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Abstract. Employing a logic program approach, this paper focuses on
applying preferential reasoning to theory revision, both by means of pref-
erences among existing theory rules, and by means of preferences on the
possible abductive extensions to the theory. And, in particular, how to
prefer among plausible abductive explanations justifying observations.

1 Introduction

Logic program semantics and procedures have been used to characterize pref-
erences among the rules of a theory [5]. Whereas the combination of such rule
preferences with program updates and the updating of the preference rules them-
selves [4] have been tackled, a crucial ingredient has been missing, namely the
consideration of abductive extensions to a theory, and the integration of revisable
preferences among such extensions. The latter further issue is the main subject
of this paper.

We take a theory expressed as a logic program under stable model semantics,
already infused with preferences between rules, and we add a set of abducibles
constituting possible extensions to the theory, governed by conditional priority
rules amongst preferred extensions. Moreover, we cater for minimally revising
the preferential priority theory itself, so that a strict partial order is always
enforced, even as actual preferences are modified by new incoming information.
This is achieved by means of a diagnosis theory on revisable preferences over
abducibles, and its attending procedure.

First we supply some epistemological background to the problem at hand.
Then we introduce our preferential abduction framework, and proceed to apply
it to exploratory data analysis. Next we consider the diagnosis and revision
of preferences, theory and method, and illustrate it on the data exploration
example. Finally, we exact general epistemic remarks on the approach.

1.1 Preferences, Rationality, Theory Revision, and AI

(I) The theoretical notions of preference and rationality with which we are most
familiar are those of the economists’. Economic preference is a comparative



choice between outcomes alternative outcomes whereby a rational (economic)
agent is one whose expressed preferences over a set of outcomes exhibits the
structure of a complete pre-order.

However, preferences themselves may change. Viewing this phenomena as a
comparative choice, however, entails that there are meta-level preferences whose
outcomes are various preference rankings of beliefs and that an agent chooses
a change in preference based upon a comparative choice between the class of
first-order preferences [6]. But this is an unlikely model of actual change in pref-
erence, since we often evaluate changes—including whether to abandon a change
in preference–based upon items we learn after a change in preference is made.
Hence, a realistic model of preference change will not be one that is couched
exclusively in decision theoretic terms. Rather, when a conflict occurs in updat-
ing beliefs by new information, the possible items for revision should include
both the set of conflicting beliefs and a reified preference relation underlying
the belief set. The reason for adopting this strategy is that we do not know, a
priori, what is more important—our data or our theory. Rather, as Isaac Levi
has long advocated [13], rational inquiry is guided by pragmatic considerations
not a priori constraints on rational belief. On Levi’s view, all justification for
change in belief is pragmatic in the sense that justification for belief fixation
and change are rooted in strategies for promoting the goals of a given inquiry.
Setting these parameters for a particular inquiry fixes the theoretical constraints
for the inquiring agent. The important point to stress here is that there is no
conflict between theoretical and practical reasoning on Levi’s approach, since the
prescriptions of Levi’s theory are not derived from minimal principles of rational
consistency or coherence [13].

(II) Suppose your scientific theory predicts an observation, o, but you in fact
observe ¬o. The problem of carrying out a principled revision of your theory
in light of the observation ¬o is surprisingly difficult. One issue that must be
confronted is what the principle objects of change are. If theories are simply
represented as sets of sentences and prediction is represented by material im-
plication, then we are confronted with Duhem’s Problem [7]: If a theory entails
an observation for which we have disconfirming evidence, logic alone won’t tell
you which among the conjunction of accepted hypotheses to change in order
to restore consistency. The serious issue raised by Duhem’s problem is whether
disconfirming evidence targets the items of a theory in need of revision in a
principled manner.

The AGM [1] conception of belief change differs to Duhem’s conception of the
problem in two important respects. First, whereas the item of change on Duhem’s
account is a set of sentences, the item of change on the AGM conception is a
belief state, represented as a pair consisting of a logically closed set of sentences (a
belief set) and a selection function. Theories are not represented as by replacing
entailment by the AGM postulates. What remains in common is what Sven
Hansson [10] has called the input-assimilating model of revision, whereby the
object of change is a set of sentences, the input item is a particular sentence,
and the output is a new set of sentences. But one insight to emerge is that the



input objects for change may not be single sentences, but a sentence-measure
pair [14], where the value of the measure represents the entrenchment of the
sentence and thereby encodes the ranking of this sentence in the replacement
belief set [14, 18, 19]. But once we acknowledge that items of change are not belief
simpliciter but belief and order coordinates, then there are two potential items
for change: the acceptance or rejection of a belief and the change of that belief
in the ordering. Hence, implicitly, the problem of preference change appears here
as well.

Within the AGM model of belief change, belief states are the principal objects
of change: propositional theory (belief set) changed according to what Sven
Hansson [10] has called the input-assimilating model, whereby the object of
change (a belief set) is exposed to an input (a sentence) and yields a new belief
set.

(III) Computer science has adopted logic as its general foundational tool,
while Artificial Intelligence AI has made viable the proposition of turning logic
into a bona fide computer programming language. At the same time, AI has
developed logic beyond the confines of monotonic cumulativity, typical of the
precise, complete, endurable, condensed, and closed mathematical domains, in
order to open it up to the non-monotonic real world domain of imprecise, incom-
plete, contradictory, arguable, revisable, distributed, and evolving knowledge. In
short, AI has added dynamics to erstwhile statics. Indeed, classical logic has
been developed to study well-defined, consistent, and unchanging mathematical
objects. It thereby acquired a static character. AI needs to deal with knowledge
in flux, and less than perfect conditions, by means of more dynamic forms of
logic. Too many things can go wrong in an open non-mathematical world, some
of which we don’t even suspect. In the real world, any setting is too complex
already for us to define exhaustively each time. We have to allow for unforeseen
exceptions to occur, based on new incoming information. Thus, instead of hav-
ing to make sure or prove that some condition is not present, we may assume
it is not (the Closed World Assumption - CWA), on condition that we are pre-
pared to accept subsequent information to the contrary, i.e. we may assume a
more general rule than warranted, but must henceforth be prepared to deal with
arising exceptions.

Much of this has been the focus of research in logic programming, a field of
AI which uses logic directly as a programming language1, and provides specific
implementation methods and efficient working systems to do so2. Logic pro-
gramming is moreover much used as a staple implementation vehicle for logic
approaches to AI.

1 Cf. [12] for the foundations and [3] for a relevant background for this paper.
2 For a most advanced system, incorporating recent theory and implementation de-

velopments, see the XSB system at: http://xsb.sourceforge.net/.



2 Framework

2.1 Language

Let L be a first order language. A domain literal in L is a domain atom A or
its default negation not A, the latter expressing that the atom is false by default
(CWA). A domain rule in L is a rule of the form:

A ← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. To express pref-
erence information, L contains priority rules. Let N = {nr1 , . . . , nrk

} be a name
set containing a unique name for every domain rule in L. Given a domain rule
r, we write nr to indicate its name. A priority atom is an atom of the form
nr < nu, where {nr, nu} ⊆ N .3 nr < nu means that rule r is preferred to rule
u. We assume that names in N do not include “<” itself. A priority rule in L is
a rule of the form:

nr < nu ← L1, . . . , Lt (t ≥ 0)

where nr < nu is a priority atom and every Li (1 ≤ i ≤ t) is a domain literal or
a priority literal.

We use the following convention. Given a rule r of the form L0 ← L1, . . . , Lt,
we write H (r) to indicate L0, B(r) to indicate the conjunction L1, . . . , Lt. We
write B+(r) to indicate the conjunction of all positive literals in B(r), and B−(r)
to indicate the conjunction of all negated literals in B(r). When t = 0 we write
the rule r simply as L0.

Let A ⊆ L be a set of domain atoms, called abducibles. Abducibles may be
thought of as hypotheses that can be used to extend the current theory of the
agent, in order to provide hypothetical solutions or possible explanations for
given queries.

A (logic) program P over L is a finite set of domain rules and priority rules.
Every program P has associated a set of abducibles AP , without rules in P .
A 2-valued interpretation M of L is any set of literals from L that satisfies the
condition that, for any atom A, precisely one of the literals A or not A belongs to
M . We say that an interpretation M satisfies a conjunction of literals L1, . . . , Lt,
and write M |= L1, . . . , Lt, if every literal Li in the conjunction belongs to M .

2.2 Declarative Semantics

In the remaining of this section we let P be a program over L, AP the set of
abducibles of P , and M an interpretation of L. We write least(P ) to indicate
the least model of P . We adopt the first two definitions from [9], and Definitions
4 and 5 from [4].

3 In order to establish the preferred abductive stable models (cf. Def. 6), we require
the relation induced by < to be a well-founded, strict partial ordering on N.



Definition 1. The set of default assumptions of P with respect to M is:

Default(P, M) = {not A : 6 ∃r ∈ P such that H (r) = A and M |= B(r)}.

Definition 2. M is a stable model of P iff M = least(P ∪Default(P, M)).

Definition 3. Let 4 ⊆ AP . M is an abductive stable model with hypotheses 4
of P iff:

M = least(P+ ∪Default(P+,M)), where P+ = P ∪4.

Note that the abducibles inAP are defined false by default whenever they are not
abduced. Given a program P , to compute which of its abductive stable models
are preferred according to the priority relation <, we remove (from the program)
all the unsupported rules together with the less preferred rules defeated by the
head of some more preferred one, in a priority rule. Unsupported rules are those
whose head is true in the model but whose body is defeated by the model, ie.
some of its default negated atoms are false in it:

Definition 4. The set of unsupported rules of P and M is:

Unsup(P,M) = {r ∈ P : M |= H (r),M |= B+(r) and M 6|= B−(r)}.

Definition 5. Unpref (P, M) is a set of unpreferred rules of P and M iff:

Unpref (P, M) = least(Unsup(P, M) ∪Q), where

Q = { r ∈ P : ∃u ∈ (P −Unpref (P, M)) such that M |= nu < nr, M |= B+(u),
and [ not H (u) ∈ B−(r) or (not H (r) ∈ B−(u), M |= B(r)) ] }.

A rule r is unpreferred if it is unsupported or there exists a more preferred rule
u (which is not itself unpreferred) such that the positive literals in B(u) hold,
and r is defeated by u or r attacks (i.e., attempts to defeat) u. Note that only
domain rules can be unpreferred since it is required that M |= nu < nr holds,
where nu and nr are names of domain rules.

The following definition introduces the notion of preferred abductive stable
model. Given a program P and a set 4 of hypotheses, a preferred abductive
stable model with hypotheses 4 of P is a stable model of the program that
contains all the hypotheses in4, and all those rules in P that are not unpreferred.

Definition 6. Let 4 ⊆ AP and M an abductive stable model with hypotheses
4 of P . M is a preferred abductive stable model with hypotheses 4 of P iff :

1. if M |= nr1 < nr2 , then M 6|= nr2 < nr1

2. if M |= nr1 < nr2 and M |= nr2 < nr3 , then M |= nr1 < nr3

3. M = least(P+ −Unpref (P+,M) ∪Default(P+,M)), with P+ = P ∪4.



Conditions 1 and 2 state that the preference relation ’<’ is required to be a
strict partial order. When the language contains only domain rules and priority
rules (that is, there are no abducibles), the semantics reduces to the Preferen-
tial semantics of Brewka and Eiter [5]. If integrity constraints are introduced,
this semantics generalizes to the Updates and Preferences semantics of Alferes
and Pereira [4], which extends updatable logic programs with updatable pref-
erences. Our semantics takes the latter, without formally addressing updating,
and complements it with modifiable abducibles.

Definition 7. An abductive explanation for a query G is any set 4 ⊆ AP

of hypotheses such that there exists a preferred abductive stable model M with
hypotheses 4 of P for which M |= G.

A program may have several abductive explanations for a query G.

3 Preferring Abducibles

In our framework we defined the preference relation over domain rules. A possi-
ble question is: Can we also express preferences over abducibles? Being able to
do so will allow us to compare the competing explanations for an observed be-
haviour. The evaluation of alternative explanations is one of the central problems
of abduction. Indeed, an abductive problem of a reasonable size (for example in
diagnosis) may have a combinatorial explosion of possible explanations to han-
dle. Thus, it is important to generate only the explanations that are relevant for
the problem at hand. Several proposals about how to evaluate competing expla-
nations have been proposed. Some of them involve a “global” criterion against
which each explanation as a whole can be evaluated. A general drawback of
those approaches is that global criteria are generally domain independent and
computationally expensive. An alternative to global criteria for competing al-
ternative assumptions is to allow the theory to contain rules encoding domain
specific information about the likelihood that a particular assumption be true.
In our approach we can express preferences among abducibles to discard the
unwanted assumptions in context. Preferences over alternative abducibles can
be coded into cycles over default negation, and preferring a rule will break the
cycle in favour of one abducible or another. In our framework, we employ the
notion of expectation to express the preconditions for assuming an abducible a.
If we have an expectation for a, and we do not have an expectation for not a,
then a can be confirmed, and therefore a can be assumed.

To express preference criteria among abducibles, we introduce the language
L∗. A relevance atom is one of the form a/ b, where a and b are abducibles. a / b
means that the abducible a is more relevant than the abducible b. A relevance
rule is a rule of the form:

a / b ← L1, . . . , Lt (t ≥ 0)

where a / b is a relevance atom and every Li (1 ≤ i ≤ t) is a domain literal or a
relevance literal. Let L∗ be a language consisting of domain rules and relevance
rules.



Example 1. Consider a situation where an agent Claire drinks either tea or coffee
(but not both). Suppose that Claire prefers coffee over tea when sleepy. This
situation can be represented by a program Q over L∗ with the set of abducibles
AQ = {tea, coffee}:

Q =





drink ← tea
drink ← coffee
expect(tea)
expect(coffee)
expect not(coffee) ← blood pressure high
coffee / tea ← sleepy





Notice that / expresses relevance among abducibles that are alternative. There-
fore, Q need not contain the two rules:

tea ← not coffee and coffee ← not tea

expressing that the abducibles tea and coffee exclude one another. Having the
notion of expectation allows one to express the preconditions for an expectation
or otherwise about an assumption a, and express which possible expectations are
confirmed (or go through) in a given situation. If the preconditions do not hold,
then expectation a cannot be confirmed, and therefore a will not be assumed.
For example, the rules:

expect(tea) ← have tea and expect(coffee) ← have coffee

express that one has an expectation for tea and coffee if he has them. By means
of expect not one can express situations where one does not expect something.
The rule

expect not(coffee) ← blood pressure high

states not to expect coffee if one has high blood pressure. In this case, coffee will
not be confirmed or go through because of the contrary expectation arising as
well (and therefore tea will be assumed).

The following definition exploits the relevancy relation / of a program Q to
distinguish which of its abductive stable models are relevant.

Definition 8. Let Q be a program over L∗ with set of abducibles AQ and M
an interpretation of L∗. Let a ∈ AQ be an abducible. M is a relevant abductive
stable model of Q with hypothesis 4 = {a} iff :

1. for every x, y ∈ AQ, if M |= x / y then M 6|= y / x

2. for every x, y, z ∈ AQ, if M |= x / y and M |= y / z, then M |= x / z

3. there exists no relevance rule r in Q such that M |= B(r), H (r) = x / a,
M |= expect(x), and M 6|= expect not(x)

4. M |= expect(a) and M 6|= expect not(a)



5. M = least(Q+ ∪Default(Q+,M)), with Q+ = Q ∪4.

Letting 4 be a singleton guarantees that the abducibles in AQ are alternative in
the sense that only one can be assumed. Note that for simplicity of exposition,
we consider 4 to be a singleton. This can be generalized to a set of abducibles,
and the preference order can be adapted to one among sets. As required by
a preference relation, it is natural to demand that the relevancy relation be a
strict partial order (conditions 1 and 2 above). Condition 3 guarantees that there
exists no abducible x (which can be confirmed) more relevant than a. The notion
of expectation is incorporated directly into the definition of relevant abductive
stable model by condition 4. Finally, condition 5 requires interpretation M to
be an abductive stable model with hypotheses 4.

Example 2. Let Q be the program of Example 1. Q has two alternatives expla-
nations 41 = {coffee} and 42 = {tea} for the query drink. In fact, Q has two
relevant abductive stable models:

M1 = {expect(tea), expect(coffee), coffee, drink} with hypotheses 41

M2 = {expect(tea), expect(coffee), tea, drink} with hypotheses 42

for which M1 |= drink and M2 |= drink. The number of models reduces to one
if we add sleepy to Q. In this case, coffee being an abducible more relevant than
tea and consequently the only relevant model of Q is M1 ∪ {sleepy}.
The following syntactical transformation maps programs over L∗ into programs
over L, and thereby gives us a proof procedure for the language L∗.
Definition 9. Let Q be a program over L∗ with set of abducibles AQ = {a1, . . . , am}.
The program P = Σ(Q) with abducibles AP = {abduce} is obtained as follows:

1. P contains all the domain rules in Q;
2. for every ai ∈ AQ, P contains the domain rule:

confirm(ai) ← expect(ai),not expect not(ai)
3. for every ai ∈ AQ, P contains the domain rule:

ai ← abduce,not a1, . . . ,not ai−1,not ai+1, . . . ,not am, confirm(ai) (ri)
4. for every relevance rule ai / aj ← L1, . . . , Lt in Q, P contains the priority

rule:
ri < rj ← L1, . . . , Lt

To take into consideration expectations, the transformation Σ adds (step 2) a
rule defining the notion of confirmation for every abducible ai in AQ. Then,
Σ codes the alternative abducibles of AQ into mutually defeating cycles over
default negation (step 3), and preferring a rule (step 4) will break the cycle
in favour of one abducible or another. Note that every rule added at step 3
contains in its body the abducible abduce and confirm(ai). The role of abduce is
to enact the assumption of one of the alternative assumptions needed to prove
the query4, while the role of confirm(ai) is to require that the expectations for
ai are satisfied. It is easy to see that Σ(Q) is a program over the language L.
4 If the query holds without making assumptions, then abduce is not abduced and

none of the alternative assumptions in AQ can be assumed.



Example 3. Let Q be the program of Example 1. The transformation Σ maps
Q into the program P with abducibles AP = {abduce}:

P =





drink ← tea
drink ← coffee

expect(tea)
expect(coffee)

expect not(coffee) ← blood pressure high

coffee ← abduce,not tea, confirm(coffee) (1)
tea ← abduce,not coffee, confirm(tea) (2)

confirm(tea) ← expect(tea),not expect not(tea)
confirm(coffee) ← expect(coffee),not expect not(coffee)

1 < 2 ← sleepy





.

The role of the abducible abduce is to enact the assumption of one of the alterna-
tive assumptions tea or coffee needed to prove drink. The rules (1) and (2) code
the alternative assumptions tea and coffee into cycles over negation. Rule (1)
says that coffee can be assumed if abduce has been abduced, tea is not assumed,
and coffee is confirmed. The last rule in P is a priority rule stating that rule
(1) is preferable to rule (2) if sleepy holds. P has two preferred abductive stable
models with hypotheses 4 = {abduce}:

M1 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee), coffee, drink }

M2 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee), tea, drink }
The number of preferred abductive stable models reduces to one if sleepy holds.
In that case, the unique preferred abductive stable model would be:

M3 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee),
coffee, drink, sleepy, 1<2 }.

The following result states the correctness of the transformation Σ. Given an
interpretation M , we write M̂ to indicate the interpretation obtained from M
by removing the abducible abduce, the priority atoms, and all the domain atoms
of the form confirm(.).

Proposition 1. Let Q be a program over L∗ with abducibles AQ and P = Σ(Q).
Then, M is a preferred abductive stable model with hypotheses 4 = {abduce} of
P iff M̂ is a relevant abductive stable model of Q.

4 Exploratory Data Analysis

Another application of expressing preferences over abducibles is that of ex-
ploratory data analysis, which aims at suggesting a pattern for further inquiry,



and contributes to the conceptual and qualitative understanding of a phenom-
enon. Assume that a unexpected phenomenon, x, is observed by an agent Bob,
and that Bob has three possible hypotheses (abducibles) a, b, c, capable of ex-
plaining it. In exploratory data analysis, after observing some new facts, we
abduce explanations and explore them to check predicted values against obser-
vations. Though there may be more than one convincing explanation, we abduce
only the more plausible. The next example illustrates explanatory data analysis.

Example 4. Let the program Q over L∗, with abducibles AQ = {a, b, c}, be the
theory of agent Bob:

Q =





x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)
a / c ← not e
b / c ← not e
b / a ← d





where the meaning is as follows:
x - the car does not start,
a - the battery has problems,
b - the ignition is damaged,
c - there is no gasoline in the car,
d - the car’s radio works,
e - the wife has used the car, and

exp - test if the car’s radio works.

Q has two relevant abductive stable models capable of explaining observation x:

M1 = {expect(a), expect(b), expect(c), a / c, b / c, a, x} with hypothesis 41 = {a}
M2 = {expect(a), expect(b), expect(c), a / c, b / c, b, x} with hypothesis 42 = {b}
In this example, we have only a partial relevancy theory over abducibles. Thus,
we cannot select exactly one abducible (i.e., one model), as it were the case had
we a complete relevancy relation over all abducibles in AQ. To prefer between a
and b, one can perform some experiment exp to obtain confirmation (by observing
the environment) about the most plausible hypothesis. To do so, we can employ
active rules that are rules of the form:

L1, . . . , Lt ⇒ α : A

where L1, . . . , Lt are domain literals, and α : A is an action literal. This rule
states to update the theory of an agent α with A if its body L1, . . . , Lt is satisfied
in all relevant abductive stable models. For example, we can add the following
rules (where env plays the role of the environment) to the theory Q of Bob:

{
choose ← a
choose ← b

}
together with





a ⇒ Bob : chosen
b ⇒ Bob : chosen
choose ⇒ Bob : (not chosen ⇒ env : exp)



 .

Initially Bob has two hypotheses, a and b, that are capable of explaining the
observed phenomena x. Hence, Bob must discover the correct one. Bob chooses
some hypothesis if a or b hold:

choose ← a
choose ← b.



With this knowledge, Bob still has two relevant abductive stable models: M3 =
M1 ∪ {choose} and M4 = M2 ∪ {choose}. As choose holds in both models, the
last active rule is triggerable. When triggered, it will add (at the next state) the
active rule not chosen ⇒ env : exp to the theory of Bob, and, if not chosen holds,
Bob will perform the experiment exp. The first two active rules are needed to
prevent Bob from performing exp when Bob has chosen one of the abducibles.

5 Revising Relevancy Relations

The relevancy relation / is required by Definition 8 to be a strict partial order.
Relevancy relations are subject to be modified when new information is brought
to the knowledge of an individual, or aggregated when we need to represent and
reason about the simultaneous relevancy relations of several individuals. The
resulting relevancy relation may not be a strict partial order and must therefore
be revised. This section investigates the problem of revising relevancy relations
by means of declarative debugging. Mark that, more generally, the conditions on
the preference order need not be those of a strict partial order, but may be any
other desirable conditions. In any case, the resulting possible revisions provide
as many alternative coherent choices on the preferences actually adopted as a
result of any single revision.

Example 5. Let /1 and /2 be two relevancy relations. Suppose that /1 and /2

are combined by boolean composition, that is, / = /1 ∪ /2. Clearly, / is not a
strict partial order being antisymmetric, and transitivity not being preserved.
Consider the following program Q over L∗ with abducibles AQ = {a, b, c}:

Q =





x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)





∪





ū / v̄ ← ū /1 v̄
ū / v̄ ← ū /2 v̄
a /1 b
b /1 c
b /2 a





where ū and v̄ are variables ranging over the abducibles in AQ. The program Q
does not have any relevant abductive stable model since / is not a strict partial
order and therefore conditions 1 and 2 of Definition 8 are not met.

With the aim of revising relevancy relations, we introduce the language L+

extending L∗ to contain integrity constraints. The latter are rules of the form:

⊥ ← L1, . . . , Lt (t ≥ 0)

where ⊥ is a domain atom denoting contradiction, and L1, . . . , Lt are domain
or relevance literals. Integrity constraints are rules that enforce some condition,
and in this case they take the form of denials. Domain rules are distinct from
integrity constraints and must not be expressed as denials. In domain rules, it is
of crucial importance which atom occurs in their head. The language L+ consists



of domain rules, relevance rules, and integrity constraints. In L+ there are no
abducibles, and therefore its meaning is characterized in terms of stable models.
Given a program T over L+ and a literal L, we write T |= L if L is true in every
stable model of T . The program T is contradictory if T |= ⊥. Clearly, programs
over L+ are liable to be contradictory because of the integrity constraints.

We introduce now the notion of diagnosis, adapted from [16], to handle rel-
evancy relations. Given a contradictory program T , to revise its contradiction
(⊥) we have to modify T by adding and removing rules. In this framework, the
diagnostic process reduces to finding such rules. To specify which rules in T may
be added or removed, we assume given a set C of predicate symbols of L+. C
induces a partition of T into two disjoint parts: a changeable one Tc and a sta-
ble one Ts. The part Tc contains the rules in T defining atoms in C, while Ts

contains the rules in T defining atoms not belonging to C. The part Tc is the
one subject to the diagnosis process.

Definition 10. Let T be a program and C a set of predicate symbols in L+. Let
D be a pair 〈U, I〉 where U ⊆ C and I ⊆ Tc. Then D is a diagnosis for T iff
(T − I) ∪ U 6|= ⊥. The pair 〈{} , {}〉 is called the empty diagnosis.

Intuitively, a diagnosis specifies the rules to be added and removed from the
changeable part of T to revise its contradiction ⊥. In order to minimize the
number of changes we consider minimal diagnoses.

Definition 11. Let T be a program and D = 〈U, I〉 a diagnosis for T . Then, D
is a minimal diagnosis for T iff there exists no diagnosis D2 = 〈U2, I2〉 for T
such that (U2 ∪ I2) ⊆ (U ∪ I).

The following example illustrates the notion of minimal diagnosis. To check
whether or not the relevancy relation / of a program is a strict partial order, we
need to express (within the program itself) the properties required for /.

Example 6. Consider the program Q of Example 5. To express that the relevancy
relation of Q is a strict partial order, we add to Q the rules:

T = Q ∪



⊥ ← ū / ū
⊥ ← ū / v̄, v̄ / ū
⊥ ← ū / v̄, v̄ / z̄,not ū / z̄





where ū, v̄, and z̄ are variables ranging over the abducibles in AQ. Since a / b
and b / a belong to every stable model of T , we conclude ⊥ and thus engender
a contradiction. To revise T we need to identify its stable and changeable part.
Let C = {/1, /2}. This means that only the relevancy relations /1 and /2 are
subject to revision:

Tc =





a /1 b
b /1 c
b /2 a



 and Ts = T − Tc. T admits three minimal diagnoses:

D1 = 〈{}, {a /1 b}〉, D2 = 〈{}, {b /1 c, b /2 a}〉 and D3 = 〈{a /1 c}, {b /2 a}〉.



To compute the minimal diagnoses of a contradictory program T , we employ the
contradiction removal method presented in [16], adapted here to handle relevancy
relations. The contradiction removal method is based on the idea of revising (to
false) some of the default atoms not A. A default atom not A can be revised to
false by simply adding A to T . According to [16] the default literals not A that
are allowed to change their truth value are those for which there exists no rule
in T defining A. Such literals are called revisable.

Definition 12. The revisables of a program T over L+ is a subset of the set of
atoms A (with A 6= ⊥) for which there are no rules defining A in T .

Definition 13. Let T be a program over L+ and V a set of revisables of T . A
set Z ⊆ V is a revision of T iff T ∪ Z 6|= ⊥.

Example 7. Consider the contradictory program T = Ts ∪ Tc :

Ts =




⊥ ← a, a′

⊥ ← b
⊥ ← d, not f



 and Tc =





a ← not b, not c
a′ ← not d
c ← e





with revisables V = {b, d, e, f}. Intuitively the literals not b, not d and not e are
true by CWA, entailing a and a′, and hence ⊥ via the first integrity constraint.
The revisions of T are {e}, {d, f}, {e, f} and {d, e, f}, where the first two are
minimal.

The following transformation maps programs over L+ into equivalent programs
that are suitable for contradiction removal.

Definition 14. Let T be a program over L+ and C a set of predicate symbols
in L+. The transformation Γ that maps T into a program T ′ is obtained by
applying to T the following two operations:

– Add not incorrect(A ← Body) to the body of each rule A ← Body in Tc.
– Add the rule p(x̄1, . . . , x̄n) ← uncovered(p(x̄1, . . . , x̄n)) for each predicate p

with arity n in C, where x̄1, . . . , x̄n are variables.

We assume the predicate symbols incorrect and uncovered do not occur in T .
The following result states the correctness of Γ .

Theorem 1. Let T be a program over L+ and L a literal. Then T |= L iff
Γ (T ) |= L.

Example 8. Let T be the program of Example 6. Then, the program Γ (T ) is:

Γ (T ) =





x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)

ū / v̄ ← ū /1 v̄
ū / v̄ ← ū /2 v̄





∪





⊥ ← ū / ū
⊥ ← ū / v̄, v̄ / ū
⊥ ← ū / v̄, v̄ / z̄,not ū / z̄

a /1 b ← not incorrect(a /1 b)
b /1 c ← not incorrect(b /1 c)
b /2 a ← not incorrect(b /2 a)

ū /1 v̄ ← uncovered(ū /1 v̄)
ū /2 v̄ ← uncovered(ū /2 v̄)







The minimal revisions of Γ (T ) with respect to the revisables of the form incor-
rect(.) and uncovered(.) are:

Z1 = {incorrect(a /1 b)}
Z2 = {incorrect(b /1 c), incorrect(b /2 a)}
Z3 = {uncovered(a /1 c), incorrect(b /2 a)}

It is easy to see that Z3, for instance, is a revision of Γ (T ) since the unique
stable model M of Γ (T ) ∪ Z3 is:

M = {a / c, a / b, b / c, a /1 c, a /1 b, b /1 c, expect(a), expect(b), expect(c),

uncovered(a /1 c), incorrect(b /2 a)}
and M 6|= ⊥.

The following result relates the minimal diagnoses of a program T with the
minimal revisions of Γ (T ).

Theorem 2. Let T be a program over L+. The pair D = 〈U, I〉 is a diagnosis
for T iff

Z = {uncovered(A) : A ∈ U} ∪ {incorrect(A ← Body) : A ← Body ∈ I}
is a revision of Γ (T ), where the revisables are all the literals of the form incorrect(.)
and uncovered(.). Furthermore, D is a minimal diagnosis iff Z is a minimal re-
vision.

To compute the minimal diagnosis of a program T we consider the transformed
program Γ (T ) and compute its minimal revisions. An algorithm for computing
minimal revisions in such logic programs is given in [16].

6 Concluding Remarks

We have shown that preferences and priorities (they too a form of preferen-
tial expressiveness) can enact choices amongst rules and amongst abducibles,
which are dependant on the specifics of situations, all in the context of theories
and theory extensions expressible as logic programs. As a result, using available
transformations provided here and elsewhere [2], these programs are executable
by means of publicly available state-of-the-art systems [11]. In [2], we further-
more have shown how preferences can be integrated with knowledge updates,
and how they fall too under the purview of updating, again in the context of
logic programs. Preferences about preferences are also adumbrated therein.

We have employed the two-valued Stable Models semantics to provide mean-
ing to our logic programs, but we could just as well have employed the three-
valued Well-Founded Semantics [8] for a more skeptical preferential reasoning.

Also, we need not necessarily insist on a strict partial order for preferences,
but have indicated that different conditions can be provided. The possible alter-
native revisions, required to satisfy the conditions, impart a non-monotonic or



defeasible reading of the preferences given initially. Such a generalization permits
us to go beyond just a foundational view of preferences, and allows us to admit
a coherent view as well, inasmuch several alternative consistent stable models
may obtain for our preferences, as a result of each revision.

Other logic program semantics are available too, such as the Revised Stable
Model semantics, a two-valued semantics which resolves odd loops over default
negation, arising from the unconstrained expression of preferences, by means
of reductio ad absurdum [17]. Indeed, when there are odd loops over default
negation in a program, Stable Model semantics does not afford the program
with a semantics.

In [18], arguments are given as to how epistemic entrenchment can be explic-
itly expressed as preferential reasoning. And, moreover, how preferences can be
employed to determine believe revisions, or, conversely, how belief contractions
can lead to the explicit expression of preferences.

[6] provides a stimulating survey of opportunities and problems in the use of
preferences, reliant on AI techniques.

We advocate that the logic programming paradigm (LP) provides a well-
defined, general, integrative, encompassing, and rigorous framework for system-
atically studying computation, be it syntax, semantics, procedures, or attending
implementations, environments, tools, and standards. LP approaches problems,
and provides solutions, at a sufficient level of abstraction so that they generalize
from problem domain to problem domain. This is afforded by the nature of its
very foundation in logic, both in substance and method, and constitutes one of
its major assets.

Indeed, computational reasoning abilities such as assuming by default, ab-
ducing, revising beliefs, removing contradictions, preferring, updating, belief re-
vision, learning, constraint handling, etc., by dint of their generality and abstract
characterization, once developed can readily be adopted by, and integrated into,
distinct topical application areas.

No other computational paradigm affords us with the wherewithal for their
coherent conceptual integration. And, all the while, the very vehicle that en-
ables testing its specification, when not outright its very implementation [15].
Consequently, it merits sustained attention from the community of researchers
addressing the issues we have considered and have outlined.
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