
On Philosophical Incidences of Logic Programming

Lúıs Moniz Pereira∗

Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

Abstract

We address the import of AI for philosophical logic and
examine the requirements posed by knowledge repre-
sentation and reasoning issues which AI has addressed,
most especially through its Logic Programming field,
to more dynamic forms of logic, in order to deal with
knowledge in flux. In the process, we consider its en-
croachments on the philosophy of knowledge.

1 Introduction

We begin by addressing the general impingement of ar-
tificial intelligence (AI) on philosophical logic, by ex-
amining the requirements posed on logic by knowledge
representation and reasoning issues which AI has ad-
dressed. We then outline some of AI’s contributions,
most especially via the field of Logic Programming
(LP), to more dynamic forms of logic, in order to deal
with knowledge in flux, namely: incomplete and con-
tradictory information; hypotheses making through ab-
duction; argumentation; diagnosis and debugging; up-
dating; and learning. Along the way we delve into im-
plications for the philosophy of knowledge.

2 Evolution and Reasoning

Evolution has provided humans with symbolic thought,
and symbolic language communication abilities. Ob-
jective common knowledge requires thought to follow
abstract, content independent rules of reasoning and
argumentation, which must not be entirely subjective,
on pain of making precise communication and collec-
tive rational endeavour impossible. Such rules have be-
come ingrained in human thought, and hold an enor-
mous joint survival value [7, 8, 15].

In human cognitive evolution, both mimetic knowl-
edge (such as that inherent in reality simulating maps
and models), and imitation knowledge (such as that
present in ritual observation, or in artifact reproduc-
tion), were essential first steps towards socially situ-
ated, joint rule following behaviour, required by, say,
hunting plans. Subsequently, throughout human cul-
tures, abstract rule following social games emerged.

∗lmp@di.fct.unl.pt http://centria.fct.unl.pt/˜lmp

Game rules encapsulate concrete situation defining
patterns, and concrete situation-action-situation causal
sequencing, which mirrors causality-obeying physical
reality. From games, further abstraction ensued, and
there finally emerged the notions of situation-defining
concepts, of general rules of thought and their chain-
ing, and of legitimate argument and counter-argument
moves. Together they compose a cognitive meta-game
[10].

The pervasiveness of informal logic for capturing
knowledge and for reasoning, a veritable lingua franca
across human languages and cultures, rests on its ability
to actually foster rational understanding and common
objectivity. Crucially, objective knowledge evolution
dynamics itself, whether individual or plural, follows
ratiocination patterns and laws. Moreover, and more
recently, the very same rules of reasoning can and are
employed to reason about reasoning. Though some rea-
soning methods are well known, some are still uncon-
scious but, like the rules of grammar, can be discovered
through research. What is more, new reasoning meth-
ods can and have been invented and perfected through-
out human history. Examples of these are transfinite
induction, reductio ad absurdum (proof by contradic-
tion), recursion, abduction, and contradiction removal,
to name but a few.

New purported reasoning methods may be disputed,
just like any specific train of reasoning can. But rea-
soning can only be disputed by further reasoning, if
any consensus is to be found! (cf.[14]). Some argue
that scientific and philosophical discussion is necessar-
ily tantamount to a culture sensitive, and culturally rel-
ative, persuasive informal ad hoc argumentation, allied
to anything goes rhetoric [9]. They ignore that argu-
mentation is just another a form of reasoning which
has itself been made the subject of logical formaliza-
tion, and are oblivious to that rhetoric may be fine
for preachers, but is not conducive to the two-sided
communication required to reach common agreement
in the all rigorous scientific praxis that lead to cumula-
tive knowledge.

3 Logic and the Computer

Logic, we have seen, has arisen as the content indepen-
dent formulation of the Laws of Thought. Predicates
express whatever conceptual relations we may wish,

about the external and internal worlds. These predicate
building blocks can then be combined into formulas, by
means of quantifiers and logical connectives, and can be
manipulated according to inference rules characterizing
divers forms of reasoning. Logic is capable of articu-
lating an extensional behaviouristic view of predicates,
seen as black boxes or input/output relations, simul-
taneously with an intensional view of predicates, seen
as functionally decomposable into other predicates, like
black boxes wired inside black boxes.

Since the language of logic is symbolic and its rules
content-independent, its workings can be specified by
general, abstract, rule following procedures. These, in
turn, can be programmed on the computer. Through
their mechanization, logical theories and reasoning
forms attain, for the first time, an in vitro existence,
an ability and availability for repeatable execution, in-
dependently of any human mind hardware support.

The two views above, extensional and intensional,
are reconciled in the computer by insisting that the
declarative semantics, the ”what” is to be computed, be
equivalent to the procedural computational semantics,
the ”how” it is computed. This is the cornerstone of
the LP paradigm.

4 Philosophy and AI

Philosophy has been a cradle for rational thought
throughout human intellectual history. Its study of
language fostered the refinement of logic as an abstrac-
tion of natural language and as a tool of linguistic in-
quiry. The investigations on the foundations of math-
ematics too assigned to logic a meta-instrumental rôle
that would deploy it as the general purpose symbol ma-
nipulating tool par excellence. Computer science as well
has adopted logic as its general foundational tool, while
AI has made viable the proposition of turning it into
a bona fide computer programming language. At the
same time, AI has developed logic beyond the confines
of monotonic cumulativity, typical of the precise, com-
plete, endurable, condensed, and closed mathematical
domains, in order to open it up to the non-monotonic
real world domain of imprecise, incomplete, contra-
dictory, arguable, revisable, distributed, and evolving
knowledge. In short, AI has added dynamics to erst-
while statics.

In AI, as with any science, common logic has an im-
portant rôle in it. Indeed, any science, implicitly or
explicitly, presses logic and reasoning into its service,
to build up arguments, counter-arguments, and to set-
tle disputes. But a greater rôle can be expected of AI
in logic! First, AI means to mechanize logic, it being
such a core tool for so many rational activities. Sec-
ond, AI intends to make explicit, and well-defined, the
unconscious logic we use, and put it to objective test
by automating it on the computer. Third, AI employs

logic as a generic language of communication, of knowl-
edge and of procedures, between humans and comput-
ers, and among computers themselves. Fourth, in AI,
even when procedures and devices are not implemented
using logic directly, logic can play the rôle of a precise
specification language for their requirements, and of a
formalism with which to study their semantical prop-
erties. Fifth, AI has contributed significantly to the
phrasing and examination of the problem of identifying
limits to symbolic reasoning embodied in computers,
and whether these limits apply to humans as well. Sixth
and final rôle, AI has helped researchers explore new
reasoning issues and methods, and to combine disparate
reasoning modalities into a uniform unified framework,
so as to deal with incomplete, imprecise, contradictory,
and changing information. To this rôle we now turn.

5 A Logical Tool of AI

Classical logic has been developed to study well-defined,
consistent, and unchanging mathematical objects. It
thereby acquired a static character. AI needs to deal
with knowledge in flux, and less than perfect condi-
tions, by means of more dynamic forms of logic. Much
of this has been the focus of research in LP, a field of AI
which uses logic directly as a programming language,
and provides specific implementation methods and ef-
ficient working systems to do so. LP is moreover much
used as a staple implementation vehicle for other AI
approaches to logic.

5.1 Logic Programming

There is a close connection between logical implication
and physical causality. After all, logic permits us to
model the goings on in the world. This is even more
so in the case of LP, where all true conclusions must
be supported, ”caused”, by some premises, and where
implication is unidirectional, i.e. not contrapositive:
”causes” do not run backwards. Below, so-called Horn
clause notation is used to express this directionality.
The ability for LP to model actions by means of up-
dates is brought out in the section on updating.

To produce a result or conclusion C we need a con-
junction of enough positive conditions P to sustain it,
conjoined by ’,’ to the absence or negation of a con-
junction ¬N of all the negative conditions that would
prevent it, given P :

C ← P,¬N

If there is more than one way to obtain C, then we have
several rules of this form:

C ← Pi,¬Ni

If our information about each rule, and about the whole

set of rules for C, is complete, then we would have:

C ←→
∨

i

Pi,¬Ni

But what if we don’t? First, we might not have enough
information about each ¬Ni. We might conceivably
know about each required Pi, without at least one of
which C can never be achieved. But regarding the ¬Ni,
i.e. all the conditions which, if present, would prevent
us from concluding C in the presence of each Pi, that’s
more difficult.

5.2 Open worlds

Too many things can go wrong in an open non-
mathematical world, some of which we don’t even sus-
pect. For all we know, some bomb might go off that
destroys the whole physical setup we’re trying to model
logically (at a safe distance). Must we model that too?
In the real world, any setting is too complex already for
us to define it exhaustively each time. We have to allow
for unforeseen exceptions to occur, based on new incom-
ing information. Thus, instead of having to ensure or
prove that some condition Ni is not present, we can as-
sume it is not, with the proviso that we are prepared to
accept subsequent information to the contrary. I.e. we
may assume a more general rule than warranted, but
must henceforth be prepared to deal with arising ex-
ceptions. Take for example, with the obvious reading,
this piece of knowledge, again in Horn clause form:

faithful(H,K) ← married(H, K),¬lover(H,L)

We don’t normally have explicit information about who
is the lover of whom, though that kind of information
may arrive unexpectedly, especially of presidents

faithful(H,K) ← married(H, K), not lover(H, L)

This is expressible via so-called default default negation
not P , which may be read as ”P is not provable”. Ie.
we no longer require proof that ¬lover(H,L) for any L,
given some H, but assume so unless we can establish
lover(H,L) for some L given H. In other words, if I
have no evidence to conclude lover(H, L) for some L
given H, I can assume it false for all L given H.

5.3 Defeasible Assumptions

Default negation was introduced by AI researchers via
LP, and may be read, interchangeably, as ”P is not
provable”, or ”the falsity of P is assumable”, or ”the
falsity of P is abducible”, or ”there is no evidence for
P”, or ”there is no argument for P”. Default nega-
tion allows us to deal with lack of information, a com-
mon situation in the real world. It introduces non-
monotonicity into knowledge representation. If later
we’re informed about a pair of lovers, we must then go

back on our previous conclusion about whatever faith-
fulness we had presumed. Indeed, conclusions might
not be solid because the rules leading to them may be
defeasible. Legal texts, regulations, and courts employ
this form of negation abundantly, as they perforce deal
with open worlds, though it had not before been for-
malized in logic till AI too discovered its need of it.

5.4 Closed World Assumption

Mark that not should grant positive and negative in-
formation equal standing. That is, we should be able
to write:

¬faithful(H, K) ← married(H,K), not ¬lover(H, L)

to model instead a world where people are unfaithful
by default or custom, and where it is required to
explicitly prove that someone does not take any lover
before we conclude that person not unfaithful. The
issue arises because often, particularly in data bases
and knowledge bases, the (CWA) in enforced. That
is, the CWA obtains when we presume the database
or knowledge base to have all the pertinent positive
information, so that only what is explicitly stated, or
explicitly derivable from it, is true; otherwise, it is
presumed false. But how could it, in general, have all
the pertinent information in a changing world?

Information is normally expressed positively, by dint
of mental and linguistic economics. So, by CWA, the
absent, non-explicitly obtainable information is usually
the negation of positive information. Which means,
when no information is available about lovers, that
¬lover(H, L) is true by CWA, whereas lover(H,L) is
not. This asymmetry is undesirable, inasmuch pred-
icate names are purely conventional and we could,
as justifiably, have come up with positive predicate
non− lover(H, L) and its negation ¬non− lover(H, L)
to model our knowledge.

5.5 Explicit Negation

In addition, when we have no factual or derivable in-
formation, either positive or negative, we’d like to be
able to say that both are false epistemically, i.e. from
the ”knowledge we possess” point of view. Accordingly,
the excluded middle postulate is unacceptable because
some predication or other and its negation may be false
simultaneously. The CWA and the symmetry and epis-
temological requisites, can be reconciled by reading ’¬’
above not as classical negation, which complies with
the excluded middle postulate stating that any predi-
cation is either true or false, but as yet a new form of
negation, dubbed in LP ”explicit negation”[5] (which
ignores the excluded middle provision). Now we can
state the CWA for just those predicates P or ¬Q we

wish, simply by writing:

¬P ← not P or Q ← not ¬Q

Alternatively, the use of a not P or of a not ¬Q assump-
tion may be made at just those predicate occurrences
requiring them, like we did before.

5.6 Revising Assumptions

Let us next examine the need for revising assumptions
and for introducing a third truth-value, call it ”un-
defined”, into our framework. When we combine the
viewpoints of the two above worlds we become con-
fused:

faithful(H,K) ← married(H, K), not ¬lover(H, L)

¬faithful(H,K) ← married(H, K), not lover(H, L)

Assuming married(H, K) for some H and K, it now ap-
pears that both faithful(H, K) and ¬faithful(H,K)
are contradictorily true. Because we have no evidence
for lover(H,L) nor ¬lover(H, L), there simply is no in-
formation about them, we make two assumptions about
their falsity. But when an assumption leads to contra-
diction one should retract it. Yes, it is the venerable
principle of reductio ad absurdum, or ” reasoning by
contradiction”. In our case, two assumptions led to the
contradiction. Which shall we retract? They are on
equal footing!

5.7 Undefinedness

Given no other eventually preferential information, we
retract both because we cannot justly decide between
them. That is, we assume neither lover(H,L) nor
¬lover(H,L) false. Since neither is provably true also,
we make each undefined. I.e. we introduce a third
truth-value to better characterize this lack of infor-
mation about some lovers’ situation, thereby making
faithful(H,K) and ¬faithful(H, K) undefined too.
This imposition of undefinedness can be achieved sim-
ply, by adding to our knowledge:

¬lover(H, L) ← not lover(H, L)

lover(H, L) ← not ¬lover(H, L)

Given no other information, we cannot prove either of
lover(H,L) or ¬lover(H,L) true, or false. Any attempt
to do so runs into a self-referential circle involving de-
fault negation. However, once we do hypothesize the
one true the other perforce becomes false, and vice-
versa. These two possible situations are not thus ruled
out. But the safest, skeptical, third option is to take no
side in this marital dispute, and abstain from believing
either. Indeed, the well-founded semantics of logic pro-
grams (WFS) assigns to the literals in the above two

clauses the truth value undefined in its knowledge skep-
tical well-founded model, and allows also for the other
two, non truth-minimal, more credulous models. But
why can we not simply add:

lover(H, L) ∨ ¬lover(H, L) ?

Because it will not do. We would still not be able
to prove either lover(H, L) or ¬lover(H, L) definitely
true, and the contradiction would ensue all the same!

When dealing with non-provability one really needs
a third truth-value to express our epistemic inability to
come up with information. Even assuming the world is
ontologically 2-valued, our access to information coded
about it might be 3-valued in general. Besides, the
world may very well not be 2-valued, or, in any case,
not capturable in a 2-valued way. Can we say of some
particle/wave that it is either here or not here? Is it
really either here or not here, though we cannot say
it? The inherent dispute apparently cannot be settled
experimentally. In any case, we are in wont of a third
logical value for other reasons. As we build up our real
world imperfect knowledge base, we may very well cre-
ate, unwittingly and unawares, circular dependencies
as above. For example, the Legislator may well enact
conflicting, circular, laws. Still, we want to be able to
carry on reasoning, whether or not such circularities le-
gitimately express what they model. And when they do
not, we want to detect and function with them rather
than throwing away the baby with the bath water.

But undefinedness may also be legitimately pressed
into service to express common knowledge, in its vari-
ously credulous and skeptical readings. Why, even yes-
terday I read in a book [6] of the old sailor proverb that
”He weathers the storms he cannot avoid, and avoids
the storms he cannot weather”, i.e.:

weather ← storm, not avoid

avoid ← storm, not weather

What will happen to an experienced sailor in a storm?
Will he weather it or avoid it? Three outcomes are
possible, including being undecided about the outcome.
For us, it means we must weather circular knowledge,
not avoid it in the calm waters of the artificial mathe-
matical paradises...

5.8 Expressiveness

The introduction of this 3-valued semantics into LP is
an important innovation of AI, with a number of con-
sequences. Namely, we have seen, it allows us to be
skeptical and suppose no more than is warranted. An-
other innovation, to recapitulate, is that the negation
¬ used above, called explicit negation, is 3-valued too,
and so differs from classical negation. Explicit nega-
tion, we’ve seen, does not conform to the principle of

excluded middle. Predications and their negations can
be both false (”the chair is angry”, ”the chair is not
angry”). In a knowledge base, we may definitely not be
able to prove either something or its (explicit) negation,
so that both become false by default. Additionally, the
introduction of explicit negation, and in particular its
combination with default negation, provides for more
expressive knowledge representation. Consider for in-
stance the injunction

¬cross ← train

versus the alternative injunction

¬cross ← not ¬train

The latter is clearly a safer option. According to it
you must actually prove that a train is not coming be-
fore ¬cross becomes false, whereas with the first option
¬cross becomes false solely on the grounds that you fail
to prove a train is coming!

Yet another innovation is that the implicational ar-
row ← , when combined with default or explicit nega-
tion, is not material implication. Contrapositives are
not countenanced. Consider:

A ← B

¬A

¬B does not follow, for there is no presumption of the
contrapositive ¬B ← ¬A. Whenever contrapositives
are desired they must be explicitly added. Instead, ←
should be seen as expressing an inference rule, which
can be used procedurally ”bottom-up” to conclude A
given B, or ”top-down”, like an invoked procedure, to
try and prove the body B in order to prove the head
A. Facts are just procedures with empty body. This
inferential reading of clauses as rules turns ← into a
directional operator, which makes it rather appropri-
ate to model not only inference but causality as well.
Indeed, the semantics of logic programs emphasizes ex-
actly this, with their insistence on admitting only min-
imal models. Minimal models are those for which every
positive or explicitly negated literal true in the model
is supported on some rule whose head or conclusion is
the literal, and whose body or set of premises is in turn
supported. Thus facts, since they have an empty body,
are automatically supported. Additionally, any posi-
tive or any explicitly negated literal is false just in case
all rules for it have a false body. Consequently, if there
are no rules whatsoever for a literal it is automatically
false. All other positive or explicitly negated literals are
undefined (this can happen only if they are involved in
unresolved self-referential loops through default nega-
tion). Finally, a default negated literal, not P , is true/
false/ undefined just in case P is, respectively, false/
true/ undefined.

5.9 Theory Diagnosis

Many examples exist of the use of default nega-
tion, explicit negation, contradicition removal, and 3-
valuedness, made possible by research in LP, namely in
the areas of abduction, argumentation, belief revision,
knowledge updating, learning, and diagnosis[3]. Let us
illustrate the latter, i.e. the diagnosis or debugging of
a generic knowledge base.

Suppose we have the following rules, expressing a
logic program that allows us to compute predicate C
on the basis of predicates P and N :

C(X) ← P (X),¬N(X)

P (a) ¬N(a)
P (b)
P (c) ¬N(c)

Let us allow for the chance that the rule for C is con-
ceivably wrong. i.e. that it may have exceptions, by
writing it thus:

C(X) ← P (X),¬N(X), not exception(C(X))

If nothing else is stated about the exception predicate,
the conclusions of the logic program remain unchanged,
so the program may contain these rules from the start,
for any predicate we wish. If we next learn that C(a) is
false, we can salvage the rule for C, since it is no longer
valid for all X = a, simply by adding to our knowledge:

exception(C(a))

The rule for C will continue to work for the remaining
cases, though more exceptions might subsequently be
accumulated.

This method takes care of rules that are unsound, i.e.
produce wrong results. What about the other problem-
atic case, that of incompleteness, i.e. when results that
would be correct are missing? Suppose we learn that
C(b) should true, but which our rules rule out? Well,
it is enough to introduce for every set of rules for a
predicate a catch-all rule. In this case:

C(X) ← missing(C(X))
P (X) ← missing(P (X))

¬N(X) ← missing(¬N(X))

If nothing else is stated about the missing predicate,
the conclusions of the logic program remain unchanged,
so the program may contain these rules from the start.
Now, to make C(b) true, it now suffices now to abduce,
or adopt, one of two hypotheses: that missing(C(b))
or that missing(¬N(b)) is true.

This method takes care of rules that are incomplete,
i.e. fail to produce results. We have now achieved gen-
erality. By making the two predicates, exception()
and missing(), abducible, we can diagnose and debug
a knowledge base expressed in logic.

Abduction is a well-known reasoning process by
which one can adopt hypotheses to the effect that some
predicate instances (or their negations) are true in or-
der to prove some conclusion. It’s reasoning from goals
to requirements, and has been extensively studied in
the LP context [11]. Of course, the assumptions or hy-
potheses so adopted may later prove erroneous, if and
when they lead to contradiction. We have then to make
provision for the application of a contradiction removal
process based on revising assumptions, possibly adopt-
ing of some other assumptions instead. This too has
been extensively studied in AI and in the LP setting,
and as a result automated reasoning systems have been
made available which do that work for us [1].

5.10 Updating

Last but not least, work in LP has concerned itself with
the updating of a knowledge base by another one. This
notion of knowledge updating, as opposed to that of
simple fact updating, opens up another dimension to
the dynamics of logic, in contradistinction to the stat-
ics of the logic of old. Given an existing knowledge
base, containing facts and rules, and some new knowl-
edge with facts and rules as well, possibly contradicting
the previous knowledge when added to it, what is the
resulting updated knowledge base? Can this process be
iterated?

Most of the work conducted so far in the field of
LP has focused on representing static knowledge, i.e.,
knowledge that does not evolve with time. This is a se-
rious drawback when dealing with dynamic knowledge
bases in which not only the extensional part (the set of
facts) changes dynamically but so does the intensional
part (the set of rules). Recent work has shown how
this can be achieved with generality [2, 4]. Applica-
tion areas in point are when the two knowledge bases
consist in pieces of legislation, or regulations, or safety
procedures, or rules of robot conduct.

The common intuition behind the update of a model
of the world has been based on what is referred to as the
commonsense law of inertia, i.e. things do not change
unless they are expressly made to do so. Suppose, for
example, that we have a model in which “sunshine” is
true and “rain” is false; if later we receive the informa-
tion that the sun is no longer shining, we conclude that
“sunshine” is false, due to the update, and that “rain”
is still false by inertia.

Suppose now that our vision of the world is described
instead by a logic program and we want to update it. Is
updating each of its models enough? Is all the informa-
tion borne by a logic program contained within its set
of models? The answer to both these questions is nega-
tive. It is not sufficient to just consider the truth values
of literals figuring in the heads of its rules, because the
truth value of their rule bodies may also be affected by
the updates of other literals. In other words, it suggests

that the principle of inertia should be applied not just
to the individual literals in an interpretation but rather
to the entire rules of the knowledge base.

This approach was first adopted in [12], where the au-
thors presented a program transformation which, given
an initial program and an update program, produces an
updated program obeying rule inertia. The stance of
the dynamic LP approach is precisely that of ensuring
that any added update rules are indeed in force, and
that previous program rules are still in force (by iner-
tia) only in so far as possible, i.e. they are kept for as
long as they do not conflict with any newly added ones.

Updating inevitably raises issues about revising and
preferring, and some work is emerging on the articu-
lation of these distinct but highly complementary as-
pects. And learning is usefully seen as successive ap-
proximate change, as opposed to exact change, and
combining the results of learning by multiple agents,
multiple strategies, or multiple data sets, inevitably
poses problems within the province of updating. Fi-
nally, goal directed belief revision can be fruitfully con-
strued as abductive updating. Thus, not only do the
aforementioned topics combine naturally together – and
so require precise, formal, means and tools to do so – ,
but their combination results in turn in a nascent com-
plex architectural basis and component for LP rational
agents, which can update one another and common,
structured, updatable blackboard agents. It can be sur-
mised, consequently, that the fostering of this meshing
of topics within the LP community is all of opportune,
seeding, and fruitful. Indeed, application areas such as
software development, multi-strategy learning, abduc-
tive belief revision, model-based diagnosis, agent ar-
chitecture, and others, are being successfully pursued
while employing precisely this outlook.

6 A Dynamical Logic Framework

It is not too difficult to imagine how a combined pro-
cess of rule generation, of systematic diagnosis, and of
rule revision by updating, can be used to achieve au-
tomated theory learning, in an integrated way, within
the uniform setting of LP.

To initiate the learning, one starts with some fixed,
already acquired, background knowledge in rule form,
i.e. a theory, and with a rule generator to add to it new
purported knowledge, in order to explain abductively
known observations, whether positive or negative, in
the form of facts and explicitly negated facts. The goal
being to generate rules that define a positive concept
as well as its negated concept, so that they cover all
known observation instances. This automatic genera-
tion of new rules is subjected to a pre-defined bias, i.e.
only some rule forms, and predicates comprising them,
are allowed in the generation process. Newly generated
rules may contradict one another, on some of the ob-

servation instances, and so they must be subjected to a
diagnosis, to identify alternative possible minimal revi-
sions. The whole process will be iterated on the basis
of new incoming knowledge, or by knowledge confronta-
tion of among differently evolved automated theories,
with distinct backgrounds, biases, rule generators, di-
agnosers, revisors, preferences, planners, observations,
and updating procedures, comprising a rational agent.

The use of LP for the overall endeavour is justified on
the basis of it providing a rigorous single encompassing
theoretical basis for the aforesaid topics, as well as an
implementation vehicle for parallel and distributed pro-
cessing. Additionally, LP provides a formal high level
flexible instrument for the rigorous specification and
experimentation with computational designs, making
it extremely useful for prototyping, even when other,
possibly lower level, target implementation languages
are envisaged.

7 Concluding Remarks

I hope to have convinced you that AI, most especially
through LP, will continue to accomplish a good deal in
identifying, formalizing, and implementing the Laws of
Thought. Most notably, AI has taken on the challenge
of opening up logic to the dynamics of knowledge in
flux. And in so doing, it has been progressively meeting
our expectations and requirements.

The LP paradigm provides a well-defined, general,
integrative, encompassing, and rigorous framework for
systematically studying computation, be it syntax, se-
mantics, procedures, or attending implementations, en-
vironments, tools, and standards. LP approaches prob-
lems, and provides solutions, at a sufficient level of ab-
straction so that they generalize from problem domain
to problem domain. This is afforded by the nature of its
very foundation in logic, both in substance and method,
and constitutes one of its major assets.

Indeed, computational reasoning abilities such as as-
suming by default, abducing, revising beliefs, removing
contradictions, updating, belief revision, learning, con-
straint handling, etc. etc., by dint of their generality
and abstract characterization, once developed can read-
ily be adopted by, and integrated into, distinct topical
application areas.

References

[1] J.Alferes, C.Damásio, L.Pereira, ”A logic pro-
gramming system for non-monotonic reasoning”.
J. Automated Reasoning, 14:93-147, 1995.

[2] J.Alferes, J.Leite, L.Pereira, H.Przymusinska,
T.Przymusinski, ”Dynamic Updates of Non-
Monotonic Knowledge Bases”, The Journal of
Logic Programming 45(1-3): 43-70, Septem-
ber/October 2000

[3] J.Alferes, L.Pereira, ”Reasoning with logic pro-
gramming”, LNAI 1111, Springer, 1996.

[4] J.Alferes, L.Pereira, ”Logic programming up-
dating: a guided approach”. In F.Sadri et
al.(eds),”Computational Logic: From Logic Pro-
gramming into the Future - Essays in honour of
Robert Kowalski”, Springer 2002.

J. J. Alferes and L. M. Pereira, Logic Programming
Updating - a guided approach , In A.Kakas and
F.Sadri (eds), Computational Logic: From Logic
Programming into the Future - Essays in honour
of Robert Kowalski, Springer, 2002.

[5] J.Alferes, L.Pereira, T.Przymusinski, ”’Classical’
Negation in Nonmonotonic Reasoning and Logic
Programming”, J. Automated Reasoning, 20:107-
142, 1998.

[6] J.Barth, ”On with the story”, page 55, Back Bay
Books, Little Brown and Company, 1996

[7] T.Deacon, ”The Symbolic Species”, W.W. Norton,
1997.

[8] M.Donald, ”Origins of the Human Mind”, Harvard
U.Press, 1991.

[9] P.Gross, N.Levitt, ”Higher Superstition”, The
Johns Hopkins U. Press, 1994.

[10] J.Holland, ”Emergence”, Addison-Wesley, 1998.

[11] A.Kakas, R.Kowalski, F.Toni, ”Abductive Logic
Programming”, J.Logic and Computation, 2:719-
770, 1993.

[12] J.Leite, L.Pereira, ”Generalizing updates: from
models to programs”, Procs. ILPS’97 Workshop
on Logic Programming and Knowledge Represen-
tation, LPKR’97, Port Jefferson 1997.

[13] J.Leite, J.Alferes, L.Pereira, ”Multi-dimensional
Dynamic Knowledge Representation”, Procs. 6th
Int. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’01), T. Eiter et al.(eds),
365-378, Springer, LNAI 2173, Springer 2001.

[14] T.Nagel, ”The Last Word”, Oxford U. Press, 1997.

[15] S.Pinker, ”How the mind works”, W.W.Norton,
1997.

