
A Note on Epistemology and Logical Artificial

Intelligence

Gregory R. Wheeler and Lúıs Moniz Pereira
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Departamento de Informática, Universidade Nova de Lisboa
2829-516 Caparica, Portugal
{greg,lmp}@di.fct.unl.pt

August 18, 2003

Abstract

Contemporary analytical epistemology and logical artificial intelligence
are complementary disciplines. This is most apparent when considering
the structure of what we call epistemic relations, among which inferential
are of special concern. In this essay we discuss key correspondence results
between semantics for logic programs and default logic. Our aim is to
show that there now exist sufficient theoretical foundations within logical
artificial intelligence to warrant use of non-monotonic logics as analytical
tools within the theory of knowledge.

1 Introduction

Traditional epistemology occupies itself primarily with two sorts of problems.
The first concerns the analysis of fundamental epistemic notions, such as justifi-
cation, evidence and perhaps also belief, along with the analysis of key epistemic
relations that appear to involve these concepts, like is warranted by, supports,
and is reasonable to infer. In assembling these accounts into a theory, the aim of
this project is to give an analysis of knowledge—what it is to know a proposition,
like when each of us says ‘I know I have two hands’.1

The other chief concern is the challenge posed by skeptical arguments to
the possibility of having knowledge. While there are varieties of philosophical
skepticism, a historically significant version concerns the possibility of empirical
knowledge about the external world, such as our respective claims of knowing to
have two hands. Knowledge claims such as these are justified by our experience,
yet it is conceivable that we haven’t hands at all. Perhaps instead we each are a
brain in a vat, electrochemically deceived into believing in his two-handedness.

1For a brief overview of the current state of traditional epistemology, see Jim Pryor’s [Prior
2001], which also contains an excellent bibliography.
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The serious problem raised by the problem of skepticism is whether in giving an
account of knowledge that is refined enough to distinguish wholesale deception
from genuine knowledge claims we in fact filter out entire classes of claims from
ever being classified as knowledge, such as empirical claims about the world.2

While there remain disputes, both over proposals that analyze knowledge
on the one hand and various strategies for refuting skepticism on the other,
one broad consensus seems to hold among contemporary epistemologists: al-
most everyone agrees that Cartesian foundationalism is not a viable option.
Cartesian foundationalism is a particular version of foundationalism, one that
holds that knowledge of one’s two handedness, say, is derived from basic state-
ments about his own sensations, of which knowledge is supposed indubitable.
However, no one thinks that sensations provide infallible reports from the ex-
ternal world since no formulation of the basic sense-statement idea seems to
escape skeptical challenge. More importantly, it is no longer believed that epis-
temic notions behave like truth does in valid derivation—a position that has
significant ramifications for the study of epistemic relations, particularly infer-
ence relations. Justification is conferrable by induction, which is necessarily not
truth preserving. Furthermore, justification is not necessarily conferred to the
logical consequences of our beliefs nor does it, when conferred to a true belief
by derivation, necessarily guarantee knowledge of that derived belief.

The dimensions of this last point—how fundamentally different justification
propagation is from truth preservation—did not begin to become apparent until
the 1960’s. It was during this decade that several epistemic paradoxes were artic-
ulated, including the paradox of the knower [Kaplan and Montague 1960; Cross
2000; Uzquiano, forthcoming] and the paradoxes of rational acceptance, namely
the lottery [Kyburg 1961, 1997] and the preface [Makinson 1965; Pollock 1986;
Conee 1987]. Each paradox shows that very plausible minimal conditions—on
the behavior of a knowledge predicate and those thought necessary for rational
acceptance—lead to contradiction. While it is still disputed which conditions
should be dropped to resolve each paradox, the lesson we draw from these para-
doxes is that closure operations on languages modeling epistemic notions are
not isomorphic to any closure operations of classical first-order logic.

Conceptual studies such as Edmund Gettier’s famously short “Is Justified
True Belief Knowledge?” [Gettier 1963] suggest another reason for thinking that
epistemic notions are propagated unlike truth under logical consequence. Get-
tier’s essay brought attention to cases where a justified but false belief may
confer justification, by simple derivation, to statements believed but true by
chance.3 So in addition to the problem of skepticism, Gettier cases present

2For a recent collection of papers on skepticism, see [DeRose and Warfield, 1999].
3One of Gettier’s two counter-examples runs as follows. Suppose Smith has very strong

evidence for the proposition A, Jones owns a Ford. Smith’s evidence might include that Jones
has always owned a car in the past, it has always been a Ford, and that Smith has just accepted
an offer of a ride from Jones who is driving a Ford. We are then asked to imagine another
friend of Smith, Brown, whose whereabouts are completely unknown to Smith. Smith selects
a place at random and entertains the following proposition B, Jones owns a Ford or Brown is
in Barcelona. Since A entails B and let us suppose that Smith grasps this entailment, Smith
is justified to believe B. But now imagine that in fact Jones does not own a Ford; the present
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another obstacle within epistemology—one that affects theories of justification.
Since Gettier, the trick has been to formulate a theory of justification that is
strict enough to avoid counting Gettier-style counter examples as cases of knowl-
edge while at once flexible enough to ensure correct classification of common
empirical knowledge claims as being justified.

Now, epistemologists are right to stress the differences between logical con-
sequence and inference. All of us are creatures adept at drawing defeasible
inferences from information introduced to us by our senses: it is a restricted
case when we deduce a conclusion from an explicitly held belief whose contents
are an experience.4 But it is a mistake to think logic plays no role in mod-
eling inference relations [cf. Harman 2001]. Even though there are notable
exceptions, most current philosophical theories of knowledge are advanced as
though logic offered little analytical insight into the structure of the relations
mentioned in each theory, including inference relations. It is standard method-
ological practice for philosophers to offer theories of justification assembled from
a conceptual analysis of both epistemic concepts and epistemic relations, where
the behavior of epistemic relations—including inference relations—is described
rather than formally defined.

That contemporary epistemology has neglected logic as an analytical re-
search tool may be illustrated by considering the main methodological dispute
to exercise the field over the last three decades. Since the publication of W.
V. O. Quine’s “Epistemology Naturalized” [Quine 1969], epistemologists have
been arguing whether their proper home is in psychology departments rather
than philosophy departments. Methodological naturalism (in epistemology) is

car he is driving is a rented car. Furthermore, by chance, suppose Brown is in Barcelona.
So, B is true. However, it no longer appears that Smith knows B. It should be noted that
Gettier-style counter examples do not depend upon the justification-conferring belief being
false [Feldman 1974].

4More on defeasible inference to follow. And we acknowledge the psychological ability
we all share to draw reasonable inferences without the slightest awareness of the explicit
grounds we have for doing so. However, there are cases where we do evaluate the explicit
grounds available for drawing an inference, namely when we consider arguments. Our focus
is this class of restricted cases. Finally, the conceptual distinction between beliefs and their
contents may be illustrated by considering the difference between having a headache and
believing that one’s head aches. The content of the belief that one’s head aches is having a
headache. Notice that having a headache is good grounds for believing one’s head aches, but
that it is peculiar to cite the belief that one’s head aches for grounds to infer that one has a
headache. An epistemic relation (and perhaps also a causal relation) holds between (from) a
non-propositional experience, a pain in the head, and (to) a doxastic state, a belief that one’s
head hurts, whose content is the experience of pain in the head.

That non-propositional items may stand in epistemic relations to beliefs we may have is a
non-trivial point for knowledge representation. In some dynamic circumstances we appear to
draw inferences from graphical or geometric representations of information much better than
when that information is represented in propositional form. Meteorologists reach conclusions
from weather maps that they are unable to draw from an array of meteorological data repre-
sented in propositional form [Hoffman 1991] and air traffic controllers at the busiest airports
still rely upon slips of paper, each denoting an aircraft and moved around a controller’s field
of vision to represent traffic in his sector, from which he may draw inferences about the flow
of traffic, degree or distribution of congestion, and ranking of conflicts to resolve [Sellen and
Harper 2001].
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the view that the results and methods of the cognitive sciences are relevant to
doing traditional epistemology. What is interesting about this dispute for our
purposes is to notice the relatively narrow scope of the disagreement between
‘naturalists’ and ‘anti-naturalists’. Consider for example Roderick Chisholm’s
version of evidentialism, which is the paradigmatic anti-naturalistic position.
Chisholm’s view is that epistemic properties and epistemic relations are irre-
ducible, meaning that they are of a kind that simply cannot be defined by a
complex of psychological or familiar logical operations [Chisholm 1967]. If one
looks at the dispute between methdological naturalists and Chisholmians one
can see that what they have been arguing over is the place of cognitive psychol-
ogy in epistemology—specifically whether a detailed causal account of human
belief formation is a relevant matter to weigh in advancing a theory of justi-
fication. The point to notice is that this dispute has been conducted with a
tacit agreement within the field that Chisholm was at least right about logic
offering traditional epistemologists little theoretical advantage in the analysis of
epistemic concepts and, more importantly, epistemic relations.

It is precisely this Chisholmian view that logic plays only a minimal analyti-
cal role in epistemology that should be abandoned. While ready-made solutions
to the Gettier problem are not to be found in the journals of artificial intelligence
and non-trivial conceptual and methodological issues remain in identifying and
representing relata, we nevertheless see a role for logical AI in the very heart of
traditional analytic epistemology: to analyze and model epistemic relations.

One of our interests is to see epistemologists incorporate definitions of epis-
temic relations, particularly inference relations, into their theories of knowledge.
We think that adopting this practice would yield better theories of knowledge,
which is of intrinsic interest. But adopting this practice would also be of in-
terest to the field of knowledge representation and reasoning. For there is an
emerging area of research encompassing epistemology and logical AI [Ford et.
al. 1995; Pereira 2002], one that is created by shared interests between these
two fields—shared in so far as an aim of theoretical AI is the study of the class
of possible epistemic relations, the primary aim of epistemology is the specifi-
cation of those properties and relations necessary to assemble a comprehensive
account of knowledge, and an aim of practical AI is engineering artificial intelli-
gence technologies that perform increasingly sophisticated inference operations
on data structures.

2 Mechanizing Logic

The project of effecting logical reasoning by computers involves two fundamental
notions underpinning our discussion so far, namely defeasibility and construc-
tivity. The notion of defeasiblity, that of drawing an inference that may be
undermined by additional information, figures in the move away from Cartesian
foundationalism and is a notion that has been studied extensively within logi-
cal artificial intelligence: is there a principled way of making a non-monotonic
inference or are all instances of non-monotonic reasoning simply too context
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dependent to admit a logical structure? Constructivity figures in logical AI
because what is needed are concrete witnesses of proofs: it is not enough to
know that a proposition A follows but that we have a path for the program to
follow to A. But once we set about mechanizing logic by means of proof objects
that behave non-monotonically, the case against thinking logical consequence is
entirely distinct from inference relations begins to unravel.

Still, care must be taken in drawing the relationship between AI and epis-
temology. One part necessary for doing so is showing that there is a sufficient
theoretical understanding of non-monotonic logics to consider applying them to
the theory of knowledge. What we propose to do here is present a sketch of the
correspondence results that hold between semantics for logic programs and a
particular kind of logic for defeasible reasoning, called default logic. It remains
to be shown that default logic is a suitable framework for representing some
epistemic relation or other. We will take up this issue in another paper.

To begin, we note that a property shared by both epistemic relations and
causal relations that distinguishes both from logical implication is that the for-
mer pair are uni-directional in the sense that there is no implicit contraposition.
This directionality of epistemic and causal relations is an essential feature of
logic programs [Colmerauer et. al. 1973; Kowalski 1974, 1979; Warren and
Pereira 1977], where premises must be true in order to apply an inference rule.

An logic program P is a finite set of rules of the form,

C ← P1, ..., Pn,¬N1, ...,¬Nm

where in order to produce a result or conclusion C what is needed is a set of
conditions P1, ..., Pn where each Pi is true in the program along with absence or
negation of a set of negative conditions ¬N1, ...,¬Nm where each ¬Ni denotes
a condition that, if satisfied, would be sufficient to prevent concluding C with
this rule. As noted, the functor ← does not presume explicit contraposition.
Rather, we view programming clauses as expressing an inference rule, one that
may be applied, procedurally from the ‘bottom-up’ to conclude C given all Pi’s
and no ¬Ni’s, or ‘top-down’ by trying to prove the body of the rule to yield C.

What we propose to do is introduce readers to enough of the semantics of
logic programming to establish correspondence results between logic programs
and one particular logic for defeasible reasoning, default logic [Reiter 1980].
The goal is to persuade readers that there now exist enough theoretical under-
standing of logics for defeasible inference for us to reconsider how we formulate
epistemic relations.

2.1 Logic program semantics

The semantics we will present for logic programs is the extended well-founded,
WFSX, set forth in [Alferes and Pereira 1996]. We begin by providing definitions
of interpretation and model for programs extended with explicit negation.

Definition 3 (Interpretation). An interpretation I of a language L is any
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set T ∪ not F ,5 where T and F are disjoint subsets of objective literals over the
Herbränd base, and

if ¬l ∈ T then l ∈ F (Coherence Principle)

where l is an objective literal. The set T contains all ground objective literals
true in I, the set F contains all ground objective literals false in I. The truth
value of the remaining objective literals is undefined.

Notice how the two types of negation become linked via the Coherence Prin-
ciple: for any objective literal l, if ¬l ∈ I, then not l ∈ I. This definition
of interpretation not only guarantees that every interpretation complies with
coherence but also with noncontradiction.

Proposition 1 (Noncontradiction condition). If I = T ∪ not F is an
interpretation of a program P then there is no pair of objective literals A, ¬A
of P such that A ∈ T and ¬A ∈ T .

Proposition 2. Let H be the set of all objective literals in the language L,
V = {0, 1

2 , 1} and A ∈ H. Any interpretation I = T∪ not F may be equivalently
viewed as a function I : H → V , defined by:

I(A) = 0, if not A ∈ I; I(A) = 1, if A ∈ I; I(A) = 1
2 , otherwise.

With this function we may now define a truth valuation of formulae.

Definition 4 (Truth valuation). If I is an interpretation, the truth valuation
Î : C → V where C is the set of all formulae of the language, recursively defined
as follows:

• if l is an objective literal then Î = I(l);

• if s = not l is a default literal then Î = 1− I(l)

• if s and r are formulae then Î((s, r)) = min(Î(s), Î(r));

• if l is an objective literal and s is a formula then:

Î(l ← s) = 1 if Î(s) ≤ Î(l) or Î(¬l) = 1 and Î(s) 6= 1; 0 otherwise.

Definition 5 (Model). An interpretation I is called a model of a program
P if and only if for every ground instance of a program rule H ← B we have
Î(H ← B) = 1.

Example 1. The models of the program

P= (¬b; b ← a; a ← not a, not c; c ← not ¬c; ¬c ← not c)

5Where not {a1, ..., an, ...} stands for {not a1, ..., not an, ...}.
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are:
M1 = {¬b, not b}
M2 = {¬b, not b, c, not ¬c}
M3 = {¬b, not b, c, not ¬c, not a}
M4 = {¬b, not b, not c,¬c}
M5 = {¬b, not b,¬a, not a}
M6 = {¬b, not b,¬a, not a, c, not ¬c}
M7 = {¬b, not b, not ¬a}
M8 = {¬b, not b, c, not ¬c, not ¬a}
M9 = {¬b, not b, c, not ¬c, not a, not ¬a}
M10 = {¬b, not b, not c,¬c, not ¬a}

Only M3, M6, and M9 are classical 3-valued models of P , since all of the rules
are true, while M1,M2,M4,M7, M8, and M10 are not classical models, because
in all of them the body of the rule b ← a is undefined and the head is false (i.e.,
the truth value of the head is smaller than that of the body.). Finally, M5 is
not a classical model since in it the truth value of the head (false) of the rule
a ← not a, not c is smaller than that of the body (undefined).

Next we need to define stability in models, which we use to define WFSX
semantics. To define the semantics, the language is expanded to include the
proposition u such that every interpretation I satisfies I(u) = 1

2 . In what fol-
lows a ‘non-negative’ program is a program whose premises are either objective
literals or u.

Definition 5 (P modulo I (P
I ) transformation). Let P be an extended

logic program and let I be an interpretation. P modulo I, P
I , is the program

obtained from P by performing in the sequence the following four operations:

1. Remove from P all rules containing a default literal l = not A such that
A ∈ I;

2. Remove from P all rules containing in the body an objective literal l such
that ¬l ∈ I;

3. Remove from all remaining rules of P their default literals l = not a such
that not A ∈ I.

4. Replace all the remaining default literals by proposition u.

The resulting program is P
I is by definition non-negative.

Definition 6 (Least operator). Let P be a non-negative program. The
operator least(P ) is the set of literals T ∪ not F obtained by:

• Let P ′ be the non-negative program obtained by replacing in P every
non-negative objective literal ¬l by a new atomic symbol, ‘¬ l’.

• Let T ′ ∪ not F ′ be the least 3-valued model of P ′.
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• T ∪ not F is obtained from T ′ ∪ not F ′ by reversing the replacements
above.

The least 3-valued model of a non-negative program can be defined as the
least fixpoint of the following generalization of the van Emden-Kowalski least
model operator Ψ for definite logic programs:

Definition 7 (Ψ∗ operator). Suppose that P is a non-negative program, I is
an interpretation of P and A and the Ai are all ground atoms. Then Ψ∗(I) is
a set of atoms defined as follows:

• Ψ∗(I)(A) = 1 if and only if there is a rule A ← A1, ..., An in P such that
I(Ai) = 1 for all i ≤ n.

• Ψ∗(I)(A) = 0 if and only if for every rule A ← A1, ..., An there is an i ≤ n
such that I(Ai) = 0.

• Ψ∗(I)(A) = 1
2 , otherwise.

Theorem 1 (3-valued least model) The 3-valued least model of a non-negative
program is:

Ψ∗ ↑ω(not H)

Theorem 2 least(P ) uniquely exists for every non-negative program P .

Note that least(P ) doesn’t always satisfy the conditions of non-contradiction
and coherence,

Example 2. Given the program P = (a ← ; ¬b ← ; ¬a ← ¬b; b ← u),
least(P ) = {a,¬a,¬b} but is not an interpretation. Both non-contradiction
and coherence are violated.

Example 3. Given the program P = (a ← ¬b; b ← ¬b; ¬a) and the inter-
pretation I = {a,¬a, not ¬b}, where P

I = (a ← u, b ← u),¬a). least(P
I ) =

{¬a, not ¬b}, which although noncontradictory violates coherence.

To impose coherence when contradiction is not present, we define a partial
operator that transforms any non-contradictory set of literals into an interpre-
tation.

Definition 8. (The Coh operator). Let QI = QT ∪ not QF be a set of
literals such that QT is the interpretation T ∪ notF such that

T = QT and F = QF ∪ {¬l|l ∈ T}.
The Coh is not defined for contradictory sets of literals.

The Coh operator is not a model of the program, however, since it does not
take into account the consequences of applying the function. By generalizing
this operation, we have the last piece necessary to define Stable Models and
Well Founded Models.
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Definition 9. (The Ψ operator). Let P be a logic program, I an interpre-
tation, and J = least(P

I ). If Coh(J) exists, then ΨP (I) = Coh(J). Otherwise
ΨP (I) is not defined.

Definition 10. (WFSX, PSM and WFM). An interpretation I of an ex-
tended program P is called a Partial Stable Model (PSM) of P if and only if
ΨP (I) = I. The F-least Partial Stable Model is called the Well-Founded Model
(WFM). The WFSX semantics of P is determined by the set of all PSMs of P .

2.2 Default logic semantics

Logic programming-default logic correspondence results hold for a restricted
form of Reiter default theories, namely when the first-order component of default
theories, the set W , contains only literals and the set of defaults, D, contains
only restricted defaults, defaults of standard form, α:β

γ , but where α, β and γ
are literals.

It is well known that Reiter’s default logic may have multiple extensions.
Example 4. Let ∆ = 〈D, W 〉 where D = { c:¬a

b , c:¬b
a } and W = {c}. The

default theory ∆ has two extensions:

E1 = {a,¬b, c}
E2 = {b,¬a, c}

Nevertheless, a skeptical consequence set may be defined for the default theory
∆ as the set of literals that appear in every extension on ∆.

There are two approaches that relate logic programs with default theories,
and which resolve the issue of multiple extensions. Well-founded semantics
[Baral and Subrahmanian 1991] provides a semantics for default theories with
multiple extensions.

Definition 11 (Well-founded semantics). Let ∆ = 〈D,W 〉 be a default
theory, and let E∆ be Reiter’s fixed point operator [Reiter 1980]. Since E∆ is
antitonic E2

∆ is monotonic, and thus has a least fixpoint (with respect to set
inclusion in extensions). Then

• A formula F is true in a default theory ∆ with respect to the well-founded
semantics if and only if F ∈ lfp(E2

∆);

• F is false in ∆ w.r.t. the well-founded semantics if and only if F /∈
gfp(E2

∆);

• Otherwise F is said to be unknown or undefined.

This semantics is defined for all theories and is equivalent to the Well-Founded
Model Semantics of van Gelder, Ross and Schlipf [van Gelder et. al. 1991] of
normal logic programs.
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This work has since been generalized by Przymusinska and Przumusinski
by introducing the notion of stationary default extensions [Przymusinska and
Przumusinski 1993.]

Definition 12 (Stationary extension). Given a default theory ∆, E is a
stationary default extension if and only if:

• E = E2
∆(E);

• E ⊆ E∆(E).

Definition 13 (Stationary default semantics). Let E be a stationary ex-
tension of a default theory ∆ such that:

• A formula L is true in E if and only if L ∈ E;

• A formula L is false in E if and only if L /∈ E;

• Otherwise a formula L is said to be undetermined or undefined.

We note that every default theory has at least one stationary default exten-
sion. The least stationary default extension always exists, and corresponds to
the well-founded semantics for default theories. Moreover, the least stationary
default extension can be computed by iterating the operator E2

∆.
There are some properties that a default theory semantics should have. We

turn to these next.

Uniqueness of minimal extensions: We say that a default theory has the
uniqueness of minimal extensions property if when it has an extension it has a
minimal one.

It is well known that Reiter’s default theories do not have the uniqueness of
minimal extensions property. But by obeying this property, a default semantics
eases finding iterative algorithms to compute skeptical (cautious) versions of a
default semantics.

Definition 14 (Union of Theories). The union of two default theories
∆1 = 〈D1,W1〉 and ∆2 = 〈D2,W2〉 with languages L(∆1) and L(∆2) is the

theory:
∆ = ∆1 ∪∆2 = (D1∪, D2,W1 ∪W2) with language L(∆) = L(∆1 ∪L(∆2).

Modularity. Let ∆1 and ∆2 be two default theories with consistent extensions
such that L(∆1)∩L(∆2) = {} and let ∆ = ∆1 ∪∆2, with extensions Ei

∆1
, Ej

∆2

and Ek
∆. A semantics for default theories is modular if and only if:

∀a(∀iA ∈ Ei
∆1
⇒ ∀kA ∈ Ek

∆1
)

∀a(∀jA ∈ Ej
∆2
⇒ ∀kA ∈ Ek

∆1
)

Informally, a default theory semantics is modular if any theory resulting from the
union of two consistent theories with disjoint language contains the consequences
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of each of the theories alone. We remark that Reiter’s default logic is modular
(for a proof, see [Alferes and Pereira 1996, p. 89]).

Example 5. Consider the two default theories:

∆1 =
〈{

:¬a
¬a , :a

a

}
, {}

〉

∆2 =
〈{

:b
b

}
, {}

〉

Classical default theory, well-founded semantics, and stationary semantics all
identify {b} as the single extension of ∆2. Since the languages of the two theo-
ries are disjoint, one would expect their union to include b in all its extensions.
However, both the well-founded semantics as well as the least stationary se-
mantics give the value undefined to b in the union theory; therefore, they are
not modular. There is a conflict in the interaction among the default rules of
both theories. Reiter’s classical default theory is modular but returns two ex-
tensions, {¬a, b} and {a, b}, and thus fails to give a unique minimal extension
to the union.

We say that a default rule d is applicable in an extension E if and only if
α ⊆ E and ¬β ∩ E = {}, and an applicable default is applied if and only if
α ∈ E.

Enforcedness. Given a theory ∆ with extension E, a default d is enforceable
in E if and only if α ∈ E and β ⊆ E. An extension is enforced if all enforceable
defaults in D are applied.

Whenever E is an extension, if a default is enforceable then it must be
applied. Note that an enforceable default is always applicable. Another way of
viewing enforcedness is that if the default d is an enforceable default, and E is
an extension, then the default rule d must be understood as an inference rule
α, β → γ and so γ ∈ E must hold.

Based on the notion of enforcedness, Przymusinka and Przymusinki define
the notion of saturated default theories.

Definition 15 (Saturated Default Theory). A default theory ∆ = 〈D,W 〉
is saturated if and only if for every default rule α:β1,...,βn

γ ∈ D, if α ∈ W and
βi ⊆ W , for 1 ≤ i ≤ n, then γ ∈ W .

For this class of default theories Przymusinka and Przymusinki prove that
both stationary and well founded default semantics comply with enforcedness.
However, considering only saturated default theories is a significant restriction:
all conclusions of the defaults are already in the W component of the theory.

We are now close to presenting the correspondence theorem between logic
programs and default theories. In order to relate default theories to extended
logic programs, however, we must provide a modular semantics for default the-
ories. Therefore, we now present a modular and enforced semantics for a class
of default theories called Ω-default theories.
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2.3 Ω-default theory

In this section we present a default theory semantics that is modular and en-
forced for every restricted default theory. Moreover, when it is defined it has a
unique minimal extension.

To link default theories to extended logic programs, we must provide a mod-
ular semantics in the case of contradictory default theories.

Example 6. In the default theory:
〈{ :
¬a

}
,
{ :

a

}
, {}

〉

its two default rules with empty prerequisites and justifications should always
be applied, which clearly enforces a contradiction. Note that this would also be
the case in the default theory 〈{}, {a,¬a}〉.

Reconsider now Example 5, which demonstrates that stationary default se-
mantics are non-modular, where D = { :¬a

¬a , :a
a , :b

b } and {} is the least station-
ary extension.

This result is obtained because E∆({}), by having ¬a and a, forces, via
the deductive closure, ¬b (and all the other literals) to belong to it. This
implies the non-applicability of the third default, :b

b , in the second iteration.
For that not to happen one should inhibit ¬b from belonging to E∆({}), which
can be done by preventing the trivialization by inconsistency generated by the
deductive closure condition of the operator E. We avoid this problem in a logic
programming context, since formulae of logic programs are just literals. We
may simply rename negative literals. We now incorporate this idea into the
definition of the fixed-point operator E

′
∆.

Definition 16 (E
′
∆(E)). Let ∆ = 〈D, W 〉 and E be an extension. Let E′ be

the smallest set of atoms which:

1. contains W ′;

2. is closed under all derivation rules of the form α:β
γ , such that

α:β
γ ∈ D, and ¬f /∈ E, for every p¬f ∈ β′q, and f /∈ E for

every pnot f ∈ β′q.

where the new W ′, α′, β′, and γ′ are obtained from the original W,α, β,
and γ by replacing every negative literal p¬ϕq in the originals by a new
atom pnot ϕq.

E
′
∆(E) is obtained from E′ by replacing every atom of the form pnot ϕq

by p¬ϕq.

Definition 17 (Semi-normal default theories). Given a default theory ∆,
its semi-normal version ∆sem is obtained by replacing each default rule α:β1,...,βn

γ
in ∆ by the default rule:
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ssem = α:β1,...,βn,γ
γ .

We now turn to defining the Ω∆ fixed-point operator, Ω-extensions, and the
Ω-default semantics.

Definition 18 (Ω∆ operator). For a theory ∆ we define:

Ω∆(E) = E
′
∆(E

′
∆sem(E)). ¤

Definition 19 (Ω-extension). Let ∆ be a default theory. E is an extension
if and only if

• E = Ω∆(E)

• E ⊆ E
′
∆sem(E).

Given the notion of Ω-extensions, we may now define the semantics for a
default theory.

Definition 20 (Ω-default semantics). Let ∆ be a default theory. E is an
extension on ∆, and l a literal.

• l is true w.r.t. extension E if and only if l ∈ E;

• l is false w.r.t. extension E if and only if l /∈ E
′
∆sem(E);

• Otherwise l is undefined.

The Ω-default semantics of ∆ is determined by the set of all Ω-extensions
of ∆. The skeptical (or cautious) semantics of ∆ is determined by the least Ω-
extensions of ∆, whose existence are guaranteed by the uniqueness of minimal
extensions theorem below.

But noting that a default theory ∆ is contradictory if and only if it has no
Ω-extension, we may prove that the Ω-default semantics has the three properties
mentioned above—uniqueness of minimal extensions, modularity, and enforced-
ness—as necessary to establishing correspondence between logic programs and
default logic. All three theorems and their proofs appear in [Alferes and Pereira
1996].

Theorem 3 (Uniqueness of minimal extensions) If ∆ has an extension then
there is one least extension E.

Theorem 4 (Enforcedness) If E is an Ω-extension then E is enforced.

Theorem 5 (Modularity) Let L∆1 and L∆2 be the languages of two default
theories. If L∆1 ∩L∆2 = {} then, for any corresponding extensions E1 and E2,
there always exists an extension E of ∆ = ∆1 ∪∆2 such that E = E1 ∪ E2.
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2.4 Correspondence between logic programs and default
theories

We may now state the equivalence of Ω-extensions and partial stable models
of extended logic programs as defined above. For proofs, the reader is again
referred to [Alferes and Pereira 1996].

Definition 21 (Program correspondence to a default theory). Let
∆ = 〈D, {}〉 be a default theory. We say than an extended logic program
P corresponds to ∆ if and only if:

• For every default of the form α1,...,αn:β1,...,βm

γ ∈ ∆ there exists a rule pγ ←
α1, ..., αn, not¬β1, ..., not¬βmq ∈ P , where ¬bj denotes the ¬-complement
of bj .

• no rules other than these belong to P .

Definition 22 (Interpretation corresponding to a context). An interpre-
tation I of a program P corresponds to a default context E of the corresponding
default theory T if and only if for every objective literal l of P (and literal l of
T ):

• I(l) = 1 if and only if l ∈ E and l ∈ E′∆sem(E)

• I(l) = 1
2 if and only if l /∈ E and l ∈ E′∆sem(E)

• I(l) = 0 if and only if l /∈ E and l /∈ E′∆sem(E).

We note that Reiter default theories are a generalization of restricted default
theories in the sense that whenever Reiter semantics (E-extension) assigns a
meaning to a theory (i.e., the theory has at least one E-extension), Ω-semantics
assigns one also.

Theorem 6 (Correspondence) Let ∆ = 〈D, {}〉 be a default theory correspond-
ing to program P . E is an Ω-extension of ∆ if and only if the interpretation I
corresponding to E is a partial stable model of P .

So, according to this theorem we can say that explicit negation is nothing but
classical boolean negation in (restricted) default theories, and vice-versa. What
this theorem allows us to do is to rely on the top-down procedures of logic
programming to compute default extensions—that is, this provides us with a
sound procedure for Reiter’s default logic.

3 Conclusion

To recap, what we’ve done is to discuss the state of contemporary epistemol-
ogy and argue that more attention should be paid to formulating epistemic
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relations within theories of knowledge. We suggested that the logical AI lit-
erature offers a theoretical underpinning for such an effort, primarily because
the theoretical constraints imposed by mechanizing logic address key obstacles
faced when considering the project of modeling defeasible inference relations.
We then illustrated how this is so by briefly discussing a semantics for default
theories and logic programs, providing enough of a description to sketch how
the correspondence results are obtained.
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