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Abstract. We propose a general vision for agents in Ambient Intel-
ligent applications, whereby agents monitor and train unintrusively
human users, and learn their patterns of behavior by observing and
generalizing their observations, but also by “imitating” them. Agents
can also learn by “imitating” other agents, after being told by them.
Within this vision, agents need to evolve to take into account what
they learn from or about users, and as a result of monitoring the
users. In this paper we focus on modelling, by means of dynamic-
logic-like rules, the monitoring behavior of agents, and by modelling
the corresponding evolution of the agents.

1 Motivation

We envisage a setting (see Figure 1) where agents interact with users
(i) with the objective of training them in some particular task, and
(ii) with the aim of monitoring them for ensuring some degree of
consistence and coherence in user behavior. We assume that agents
are able (iii) to elicit (e.g. by inductive learning) the behavioral pat-
terns that the user is adopting, and (iv) to learn rules and plans from
other agents by imitation (or being told). In fact, learning may al-
low agents to survive and reach their goals in environments where
a static knowledge is insufficient. Here, for some aspects related to
learning we take inspiration from recent evolutionary cultural studies
of human societal organization to collectively cope with their envi-
ronment. We believe in fact that some principles emerging from these
studies can equally apply to societies of agents. This especially when
agents cooperate to help humans adapt to environments that are new
to them and/or their ability to cope with the environment is too costly,
non-existent or impaired.

The envisaged agents will try to either modify or reinforce the
rules/plans/patterns they hold, based on appropriate evaluation per-
formed by an internal meta-control component. The evaluation might
also convince the agent to modify its own behavior by means of ad-
vanced evolution capabilities.

This overall agent model is in accordance with the vision of Am-
bient Intelligence as that of a digitally augmented environment cen-
tered around the needs of humans, where appliances and services
proactively and unintrusively provide support and assistance.

We consider it necessary for an agent to acquire knowledge from
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Figure 1. Agent interaction model

other agents, i.e. learning “by being told” instead of learning only by
experience. Indeed, this is a fairly practical and economical way of
increasing abilities, widely used by human beings, as widely studied
in evolutionary biology [12].

Note that avoiding the costs of learning is an important benefit of
imitation, but nevertheless learning involves many issues and some
potential risks. The issues are at least the following: (a) how to ask for
what an agent needs; (b) how to evaluate the actual usefulness of the
new knowledge; and, (c) how this kind of acquisition can be semanti-
cally justified in a logical agent. We will discuss issues (b) and (c) in
Sections 3 and 4 while we shortly discuss (a) in Section 5. We make
the simplifying assumption that agents speak the same language, and
thus we overlook the problem of ontologies. We also assume that
agents involved in the society are benevolent and trusted. Otherwise,
incorporating and using learned knowledge would involve the man-
agement of related risks.

Note also that an agent that learns and re-elaborates the learned
knowledge becomes in turn an information producer, from which
others can in turn learn. Instead, an agent that just imitates blindly
can be a burden for the society to which it belongs. Then, one my
wonder about the effects and risks for the society to allow imitation.
Evolutionary biology shows that the long-run of evolution of human



societies is a mixture of learners and copiers, in which both types
have the same fitness as purely individual learners in a population
without copiers. To understand this result, think of imitators as infor-
mation scroungers and of learners as information producers. Infor-
mation producers bear a cost to learn. When scroungers are rare and
producers common, almost all scroungers will imitate a producer. If
the environment changes, any scroungers that imitate scroungers will
get caught out with bad information, whereas producers will adapt.

Then, an agent will be able to increase its fitness in such a society
in two ways: if it is capable of usefully exploiting learned knowl-
edge thus deriving new knowledge and becoming an information pro-
ducer; if it is capable to learn selectively, learning when learning is
cheap and accurate, and imitating otherwise. A future direction of
this work is that of equipping agents with a higher level responsible
for coping with this kind of information exchange.

2 Application to Agent Societies for Ambient
Intelligence

In the sequel we shall outline a model for the construction of logi-
cal agents that are able to learn and adapt agents in interaction with
humans.

Let us emphasize that, to engage with humans, agents should have
a description of how humans normally function. Clearly, the descrip-
tion will in general be initially limited to the “normal” user behavior
in that ambient setting. We assume that the agents are deliberately
designed and originally primed with some ambient setting in mind,
and the humans are new to the setting and/or experience difficulties
or impairments in coping with it. As deep learning is time consum-
ing and costly, and thus needs not be repeated by one and all, an
agent may apply a hybrid combination of both deep and imitation.
The view is that all agents and the society as a whole will eventually
take profit from the learning/imitation process, that can here be seen
as a form of cooperation.

Each agent will thus initially contain abilities related to its super-
vision task. These may be enhanced by interaction with both the user
and the environment, and with other similar agents. However, when
some piece of knowledge is missing and a task cannot be properly
carried out by an agent, that piece may eventually be acquired from
the society, if extant there, for the agent may be unable or unwilling
to deep learn it. Then it will exercise it in the context at hand, sub-
sequently evaluate on the basis of such experience, and report back
to the society. This evaluation of imparted knowledge builds up a
network of agents’ credibility and trustworthiness.

3 Agent model: sketch

In order to meet the vision outlined in Section 1, we consider an agent
model composed of two layers:

• A base layerPA (for Personal Assistant) in charge of giving im-
mediate answers to a user. We will assume that PA is a logic pro-
gram, but will not commit to a particular semantics for it (for a
survey of semantics for logic programs, see e.g. [1]). We will as-
sume however a semantics possibly ascribing multiple models to
PA, in order to deal with “uncertainty” (as we will see later). One
such a semantics might be the stable model semantics [7].

• A meta-layerMPA in charge of updating PA when no model exists
according to the chosen semantics for PA. This meta-layer relies
on meta-knowledge, e.g. reporting long-term objectives about the
user (e.g., safety and good health) and some domain-dependent

meta-knowledge related to the PA. This domain-dependent knowl-
edge may be updated by learning (by being told) from other
agents.

To describe the dynamic changes of the user behavioral patterns as
well as the environment, we assume that both PA and MPA are for-
malized via some kind of evolutionary programming paradigm. One
possibility would be to exploit EVOLP, an extension of logic pro-
gramming [8] that allows to model the dynamics of knowledge bases
expressed by programs, as well as specifications that dynamically
change.5 EVOLP augments a given logic programming language by
adding the new distinguished atomassert(R), whereR is a rule.
The intended meaning is that wheneverassert(R) is a consequence
of the given program, then the ruleR is added to the program itself.
Symmetrically, a rule can be removed by asserting its negation. The
semantics of EVOLP is given in terms ofprogram sequences, i.e.,
addition or removal of a rule transforms the given program into a
new one which is its successor in the sequence. EVOLP is originally
based on the “stable model” or (equivalently) “answer set” semantics
[7]. However, EVOLP is a general framework that does not strictly
depend upon the underlying semantics.

Note that the agent model we envisage here is an instance of a
more general model, outlined in [6], whereby an agent results from
activating some form ofcontrol in the context of an environment
where the sensing, acting and communication capabilities can be put
to work. An initial agentA0 will in generalevolveinto A1, A2, . . .
through a sequence of stages, that will be affected by the interaction
with the environment, that will lead it to respond, to set and pursue
goals, to either record or prune items of information, etc. This more
general model admits also KGP [2, 10, 13] and DALI [4, 5, 14] as
instances.

In [3] we have introduced the possibility for the agent to learn re-
active rules and plans. Once acquired, the new knowledge is stored
in two forms: as plain knowledge added to the set of beliefs, so
that the agent is able to use it and as meta-information, that permits
the agent to “trace” the new knowledge, in the sense of recording
what has been acquired, when and with what expectations. The meta-
information allows the meta-control to reason about these aspects. If
the agent should conclude that the new rules must be removed be-
cause the expectations have not been met, the meta-information will
be used to locate the rules in the set of beliefs and remove them.

In this paper, we focus on the monitoring aspects of our agent
vision (see Figure 1). For this purpose, we will assume that the meta-
control includes rules inspired by temporal logic, but adapted to the
agent context: the basic difference is that in the case of agents there is
no way of verifying these rules along the full time-line (like it is e.g.
done by model-checking). In fact, the notion of truth of a temporal
formula in agents that evolve is necessarily bound to be checked at
certain times and, as the agents evolve, the truth value may change,
thus introducing an element of non-monotonicity. These temporal
logic-like rules are described in the next section.

3.1 Temporal logic-like rules

Assume given a logical formalismL in which we can express sen-
tences (including the sentencetrue). L will possibly include quan-
tification. Then, temporal logic-like rules are defined as follows.

Definition 3.1 Let P and C be sentences inL. Let T be a time-
stamp or a time-interval. Asafety formulaF is a formula of the

5 An implementation of EVOLP is available from
http://centria.fct.unl.pt/˜jja/updates.



form K F WHEN C where eitherF = P or F = P : T ,
andK ∈ {ALWAYS , SOMETIMES, NEVER, EVENTUALLY }. If
K = EVENTUALLY then the time-stamp is mandatory. IfC is true
then the safety formula is abbreviated toK F .

At a certain timet a safety formula can be either true or false (for
simplicity we consider solely safety formulasK P : T below). First,
the inner sentenceP will be either true or false according to the con-
crete logical formalism we are adopting. Then,P : T is true att
if P is true att and eitherT is a time-stamp andt ≤ T or T is a
time-interval andt ∈ T .

Definition 3.2 Let T be a time-stamp andF = K P : T a safety
formula. Then:

• F is true at timet iff P : T is true att whenever
K ∈ {ALWAYS , SOMETIMES, EVENTUALLY };

• F is true at timet iff P : T is false att wheneverK = NEVER.

Defining the truth of safety formulas in time-intervals requires the
interval to be specified as a totally ordered set of discrete points.

Definition 3.3 Let T be a time-interval andF = K P : T a safety
formula. Then,F is true iff:

• K = ALWAYS and∀ t ∈ T it holds thatK P is true att;
• K = NEVER and∀ t ∈ T it holds thatK P is false att;
• K = SOMETIMESand∃ t ∈ T such thatK P is true att;
• K = EVENTUALLY and∃ t ∈ T such thatK P is true att

and∀ t2 ∈ T, t2 > t implies thatK P is true att2.

Notice that the notion of truth/falsity is necessarily bound to be
checked at certain times and the outcome in general will change as
the agent evolves: what wasALWAYS(or NEVER, etc.) true at some
point may not be so in a previous or later point.

4 User monitoring by learning-by-imitation and
evolution: case study

The following scenario illustrates the dynamic aspects of the knowl-
edge base of a PA/MPA whose knowledge evolves to reflect changes
in the user behavior as well as in the environment.

Suppose we have a user who must undergo treatment for some
illness and therefore needs to take medicine. He/she asks his/her per-
sonal assistant about what to do during treatment, e.g., “Can I drink a
glass of wine if I have to take this medicine?” Or, more generally, the
user may just ask “Can I drink a glass of wine now?” where the per-
sonal assistant should give advice based on whether there is medicine
to be taken (or other related matters). Referring to the first question,
PA may initially contain:
⊥ ← drink, take medicine

plus default usage rules:
drink ← not abnormal(drink)
take medicine ← not abnormal(take medicine)

When asserting (triggered by the user’s question):
drink
take medicine

an integrity violation is detected because the symbol⊥ is in some
models (in fact all, in the stable model semantics). The PA can ask
the MPA for help, and it might provide in the first place general rules
such as:

abnormal(drink) ← not abnormal(take medicine)
abnormal(take medicine) ← not abnormal(drink)

together with rules stating that facts about abnormality should be re-
jected. The MPA can however have meta-axioms stating that a user
action which is necessary to reach a basic objective should be under-
taken, e.g.

ALWAYSdo(user, A)
WHENgoal(G), necessary(G, A)

goal(healthy)
necessary(healthy, take medicine)

then, the provided rules might be, accordingly:
abnormal(drink) ← not abnormal(take medicine)
abnormal(take medicine) ← not abnormal(drink)
⊥ ← not take medicine, mandatory(take medicine)
mandatory(take medicine)

where the latter fact signifies taking the medicine cannot be avoided.
Let us assume something more, to complicate the matter a little so

as to show how the MPA can evaluate rules acquired from its siblings.
Assume that the MPA knows:

illness(user, cold)
goal(healthy) ← illness(user, X), recover(X)

and has learnt:
recover(cold) ← do(user, take aspirin)

Now, the MPA will check the usefulness of the learnt rule, e.g. by
means of the meta-axiom:

EVENTUALLYgoal(G) ←
known conds(C), learnt(Cond) : t

The intended meaning is that goalG is expected to be reached by
time t, by means of: (i) what the agent knew before, here indicated
asknown conds(C) and corresponding toillness(user, cold) in
the example; (ii) the learnt conditionCond, i.e., recover(cold) in
the example. If this does not happen, in that the PA, by virtue of
its interaction with the user, does not confirm recovered health, the
learnt rule can be either de-activated or removed.

In accordance with the vision of Ambient Intelligence as a digi-
tally augmented environment which is omnipresent and can observe
and supervise the situation, our assistant agent will be able to per-
ceive and record data about user behavior. In fact, the description
of the user begins with an initial form and will then be subject to
evolution according to what the agent observes along the interaction.
These data can be exploited by means of either induction, abduction,
or some other classification method so as to predict plausible future
user behavior (for induction and abduction in logic programming, see
e.g. [11] and [9] respectively) . For instance, assume that our agent is
able to learn that the user normally takes a drink when coming back
home. This can be represented by a rule such as:

drink ← arrive home
This learnt rule can be associated with a certainty factor. When the
rule becomes later confronted with subsequent experience, its cer-
tainty factor will be updated, accordingly. Whenever this factor ex-
ceeds a threshold, this may lead to assert new meta-knowledge, such
as:

USUALLYdrink WHENarrive home
Formulas includingUSUALLYare an extension to the language for
meta-rules given earlier. They express simply a constraint that should
be checked periodically during evolution. A specification of the fre-
quency of the check and of the conditions under which the check
should be performed may be in principle added.

Th meta-knowledge expressed by theUSUALLYformula should
be managed by the meta-control MPA. In particular, MPA should
consider all constraints that involve one of the elements. In this case,
the outcome should be that, whenever the user arrives home, if she/he
is undergoing some treatment and should then take medicine, he/she



is preemptively warned not to drink.
The initial description of the user can be either hard-wired in the

agent program, or more generally be acquired from the agent society.
The society will in general provide, initially and later:

• A few mandatory rules.
• Behavioral rules that each agent has the freedom to accept, reject

or modify in accordance to its experience and type of user it is
supervising.

5 Towards a society of agents

Throughout this paper, for the sake of simplicity we have assumed
that learning is achieved via information exchange between sibling
agents. However, in our envisaged system architecture, the role of
the society is crucial. In fact, we plan to specify a meta-meta-level
which is present in every agent which participates in the society. This
higher level should be responsible for such information exchange.
This could be achieved, for example, by exploiting and developing
techniques based on social evaluation and consensus, involving cred-
ibility measures and overall preferences.

Thus, in this perspective, a set of rules should not be told di-
rectly by an agent to another agent but, instead, it should be acquired
by the global agent society which, in turn, will have suitable self-
evaluation mechanisms. According to this vision, the society will
have the role of proposing behavioral rules (that are socially ac-
cepted) to its agents, which have the freedom to accept them in accor-
dance to their experience and to the type of user they are monitoring.
It is also plausible that the agent society should have the possibility
to enforce mandatory rules.

In this architecture, any time an agent provides its evaluation to
the agent society, that agent is responsible for the information it pro-
vides. This agent will then be rewarded in case the rule it proposes
will be positively evaluated by other agents. Doing so will increase
the reputation/trust of the proposing agent with respect to society, and
the future rules proposed by it will be accepted with greater strength.
On the contrary, agents proposing bad rules will be penalized, and
eventually will be socially eliminated or outcast, and eventually re-
placed by new agents. The resulting agent society is thus not static,
but self-evolves by trying to adapt to new situations. For example, it
may revise its policy to reward/punish agents, etc.

The function of the society is particularly important in contexts
where agents can be dynamically allocated to new “roles”. Assume
for instance that an agent is required to act as a baby-sitter. The kind
of knowledge it will be equipped with can consist for instance of the
following.

Mandatory rules (some examples):

• Children cannot drink alcohol. This is to be strictly observed.
• Children have to go to bed “early”. Each agent can however inter-

pret what “early” means, according to children’s age and family
habits.

• Children should not watch too much television. Here, each agent
can define what “too much” may mean, also according to circum-
stances and type of program.

Optional” rules to be interpreted, adapted and possibly ignored or
modified (some examples):

• Children should eat healthy food (if available, with the exception
of e.g. birthday parties).

• Children should benefit from fresh air and exercise: the agent
should find ways of fulfilling this requirement.

6 Concluding Remarks

There are several future directions for the ideas that we discussed and
sketched in this initial work.

First, we intend to develop a full realization of these ideas, staring
from EVOLP, DALI and KGP agents that provide the main elements
and can be exploited in combination in an implementation. We have
discussed a semantic framework for such an integration in [3].

Next, we aim at designing the meta-meta level for controlling
knowledge exchange. Particular attention should be dedicated to
strategies involving reputation and trust for the evaluation of learnt
knowledge. The social acceptance of rules can be partly based on ex-
isting techniques and algorithms. However, we believe that an exten-
sion is necessary because, where learning is concerned, techniques
that just measure reputation/trust on the basis of agents’ feedback
are not sufficient: some kind of economical and efficient evaluation
of both the degree of compatibility of the new knowledge with an
agent’s previous knowledge base and of the performance of the ac-
quired rules with respect to the expected objectives is also required.
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