution of the choices can account for the reasons why the co-player
chose such choices. For instance, in the course of the iterated PD, if our co-player
defected it might be because we defected in the past [9,10]), and he does not trust us
much. This is an interesting combination of intention recognition and decision making
under uncertainty.

Evolution Result A Posteriori Preference While looking ahead a number of steps into
the future, the agent is confronted with the problem of having several different possible
courses of evolution. It needs to be able to prefer amongst them to determine the best
courses from its present state (and any state in general). The a posteriori preferences
are no longer appropriate, since they can be used to evaluate only one-step-far conse-
quences of a commitment. A posteriori preference is generalized to prefer between two
evolutions (i.e. courses of actions). An evolution result a posteriori preference is per-
formed by evaluating consequences of following some evolutions [15]. It is extended
here to account for multiple relevant consequences of evolutions under uncertainty, by
maximizing expected utility using the rule

Ei ≪ Ej ← expected utility evol(Ei, Ui), expected utility evol(Ej , Uj), Ui > Uj

where Ei, Ej are two distinct evolutions. This preference implies that Ei is preferred
to Ej if the expected utility of relevant consequences of pursuing Ei is greater than the
expected utility of the ones when pursuing Ej .

Example 4 (Playing games with limited resource [19]). Acting on an environment, an
agent may engage in different kinds of games (situations or affairs). With a limited
resource, it might not participate in all the game rounds. It thus needs to be able to
assess which game round is more important, possibly leading to greater benefits, and
may need to forego the immediate interaction (despite its immediate benefit) in order
to save the necessary resource for investing in future interactions. The evolution result
a posteriori preferences can help deal with this kind of games. Let us consider the
following EP example for illustration.



1. abds([invest_now/0, refuse_now/0,
invest_later/0, refuse_later/0]).

2. expect(invest_now). expect(refuse_now).
3. on_observe(choose) <- decide_invest_now.

choose <- invest_now. choose <- refuse_now.
4. gain1(100) <- invest_now. gain1(0) <- refuse_now.

lose_resource <- invest_now. save_resource <- refuse_now.
5. Ai << Aj <- holds_given(gain1(Gi), Ai),

holds_given(gain1(Gj), Aj), Gi > Gj.

6. on_observe(decide) <- invest_opportunity.
decide <- invest_later. decide <- refuse_later.

7. expect(invest_later) <- save_resource.
expect(refuse_later).

8. gain2(1000,0.6) <- invest_later. gain2(0,1) <- refuse_later.
9. Ei <<< Ej <- expected_utility_evol(Ui, Ei),

expected_utility_evol(Uj, Ej), Ui > Uj.

begingProlog.
10. consequences([gain1(_), gain2(_,_)]).
11. util(gain1(U), U). util(gain2(U,_), U).
12. prc(gain1(_), 1). prc(gain2(_, P), P).
endProlog.

In the first cycle of evolution, there are two abducibles, invest now and refuse now,
declared in line 1, to solve the active goal choose.

In the case the agent is not capable of looking further ahead into the future, it would
choose to invest its resource in the current game round since it would lead to imme-
diate benefit (100 vs. 0), i.e. the a posteriori preference in line 5 is taken into account
immediately. Then, in the next cycle, it would not be able to take advantage of a more
beneficial interaction, since the necessary resource is not saved (line 7), and that leads
to the outcome with lower expected utility.

But if the agent is able to look further ahead, i.e. it can see that on the next (game)
cycle, if it has enough resource, it will have a good opportunity to make a more bene-
ficial investment (line 6). The evolution result a posteriori preference is employed in
line 9 to prefer the evolution with greater expected utility (0× 1+1000× 0.6 = 600 >
100 = 100× 1 + 0× 1), which is to refuse to invest in the first game round in order to
save the resource for the investment in the second game round.

3 Intention-based Decision Making in Game Theory
There are several ways an EP agent can benefit from the ability to recognize intentions
of other agents, both in friendly and hostile settings. Knowing the intention of an agent
is a means to predict what it will do next or might have done before [4,7]. The recog-
nizing agent can then plan in advance to take the best advantage of the prediction, or
act to take remedial action. Technically, in the EP system, this new kind of knowledge
may impinge on the body of any EP constructs, such as active goals, expectation and
counter-expectation rules, preference rules, integrity constraints, etc., providing for a



new kind of trigger [8]. Proposing commitments to cooperate is a form of intention
recognizing too [11,7].

3.1 Intention Recognition with Bayesian Networks
In [16,17], a general Bayesian Network (BN) model for intention recognition is pre-
sented. Basically, the BN consists of three layers: cause/reason nodes in the first layer
(called pre-intentional), connecting to intention nodes in the second one (called inten-
tional), in turn connecting to action nodes in the third (called activity) (see [16] for de-
tails). In general, intention recognition consists in computing the probabilities of each
conceivable intention conditional on the current observations, including the observed
actions in the third layer, and some of the causes/reasons in the first layer. The predic-
tion of what is the intention of the observed agent can simply be the intention with the
greatest conditional probability, possibly above some minimum threshold. Sometimes
it is also useful to predict what are the N (N ≥ 2) most likely intentions given the
current observations [3]. The BN inference for intention recognition is implemented
using P-log, a probabilistic logic system [12,2], enabling a coherent integration into EP
[16,17].

oTrust (Tr) Intention (I) pastObs (O) 

Fig. 1: Bayesian Network for Intention Recognition in Repeated Social Dilemmas.

Example 5 (Intention recognition in repeated games). As an example, consider the
three-layered BN for intention recognition in repeated interaction settings (Figure 1),
provided in [9]. The pre-intentional layer has one node, oTrust (Tr), the other player’s
trust in the player, and receives boolean values, t (true) or f (false). The intentional
layer has a single node, Intention (I), receiving value C or D. It is causally affected
by oTrust. The activity layer has one node, pastObs (O), causally affected by Intention
node. Its value is a pair (n C, n D) where n C and n D are the number of times the
recognized player cooperated and defected, respectively, in the recent M (memory size)
steps. pastObs is the only observed node. More details can be found in [9].

In order to account for intentions of other agents in decision making with EP, we
provide a built-in predicate, has intention(Ag , I ), stating that an agent Ag has the
intention I . The truth-value of this predicate is evaluated by the intention recognition
system. Whenever this predicate is called in an EP program, the intention recognition
system is employed to check if Ag has intention I , i.e. I is the most likely conceivable
intention at that moment. We also provide predicate has intention(Ag , I ,Pr), stating
that agent Ag has intention I with probability Pr. Hence, one can express, for example,
the situation where one needs to be more, or less, cautious.

In the sequel we draw closer attention to some EP constructs, exemplifying how to
take into account intentions of others for decision making enhancement.

3.2 Intentions Triggering Active Goals

Recall that an active goal has the form: on observe(AG)← L1, ..., Lt (t ≥ 0), where
L1,...,Lt are domain literals. At the beginning of each cycle of evolution, those literals



are checked with respect to the current evolving knowledge base and trigger the active
goal if they all hold. For intention triggering active goals, the domain literals in the body
can be in the form of has intention predicates, accounting for other agents’ intentions.

This way, any intention recognition system can be used as the goal producer for
decision making systems, the inputs of which are used to trigger (active) goals to be
solved (see for instance [17]).

It is easily seen that intention triggering active goals are ubiquitous. New goals often
appear when one recognizes some intentions in others. We might want to help friends to
achieve their intentions, while it is desirable to prevent our foes from achieving theirs.
Or, we simply want to plan in advance to take advantage of the hypothetical future
obtained when the intending agent employs the plan that achieves his intention.

Example 6 (Intention triggering active goals in games). In the previous example, we
may say that an opportunity for a good investment can be inferred from recognizing the
intention of others who, for instance, intend to put forward a new company.

on_observe(decide_invest) <-
person(P), has_intention(P, open_new_company).

Furthermore, one can similarly apply this to any coordination game [13,20], where
it is crucial to recognize co-players’ intentions to achieve a smooth coordination or
cooperation, providing help when necessary.

3.3 Intention Triggering Preferences

Having recognized an intention of another agent, the recognizing agent may either fa-
vor or disfavor an abducible (a priori preferences), an abductive solution (a posteriori
preferences) or an evolution (evolution result a posteriori preferences) with respect to
another, respectively, depending on the setting they are in. If they are in a friendly
setting (e.g. players in one same coalition in cooperative games [13]), the one which
provides more support to achieve the intention is favored; in contrast, in a hostile set-
ting (e.g. players in different coalitions in cooperative games [13]), the one providing
more support is disfavored. The recognizing agent may also favor one which takes bet-
ter advantage of the recognized intention.

For illustration, let us consider some examples of intention-based decision making
within an evolving population of agents interacting using the well-known Prisoner’s
Dilemma (PD) [13,20], where in each interaction a player needs to choose a move,
either to cooperate (‘c’) or to defect (‘d’). In a one-shot PD interaction, one is always
better off choosing to defect, but cooperation might be favorable if the PD is repeated
(called iterated PD), that is, there is a good chance that players will play the same PD
with each other again. Several successful strategies have been provided in the context of
the iterated PD (see a survey in [20, Ch. 3]), most famously amongst them are tit-for-tat
(tft) and win-stay-lose-shift (wsls).

The following two strategies (each denoted by IR), operating upon intention-based
decision making in the course of iterated PD, have been shown to be better than those
two famous strategies [9,10]—they can dynamically assess the ongoing strategic in-
tentions of others as the population evolves. In the sequel we show how they can be
modeled within our framework, thereby demonstrating its applicability as a modeling
framework of strategies in dynamic game situations [20].



Example 7 (Intention-based decision making rule, in [9,7]). Prefer to cooperate if the
co-player intends to cooperate, and prefer to defect otherwise.

1. abds([move/1]).
2. on observed(decide)← new interaction.

3. decide← move(c). decide← move(d). ← move(c), move(d).

4. expect(move(X)).

5. move(c) / move(d)← has intention(co player, c).

move(d) / move(c)← has intention(co player, d).

At the start of a new interaction, an IR player needs to choose a move, either cooperate
(c) or defect (d) (lines 2-3). Both options are expected, and there are no expectations
to the contrary (line 4). There are two a priori preferences in line 5, stating that an IR
player prefers to cooperate if the co-player’s recognized intention is to cooperate, and
prefers to defect otherwise. The built-in predicate has intention/2, when in the body
of the preferences, triggers the intention recognition module to validate, on the fly, if
the co-player is more likely to have the intention expressed in the second argument.

Now let us see how this strategy behaves when interacting with another strategy,
in the course of an iterated PD. Consider an opponent that always defects (denoted by
alld). In the first interaction, alld already defects. Using the BN model in Figure 1,
IR predicts that the co-player has intention of defecting in the next round, that is, the
second a priori preference in line 5 is activated. It results in that the program has only
one abductive solution with move(d). So IR will defect in the next round.

If the opponent is an allc or tft, both of which cooperate in the first round, then IR
recognizes them as having intention of cooperating in the next round, that is, the first
preference is activated. The EP program has only one abductive solution, containing
move(c), i.e. IR will cooperate in the next round.

We next consider a more complex intention-based decision making rule in the iterated
PD, where IR recognizes the actual strategy of its co-player, envisaged as the intention
to play in a way defined by that strategy.

Example 8 (Intention-based decision making rule, in [10]). Defect if the co-player’s
recognized intention or rule of behavior is always-cooperate (allc) or always-defect
(alld), cooperate if it is tft; and if it is wsls, cooperate if in the last game state both
cooperated (denoted by R) or both defected (denoted by P), and defect if the current
game state is that IR defected and the co-player cooperated (denoted by T) or vice
versa (denoted by S). Furthermore, IR also has the option of opting out when it is
not confident about its co-player’s intention [7]. This rule of behavior is learnt using a
dataset collected from prior interactions with those strategies [10].

1. abds([move/1]).
2. on observed(decide)← new interaction.

3. decide← move(c). decide← move(d). ← move(c), move(d).

4. expect(move(X)) ← has intention(co player, I, Pr), P r > 0.7.

5. move(d) / move(c)← has intention(co player, allc).

move(d) / move(c)← has intention(co player, alld).

move(c) / move(d)← has intention(co player, tft)

move(c) / move(d)← has intention(co player, wsls),

game state(s), (s = ‘R’; s = ‘P’).



move(c) / move(d)← has intention(co player, wsls),

game state(s), (s = ‘T’; s = ‘S’).
Similarly, at the start of a new interaction, an IR needs to choose a move, either cooper-
ate or defect (lines 2-3). But differently, now any of such moves is expected to be made
only if IR is confident enough about its co-player intention, i.e. the probability the most
likely intention is greater than a given threshold [3], say 0.7 as in our example (line 4).
The a priori preferences in line 5 state which move IR prefers to choose, given the rec-
ognized intention of the co-player (allc, alld, tft or wsls) and the current game state (T,
R, P or S). More details on how this strategy interacts with others and its performance
can be found in [10].

4 Conclusions and Future Work
We have summarized, generalized, and extended our previously LP-based implemented
Evolution Prospection system—with several novel extensions for intention-based deci-
sion making—and have described several ways in which it can be useful for knowledge
representation and reasoning in strategic scenarios, leading to a computational model
of the basic dynamics of mental attitudes in such situations. Overall, it can take into
account ongoing intentions of others, be triggered by new observations and ongoing
recognized intentions of others, in order to attempt new goals and new preferences. A
case in point, is to recognize the strategy intention of others by proposing a commit-
ment to cooperate [7]. The presented computational logic based framework is general
and expressive, suitable for intention-based decision making in the wide context of dy-
namic strategic scenarios. The declarative specification of dynamic strategies, such as
we have illustrated, can be easily provided in more complex dynamic environments
such as those with uncertainty, limited resources, unexpected events, and changing pay-
offs. Moreover, it can be integrated with other LP tools and functionalities, and provides
a declarative rendering of decision making integrated with LP.

For future work, it appears that our diverse kinds of preferences and environment
trigger constructs can be generally applied for knowledge representation and reasoning
in different kinds of games. For instance, a posteriori (including evolution level) pref-
erences can be applied to extensive form games [13], whether with perfect or imperfect
information. Accounting for intentions of co-players can further improve the reason-
ing/decision making in more complex and dynamic game scenarios, such as multi-
player and evolutionary games [20]. We also plan to systematically compare our de-
cision making framework with the existing ones, at least within those game theoretical
settings.

Acknowledgements
The Anh Han acknowledges the support provided by the F.W.O. Belgium.

References

1. J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and gener-
alized stable models via tabled dual programs. Theory and Practice of Logic Programming,
4(4):383–428, 2004.



2. C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1):57–144, 2009.

3. N. Blaylock and J. Allen. Corpus-based, statistical goal recognition. In Proceedings of 18th
international joint conference on Artificial intelligence, pages 1303–1308, 2003.

4. M. E. Bratman. Intention, Plans, and Practical Reason. The David Hume Series, 1987.
5. Robert H. Frank, Thomas Gilovich, and Dennis T. Regan. The evolution of one-shot coop-

eration: An experiment. Ethology and Sociobiology, 14(4):247 – 256, 1993.
6. J.Y. Halpern. Reasoning about Uncertainty. MIT Press, 2005.
7. T. A. Han. Intention Recognition, Commitments and Their Roles in the Evolution of Co-

operation: From Artificial Intelligence Techniques to Evolutionary Game Theory Models,
volume 9 of SAPERE series. Springer Berlin / Heidelberg, 4 2013.

8. T. A. Han and L. M. Pereira. Intention-based decision making with evolution prospection. In
L. Antunes and H.S. Pinto, editors, Proceedings of 15th Portuguese Conference on Artificial
Intelligence (EPIA’2011), pages 254–267. Springer LNAI 7026, 2011.

9. T. A. Han, L. M. Pereira, and F. C. Santos. Intention recognition promotes the emergence of
cooperation. Adaptive Behavior, 19(3):264–279, 2011.

10. T. A. Han, L. M. Pereira, and F. C. Santos. Corpus-based intention recognition in cooperation
dilemmas. Artificial Life journal, 18(4):365–383, 2012.

11. T. A. Han, L. M. Pereira, and F. C. Santos. The emergence of commitments and cooperation.
In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’2012), pages 559–566. ACM, 2012.

12. T. A. Han, C. K. Ramli, and C. V. Damásio. An implementation of extended P-log using
XASP. In Proceedings of International Conference on Logic Programming (ICLP’08), pages
739–743. Springer LNCS 5366, 2008.

13. Martin J. Osborne. An introduction to game theory. Oxford University Press, 2004.
14. L. M. Pereira, P. Dell’Acqua, A. M. Pinto, and G. Lopes. Inspecting and preferring abductive

models. In Handbook on Reasoning-based Intelligent Systems. World Scientific Publishers,
2013.

15. L. M. Pereira and T. A. Han. Evolution prospection in decision making. Intelligent Decision
Technologies, 3(3):157–171, 2009.

16. L. M. Pereira and T. A. Han. Intention recognition via causal Bayes networks plus plan
generation. In Proceedings of 14th Portuguese International Conference on Artificial Intel-
ligence (EPIA’09), pages 138–149. Springer LNAI 5816, October 2009.

17. L. M. Pereira and T. A. Han. Intention recognition with evolution prospection and causal
Bayesian networks. In Computational Intelligence for Engineering Systems 3: Emergent
Applications, pages 1–33. Springer, 2011.

18. Sina Radke, Berna Guroglu, and Ellen R. A. de Bruijn. There’s something about a fair split:
Intentionality moderates context-based fairness considerations in social decision-making.
PLoS ONE, 7(2):e31491, 02 2012.

19. Rubén J. Requejo and Juan Camacho. Evolution of cooperation mediated by limiting re-
sources: Connecting resource based models and evolutionary game theory. Journal of Theo-
retical Biology, 272(1):35–41, 2011.

20. Karl Sigmund. The Calculus of Selfishness. Princeton University Press, 2010.
21. M. Tomasello. Origins of Human Communication. MIT Press, 2008.
22. M. van Hees and O. Roy. Intentions and plans in decision and game theory. In Reasons and

intentions, pages 207–226. Ashgate Publishers, 2008.
23. XSB. The XSB system version 3.2 vol. 2: Libraries, interfaces and packages, March 2009.


