
Common-sense reasoning as proto-scientific
agent activity

Pierangelo Dell’Acqua∗† and Lúıs Moniz Pereira†

∗ Department of Science and Technology - ITN
Linköping University, 601 74 Norrköping, Sweden

pier@itn.liu.se
† Centro de Inteligência Artificial - CENTRIA

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. We wish to model common-sense reasoning in situations where
it contains some of the ingredients typical of proto-scientific reasoning,
with a view to future elaboration and proof of concept. To model this
proto-scientific narrative, we employ the integrative formal computa-
tional machinery we have been developing and implementing for ratio-
nal cooperative epistemic agents. In our logic-based framework, agents
can update their own and each other’s theories, which are comprised
of knowledge, active rules, integrity constraints, goals, abducibles, and
preferences; they can engage in abductive reasoning involving updatable
preferences; set each other goals; react to circumstances; plan and carry
out actions; and revise their theories and preferences by means of con-
current updates on self and others.

1 Framework

1.1 Language

It is convenient to syntactically represent the theories of agents as propositional
Horn theories. In particular, we represent default negation not A as a standard
propositional variable. Propositional variables whose names do not begin with
“not” and do not contain the symbols “:”, “÷” and “<” are called domain atoms.
For each domain atom A we assume a complementary propositional variable of
the form not A. Domain atoms and negated domain atoms are called domain
literals.

Communication is a form of interaction among agents. The aim of an agent
β when communicating a message C to an agent α, is to make α update its
current theory with C (i.e., to make α accept some desired for mental state
by β). In turn, when α receives the message C from β, it is up to α whether
or not incorporate C. This form of communication is formalized through the
notion of projects and updates. Propositional variables of the form α:C (where
C is defined below) are called projects. α:C denotes the intention (of some agent

β) of proposing the updating of the theory of agent α with C. Projects can be
negated. A negated project of the form not α:C denotes the intention of the
agent of not proposing the updating of the theory of agent α with C. Projects
and negated projects are generically called project literals.

Propositional variables of the form β÷C are called updates. β÷C denotes an
update with C in the current theory (of some agent α), that has been proposed
by β. Updates can be negated. A negated update of the form not β÷C in the
theory of some agent α indicates that agent β does not have the intention to
update the theory of agent α with C. Updates and negated updates are called
update literals.

Preference information is used along with incomplete knowledge. In such a
setting, due to the incompleteness of the knowledge, several models of a pro-
gram may be possible. Preference reasoning is enacted by choosing among those
possible models, through the expression of priorities amongst the rules of the
program. Preference information is formalized through the notion of priority
atoms. Propositional variables of the form nr < nu are called priority atoms.
nr < nu means that rule r (whose name is nr) is preferred to rule u (whose
name is nu). Priority atoms can be negated. not nr < nu means that rule r is
not preferred to rule u. Priority atoms and negated priority atoms are called
priority literals.

Domain atoms, projects, updates and priority atoms are generically called
atoms. Domain literals, project literals, update literals and priority literals are
generically called literals.

Definition 1. A generalized rule is a rule of the form L0 ← L1, . . . , Ln with
n ≥ 0 where every Li (0 ≤ i ≤ n) is a literal.

Definition 2. A domain rule is a generalized rule L0 ← L1, . . . , Ln whose head
L0 is a domain literal distinct from false and not false, and every literal Li

(1 ≤ i ≤ n) is a domain literal or an update literal.

Definition 3. An integrity constraint is a generalized rule whose head is the
literal false or not false.

Integrity constraints are rules that enforce some condition on states, and they
take the form of denials. To make integrity constraints updatable, we allow the
domain literal not false to occur in the head of an integrity constraint. For ex-
ample, updating the theory of an agent α with not false ← relaxConstraints
has the effect to turn off the integrity constraints of α if relaxConstraints holds.
Note that the body of an integrity constraint can contain any literal. The follow-
ing definition introduces rules that are executed bottom-up. To emphasize this
aspect we employ a different notation for them.

Definition 4. An active rule is a generalized rule whose head Z is a project
literal and every literal Li (1 ≤ i ≤ n) in its body is a domain literal or an
update literal. We write active rules as L1, . . . , Ln ⇒ Z.

2

Active rules can modify the current state, to produce a new state, when triggered.
If the body L1, . . . , Ln of the active rule is satisfied, then the project (fluent)
Z can be selected and executed. The head of an active rule is a project, either
internal or external. An internal project operates on the state of the agent itself
(self-update), e.g., if an agent gets an observation, then it updates its knowledge.
External projects instead are performed on other agents, e.g., when an agent
wants to update the theory of another agent.

To express preference information in logic programs we introduce the notion
of priority rule.

Definition 5. A priority rule is a generalized rule L0 ← L1, . . . , Ln whose head
L0 is a priority literal and every Li (1 ≤ i ≤ n) is a domain literal, an update
literal, or a priority literal.

Priority rules are also subject to updating.

Definition 6. A query takes the form ?− L1, . . . , Ln with n ≥ 0, where every
Li (1 ≤ i ≤ n) is a domain literal, an update literal, or priority literal.

We assume that for every project α:C, C is either a domain rule, an integrity
constraint, an active rule, a priority rule or a query. Thus, a project can take
one of the forms:

α:(L0 ← L1, . . . , Ln)
α:(false ← L1, . . . , Ln, Z1, . . . , Zm)
α:(not false ← L1, . . . , Ln, Z1, . . . , Zm)

α:(L1, . . . , Ln ⇒ Z)
α:(?−L1, . . . , Ln)

Let A be a set of domain literals distinct from false. We call the domain literals
in A abducibles. Abducibles can be thought of as hypotheses that can be used
to extend the current theory of the agent in order to provide an “explanation”
for given queries. Explanations are required to meet all the integrity constraints.
Abducibles may also be defined by domain rules as the result of a self-update
which adopts an abducible as a rule.

The reader can refer to [7, 8] for the declarative and procedural semantics
of our framework of abductive logic-based agents, to [5] for a logic-based agent
architecture, to [1] for a proof procedure of updating plus preferring reasoning,
and to [6] for an asynchronous multi-agent system in which the interaction among
agents is characterized by a transition rule system.

N.B.: In the sequel, rules with variables stand for the set of all their ground
instances with respect to the Herbrand universe of the program.

1.2 Abductive Agents

The knowledge of an agent can dynamically evolve when the agent receives new
knowledge, albeit by self-updating rules, or when it abduces new hypotheses to
explain observations. The new knowledge is represented in the form of an updat-
ing program, and the new hypotheses in the form of a finite set of abducibles.

Definition 7. An updating program U is a finite set of updates.

3

An updating program contains the updates that will be performed on the current
knowledge state of the agent. To characterize the evolution of the knowledge of
an agent we need to introduce the notion of sequence of updating programs. In
the remaining, let S = {1, . . . , s, . . .} be a set of natural numbers. We call the
elements i ∈ S ∪ {0} states. A sequence of updating programs U = {Us | s ∈ S}
is a set of updating programs Us superscripted by the states s ∈ S.

Definition 8. An agent α at state s, written as Ψs
α, is a pair (A,U), where A

is the set of abducibles and U is a sequence of updating programs {U1, . . . , Us}.
If s = 0, then U = {}.
An agent α at state 0 is defined by a set of abducibles A and an empty sequence
of updating programs, that is Ψ0

α = (A, {}). At state 1, α is defined by (A, {U1}),
where U1 is the updating program containing all the updates that α has received
at state 0 either from other agents or as self-updates. In general, an agent α at
state s is defined by Ψs

α = (A, {U1, . . . , Us}), where each U i is the updating
program containing the updates that α has received at state i− 1.

1.3 Abductive stable models

In the remainder of the paper, by (2-valued) interpretation M we mean any
consistent1 set of literals. Given a generalized rule r of the form L0 ← L1, . . . , Ln,
we write head(r) to indicate L0 and body(r) to indicate L1, . . . , Ln.

Definition 9. Let P be a set of generalized rules and M an interpretation. The
set of default assumptions is:

Default(P, M) = {not A | 6 ∃r ∈ P such that head(r) = A and M |= body(r)}.
The knowledge of an agent α is characterized at the start (at state 0) by the set
of all default assumptions not A (that is, by Default({},M)). Its knowledge can
dynamically evolve when α receives new knowledge, via a sequence of updating
programs U = {U1, . . . , Us}. Intuitively, the evolution of knowledge may be
viewed as the result of, starting with the set of all default assumptions, updating
it with U1, updating next with U2, and so on. The role of updating is to ensure
that the rules contained in these newly added updates are in force, and that
previous rules are still valid (by inertia) as far as possible, i.e., they are in force.
This rationale is at the basis of the notion of rejected rules, spelled out below.

A rule r proposed via an update in U i by an agent β is rejected at state s by
an interpretation M if there exists a rule r′ proposed via a subsequent update
in U j by an agent α, such that the head of r′ is the complement of the head of
r, the body of r′ is true in M and the update is not distrusted.

Definition 10. Let U = {U i | i ∈ S} be a sequence of updating programs and
M an interpretation. The set of rejected rules at state s is:

Reject(U , s, M) = {r | ∃ (β÷r) ∈ U i and ∃ (α÷r′) ∈ U j such that i < j ≤ s,

head(r) = not head(r′),M |= body(r′) and M 6|= distrust(α÷r′)}
1 A set M is consistent iff there exists no atom X such that X ∈ M and not X ∈ M .

4

The idea behind the updating process is that newer rules reject older ones in such
a way that contradictions can never arise between them. Thus, contradictions
could only ever arise between rules introduced at the same state. Furthermore,
an agent α can prevent any type of updates from an agent β via the use of
distrust in the theory of α, e.g., distrust(β÷C) ← liar(β).

As the head of an active rule is a project (and not a domain atom), active
rules can only be rejected by active rules. Rejecting an active rule r makes r not
triggerable even if its body is true in the model. Thus, by rejecting active rules,
we make the agent less reactive.

Let Ψs
α = (A,U) be an agent α at state s and La ⊆ A a set of abducibles. We

write U + La to indicate the sequence of updating programs U ∪ {Us+1}, where
Us+1 = {α÷L | for every L ∈ La}. That is, U + La = {U1, . . . , Us, Us+1}.
Definition 11. Let Ψs

α = (A,U) be an agent α at state s and M an interpreta-
tion. Let La ⊆ A be a set of abducibles and U ′ = U + La a sequence of updating
programs. M is an abductive stable model of agent α at state s with hypotheses
La iff:

– false 6∈ M

– M = least(X ∪Default(T, M) ∪⋃
1≤i≤s U i), where:

T = {r | ∃ (β÷r) in
⋃

1≤i≤s+1

U i such that M 6|= distrust(β÷r)}

R = Reject(U ′, s + 1,M)
X = T −R

Note that the abducibles are treated as a virtual update. That is, to compute
the abductive stable models the abducibles abduced by α at state s are treated
as if they were internal updates of α at state s + 1. The virtual update is only
used to compute the abductive stable models, and there is no commitment to
what α will receive as update at the next state s + 1.

1.4 Preferred abductive stable models

While updates allow us to deal with a dynamically evolving world, where rules
change in time, preferences allow us to choose among various possible mod-
els of the world and among possible incompatible reactions. In [2], two criteria
are established to remove unpreferred generalized rules in a program: removing
unsupported generalized rules, and removing less preferred generalized rules de-
feated by the head of some more preferred one. Unsupported generalized rules
are rules whose head is true in the model and whose body is defeated by the
model. Below we write body+(r) (resp. body−(r)) to indicate the atoms (resp.
the negated atoms) in the body of a rule r.

Definition 12. Let P be a set of generalized rules and M an interpretation.
The set of unsupported generalized rules of P and M is:

5

Unsup(P, M) = {r ∈ P | M |= head(r),M |= body+(r) and M 6|= body−(r)}.

Unpref (P, M) is a set of unpreferred generalized rules of P and M iff:

Unpref (P, M) = least(Unsup(P, M) ∪ X)

where X = { r ∈ P | ∃u ∈ (P −Unpref (P, M)) such that:
M |= nu < nr, M |= body+(u) and [not head(u) ∈ body−(r) or
(not head(r) ∈ body−(u), M |= body(r))] }.

In other words, a generalized rule is unpreferred if it is unsupported or defeated
by a more preferred generalized rule (which is not itself unpreferred), or if it
attacks (i.e., attempts to defeat) a more preferred generalized rule. The following
definition introduces the notion of preferred abductive stable model of an agent
α at a state s with set of hypotheses La. Given a sequence of updating programs
U and the hypotheses La assumed at state s by α, a preferred abductive stable
model of α at state s with hypotheses La is a stable model of the program X
that extends P to contain all the updates in U , all the hypotheses in La, and
all those rules whose updates are not distrusted but that are neither rejected
nor unpreferred. The preferred abductive stable model contains also the selected
projects.

Definition 13. Let Ψs
α = (A,U) be an agent α at state s and M an abductive

stable model of α at state s with hypotheses La. Let U ′ = U+La be a sequence of
updating programs. M is a preferred abductive stable model of agent α at state
s with hypotheses La iff:

– ∀r1, r2 : if (nr1 < nr2) ∈ M , then (nr2 < nr1) 6∈ M

– ∀r1, r2, r3 : if (nr1 < nr2) ∈ M and (nr2 < nr3) ∈ M , then (nr1 < nr3) ∈ M

– M = least(X ∪Default(T, M) ∪⋃
1≤i≤s U i), where:

T = {r | ∃ (β÷r) in
⋃

1≤i≤s+1

U i such that M 6|= distrust(β÷r)}

R = Reject(U ′, s + 1,M)
X = (T −R)−Unpref (T −R, M)

T is the set containing all the rules in updates that are trusted from α according
to M , and R is the set of all the rules that are rejected at state s. X is the set
of all the trusted rules that are neither rejected nor unpreferred.

Definition 14. An abductive explanation for a query Q is any set La ⊆ A
of hypotheses such that there exists a preferred abductive stable model M with
hypotheses La and M |= Q.

Note that at state s an agent α may have several abductive explanations for a
query Q.

6

1.5 Agent Cycle

Every agent α can be thought of as a pair Ψα = (A,U), where A is a set
of abducibles and U is a sequence of updating programs, equipped with a set
of inputs represented as updates. The abducibles are used as explanations for
proving the goals of the agent, and updates can be used to solve the goals as
well as to trigger new goals. The basic “engine” of an agent α is an abductive
logic programming proof procedure, executed via the cycle represented in Fig. 1.

Cycle(α,s,Ψs−1
α ,G), where Ψs−1

α = (A,U) and U = {U1, . . . , Us−1}.

1. Observe and record any input in the updating program Us.
2. Select a goal g in G∪Goals(α, Us) and execute g. Let La ⊆ A be an abductive

explanation of g, if g is provable; otherwise, let La = {}.
Let G′ = G ∪Goals(α, Us)− {g}.

3. Execute all the projects in ExecProj (La).
4. Cycle with (α,s + 1,Ψs

α,G′), where Ψs
α = (A,U ∪ {Us}).

Fig. 1. The agent cycle

Step 1: The cycle of an agent α starts at state s by observing any inputs (updates
from other agents) from the environment, and by recording them in the updating
program Us.

Step 2: A goal g is selected from G ∪Goals(α,Us), where

Goals(α, Us) = {?−g | α÷(?−g) ∈ Us}.

Note that only the goals issued by the agent α itself are executed. The goals
issued by other agents are treated as normal updates2. Then, g is executed.
Here, we can use any abductive proof procedure, such as ABDUAL [3, 4].

Step 3: The executable projects are executed. The set ExecProj of executable
projects of an agent depends on the kind of agent we want to model. For instance,
in case of a cautious agent, the set of executable projects is:

ExecProj (La) = { β:C | for every preferred abductive stable model M at state
s with hypotheses La, it holds that β:C ∈ M}.

If an executable project takes the form β : C (meaning that agent α intends
to update the theory of agent β with C at state s), then (once executed) the
update α÷ C will be available as input to the cycle of the agent β.

2 In this way, α retains control upon deciding on which goals (requested by other
agents) to execute. For example, the theory of α may contain the active rule:
β÷(?−g),Cond ⇒ α:(?−g) which states that if α has been requested to prove a
goal ?−g by β and some condition Cond holds, then α will issue the internal project
to prove the goal ?−g.

7

Step 4: Finally, the agent cycles by increasing the state, by incorporating the
updating program Us into U , and with the new list G′ of goals.

Initially, the cycle of α is Cycle(α,1,Ψ0
α,{}) with Ψ0

α = (A, {}).

1.6 Sequential execution of actions

To express the sequential execution of actions we introduce the notion of se-
quence of abducibles.

Definition 15. Let A be a set of abducibles. Then, a sequence of abducibles is
inductively defined as follow:
1. every a ∈ A is a sequence of abducibles;
2. if a ∈ A and x is a sequence of abducibles, then a ¦ x is a sequence of

abducibles;
3. nothing else is a sequence of abducibles.

Intuitively, a sequence a ¦ b ¦ c of abducibles states to abduce first a, then b
and finally c. This capability allows an agent to execute actions in sequence. For
instance, if the abducibles a, b and c occur in three distinct active rules ra, rb

and rc, then the sequence a ¦ b ¦ c permits executing the projects occurring in
the heads of ra, rb and rc sequentially.

Consider an agent α that has a plan p consisting of two actions, a followed
by b. Suppose that p is executable if some condition cond holds. Let A = {a, b}
be a set of abducibles. Such a plan can be expressed as:

p ← cond, a ¦ b

a, precA ⇒ α : effectA
b, precB ⇒ α : effectB

where precX and effectX indicate the precondition and the effect of an action
X. By launching the execution of p, if cond holds then the sequence a ¦ b of
abducibles is executed. First, a is abduced and if precA holds the action A can
be executed. The effects of executing A are expressed via the project α : effectA.
If instead precA does not hold, then the plan p cannot be accomplished. Once
the execution of A is terminated, b is abduced and the action B executed.

Such a plan can be coded in our framework as:

p ← cond, start(p) (1)
start(p) ⇒ α : exec(p) (2)
start(p) ⇒ α : ?−a (3)
stop(p) ⇒ α : not exec(p) (4)
exec(p), ta ⇒ α : ?−b (5)
exec(p), tb ⇒ α : ?−tp (6)

a, precA ⇒ α : effectA (7)
a, precA ⇒ α : ?−ta (8)

b, precB ⇒ α : effectB (9)
b, precB ⇒ α : ?−tb (10)

8

with the new set of abducibles B = {start(p), stop(p), a, b, ta, tb, tp}. Launching
the plan p, by means of the rule (1), has the effect of abducing start(p), which
in turn will trigger the active rules (2) and (3). The active rule (2) updates the
theory of the agent α with exec(p) to indicate that α is executing the plan p.
The active rule (3), by launching the query ?−a has the effect of making the
agent α abduce a at the next agent cycle. The active rules (5) and (6) model the
sequencing of the actions a and b. If precA holds, abducing a while proving the
plan p will trigger the active rules (7) and (8). The effect of triggering them is
that the project α : effectA will be executed and the goal ?−ta launched at the
next agent cycle. As ta is an abducible, at the next cycle ta will be abduced. This
indicates that the action a is terminated. The action b can then be executed.
This is achieved by triggering the active rule (5) that will launch the goal ?−b.
At the next cycle b will be abduced and if precB holds the active rules (9) and
(10) will be triggered. The project α : effectB will be executed and the goal ?−tb
launched. Abducing tb indicates that the action b is terminated and therefore
the entire plan p has been accomplished (i.e., the active rule (10) is triggered).

Recall that abductions adopted at one state do not carry over to the next
state. Nevertheless, that can be achieved if desired, either by update imposing
the abduced literals as facts, or else by enforcing their abduction anew, via the
updating of an abduction goal to that effect into the next state.

2 Modelling Proto-scientific Reasoning by Rational
Agents

Next we illustrate how to model, with the above instruments, common-sense rea-
soning in situations where it contains some of the ingredients typical of proto-
scientific reasoning, with a view to future elaboration, proof of concept, and
extension of the approach to scientific reasoning itself. To do so, we construe
an exemplificative narrative of a doctor/patient cooperative diagnostic situation
development, involving a combination of a number of common rational abilities
illustrative of proto-scientific reasoning and acting, which demand their joint ex-
ercise, both in an individual and a cooperative fashion, akin to scientific theory
refinement. To model this proto-scientific narrative, we employ the integrative
formal computational machinery we have been developing and implementing for
rational cooperative epistemic agents, and recapitulated above. Indeed, in our
logic-based framework, agents can update their own and each other’s theories,
which are comprised of knowledge, active rules, integrity constraints, goals, ab-
ducibles, and preferences; they can engage in abductive reasoning involving up-
datable preferences; set each other goals; react to circumstances; plan and carry
out actions; and revise their theories and preferences by means of concurrent
updates on self and others.

The narrative below involves an initial patient situation requiring causal
explanation; plus his interactive recourse to a doctor, whose initial therapeutic
theory, diagnoses, and diagnostic preferences, are conducive to his advising the
patient; and furthermore, initiative is required by the patient about courses

9

of action to obtain prescribed medicine, and experimentation and observation
of its effect; but meanwhile, unforeseen circumstances provide unexpected new
information and action from a third agent, become pertinent for the problem
at hand; as a result, the doctor’s original theory is revised, in what regards
his diagnostic preferences, in the light of the patient’s experimentation, and the
unexpected triggering of an unforeseen action by the third party. The example
has been fully tested with our implementation.

2.1 Requiring causal explanation

John runs a small software house and likes working until late when needed. He
drinks coffee and has been a heavy smoker from a long time. Recently, he got
problems with sleeping. He would like to have a break from his work, perhaps a
vacation, but he does not have any company. Thus, he keeps on working. John
does not know what the cause is and decides to visit a doctor. He tells the doctor
about his sleeping problems and asks him what is the cause. John answers any
question of of the doctor.
(Recall that we write generalized rules containing variables as a shorthand for
all their ground instances.)

work
likeWork
sProblems
badHabits
longTimeBadHabits
explanation ← cause(P, X, sProblems)

sProblems, company ⇒ john : takeVacation
sProblems,not company,not explanation ⇒ doctor : sProblems
sProblems,not company,not explanation ⇒ doctor : ?−askReason(sProblems)
doctor÷(?−Q), Q ⇒ doctor : Q
doctor÷(?−Q),not Q ⇒ doctor : not Q

Since the theory of John does not contain any priority rules, the preferred
stable model of John at the current state is equivalent to the abductive stable
model M1 = {work, likeWork, sProblems, badHabits, longTimeBadHabits, doctor :
sProblems, doctor : ?−askReason(sProblems)}. According to the definition of
agent cycle, John will execute the two projects in M1 (step 3), and then he
will cycle (step 4). When the doctor will observe his inputs (step 1), he will
receive the two updates:

john÷sProblems
john÷(?−askReason(sProblems))

Any time the doctor is asked a reason for a medical problem by a patient,
the doctor must make a diagnosis. To do so, he must first collect the relevant
information about the medical problem from the patient, then diagnose the cause
of the problem and tells it to the patient together with the suggested treatment.

A = {collectRelInfo(. . .), cause(. . .), answer(. . .), treatment(. . .), start(. . .), stop(. . .)}

10

diagnosis(P, X, Y) ← collectRelInfo(P, Y) ¦
cause(P, X, Y) ¦ answer(P, cause(P, X, Y)) ¦
treatment(X, T) ¦ answer(P, treatment(X, T))

relevant(work, sProblems)
relevant(likeWork, sProblems)
relevant(badHabits, sProblems)
relevant(longTimeBadHabits, sProblems)

P÷(?−askReason(Y)) ⇒ doctor : ?−diagnosis(P, X, Y)
collectRelInfo(P, Y), relevant(R, Y) ⇒ P : ?−R
answer(P, A) ⇒ P : A

Since the doctor does not have any goal to execute at step 2, he starts executing
his projects (step 3). At this step, the unique project in his preferred abductive
stable model is doctor : ?−diagnosis(john, X, sProblems). Thus, at the next cycle
of the doctor, the plan to make a diagnosis will start (step 2) by collecting all
the information relevant for the sleeping problems. This will make the doctor
to ask John the following questions john : ?−work, john : ?−likeWork, john :
?−badHabits and john : ?−longTimeBadHabits.

After the replies of John (recall that John answers every question of the
doctor), the theory of the doctor will be updated with:

john÷work
john÷likeWork
john÷badHabits
john÷longTimeBadHabits

After having executed the first action of the diagnosis plan, the doctor must
find out a cause and the corresponding treatment of the problem, and tell them
to John.

The doctor has three hypotheses that may explain the John’s sleeping prob-
lems: bad habits (like drinking coffee and smoking), stress, or insomnia. The
doctor evaluates John with the help of John’s medical history, and he diagnoses
a chronic insomnia. The doctor discards bad habits since John has been drinking
coffee and smoking for many years without the attending sleeping problems. The
doctor prefers to diagnose chronic insomnia attributable to stress since John’s
stress may be positive stress due to the fact that John likes his work.

cause(P, insomnia, sProblems) < cause(P, stress, sProblems) ← pStress(P)
cause(P, stress, sProblems) < cause(P, insomnia, sProblems) ← stress(P),not pStress(P)
pStress(P) ← stress(P), P÷likeWork
stress(P) ← P÷work

false ← cause(P, badHabits, sProblems), P÷longTimeBadHabits

Being pStress(john) true in the theory of the doctor, the doctor prefers the
abductive explanation cause(john, insomnia, sProblems) to the abductive expla-
nation cause(john, stress, sProblems). Since it does not satisfy the integrity con-
straints, the abductive explanation cause(john, badHabits, sProblems) is excluded
by the doctor.

As treatment for insomnia, the doctor can either prescribe sleeping pills or
suggest John to have a rest. Sleeping pills being preferable to a vacation on the

11

assumption that John can continue to work by having the pills, the doctor pre-
scribes them.

treatment(P, insomnia, sPills) < treatment(P, insomnia, rest) ← cWork(sPills), P÷work
cWork(sPills)

According to the diagnosis plan, the doctor will tell John about the cause
and the treatment for his sleeping problems. This is achieved by abducing
answer(john, cause(john, insomnia, sProblems)) and answer(john, treatment(john,
insomnia, sPills)) which trigger the corresponding active rules whose projects are
john : cause(john, insomnia, sProblems) and john : treatment(john, insomnia, sPills).
Once the doctor executes the two projects, John will update his theory at the
next cycle with:

doctor÷cause(john, insomnia, sProblems)
doctor÷treatment(john, insomnia, sPills)

2.2 Agent initiative to obtain prescribed medicines

John tries to get sleeping pills before going to bed. Since it is late, he thinks the
pharmacy nearby is closed, and plans to go to another pharmacy downtown.

A2 = {goToPharmacy, buyPills, go(. . .)}

takePills ← doctor÷treatment(john, insomnia, sPills)
getPills ← goToPharmacy ¦ buyPills
choosePharmacy(f1) ← open(f1),not choosePharmacy(f2) (r1)
choosePharmacy(f2) ← open(f2),not choosePharmacy(f1) (r2)
r1 < r2 ← near(f1)
near(f1)
open(f2)
goTo(f1) ← choosePharmacy(f1), go(nearSquare)
goTo(f2) ← choosePharmacy(f2), go(square) ¦ go(center)

takePills,not havePills ⇒ john : ?−getPills
goToPharmacy ⇒ john : ?−goTo(X)
buyPills ⇒ john : havePills

Since John must take the sleeping pills and he does not have them, by triggering
the first active rule above, the internal project john : ?−getPills is executed. This
has the effect of launching the plan to get to a pharmacy and to buy the pills.

The theory of John contains a priority rule stating to prefer r1 to r2 if the
pharmacy f1 is near. As f1 is not open, it cannot be chosen (i.e., the body of
r1 is false). In fact, the rule r2 does not belong to the set of unpreferred rules
(see Def. 12) since body+(r1) is not true. Being choosePharmacy(f1) false and
open(f2) true, John chooses f2. To get to f2, John must get to the square and
to the center.

While he is going there, he notices lights on in the nearby pharmacy and he
concludes that it is open. So he decides to interrupt his original plan and go to
this nearby pharmacy. It being open, he buys the pills.

12

environment÷lightOn(f1)
lightOn(f1) ⇒ john : open(f1)
open(f1) ⇒ john : ?−stop(getPills)
open(f1) ⇒ john : ?−getPills

Note that the internal project john : ?−stop(getPills) has the effect of making
John abduce stop(getPills). Thus, John will stop the execution of the plan and
he will relaunch his goal to get to a pharmacy. Now, since f1 is open, the rule
r1 is preferrable to the rule r2. Thereby, John will go to the nearby pharmacy.

Note also that here we have encoded plans directly in the agents knowledge.
In general, one can employ a planner that given a task produces sequences of
actions to be executed. We have shown only actions performed in sequence, but
other types of actions can be expressed in our framework as well, like parallel
actions and sensing actions.

2.3 Patient’s experimentation

John takes the sleeping pills. But his work implies coffee and stress, and the
attempt fails. One day he meets his friend Pamela and tells her about his prob-
lems.

john÷sProblems
john÷takingPills
john÷stillsProblems

Pamela advises him to suspend the taking of sleeping pills, not to work so hard
and to have some rest. She invites him for an exciting vacation to one of the
carabbean islands.

friend(john)
P÷sProblems ⇒ P : rest
P÷takingPills, P÷stillsProblems ⇒ P : not takePills
friend(P) ⇒ P : invite(vacation, carabbean)

John decides to follow her piece of advice and to accept her invitation.

pamela÷invite(vacation, carabbean)
A÷invite(X, Y), female(A) ⇒ A : accept(X, Y)
female(pamela)

2.4 Doctor’s original theory revised

Subsequently John can sleep and tells the doctor what happened.

john÷takingPills
john÷stillsProblems
john÷vacation
john÷not sProblemsAfterVacation

The doctor now revises his theory of preferences to suggest a vacation in the
first place in the future.

13

P÷takingPills, P÷stillsProblems ⇒
doctor : not (treatment(Q, insomnia, sPills) < treatment(Q, insomnia, rest))

P÷vacation, P÷not sProblemsAfterVacation ⇒
doctor : treatment(Q, insomnia, rest) < treatment(Q, insomnia, sPills)

The doctor updates his priority rules via the two active rules above in such a
way to suggest a different treatment to other patients with insomnia problems.

3 Conclusion

We believe to have shown that the application of proto-scientific reasoning in
common-sense examples, modelled by collections of rational agents, is an avenue
of research worth pursuing with a view to further the modelling of collabora-
tive scientific theory development and refinement. Three worthwhile aspects we
did not touch upon, but which are already well within reach of present formal
machinery are rule induction, argumentation, and mutual debugging.

Acknowledgements

L. M. Pereira acknowledges the support of POCTI project 40958 “FLUX - FleX-
ible Logical Updates”.

References

1. J. J. Alferes, P. Dell’Acqua, and L. M. Pereira. A compilation of updates plus
preferences. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Logics in
Artificial Intelligence, LNAI 2424, pages 62–74, Berlin, 2002. Springer-Verlag.

2. J. J. Alferes and L. M. Pereira. Updates plus preferences. In M. O. Aciego, I. P.
de Guzmn, G. Brewka, and L. M. Pereira, editors, Logics in AI, Procs. JELIA’00,
LNAI 1919, pages 345–360, Berlin, 2000. Springer.

3. J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theory and Practice of Logic
Programming, 2004. To appear.

4. J. J. Alferes, L. M. Pereira, and T. Swift. Well-founded abduction via tabled dual
programs. In D. De Schreye, editor, ICLP’99. MIT Press, 1999.

5. P. Dell’Acqua, M. Engberg, and L. M. Pereira. An architecture for a rational,
reactive agent. 11th Portuguese Conf. on Artificial Intelligence, 2003. To appear.

6. P. Dell’Acqua, U. Nilsson, and L. M. Pereira. A logic based asynchronous multi-
agent system. Computational Logic in Multi-Agent Systems (CLIMA02). Electronic
Notes in Theoretical Computer Science (ENTCS), Vol. 70, Issue 5, 2002.

7. P. Dell’Acqua and L. M. Pereira. Enabling agents to update their knowledge and
to prefer. In P. Brazdil and A. Jorge, editors, Progress in Artificial Intelligence,
10th Portuguese Int. Conf. on Artificial Intelligence (EPIA’01), LNAI 2258, pages
183–190. Springer-Verlag, 2001.

8. P. Dell’Acqua and L. M. Pereira. Preferring and updating in abductive multi-agent
systems. In A. Omicini, P. Petta, and R. Tolksdorf, editors, Engineering Societies in
the Agents’ World (ESAW 2001), LNAI 2203, pages 57–73. Springer-Verlag, 2001.

14

