short communications

ALL SOLUTIONS

Luis Moniz Pereira
Anténio Porto

Departamento de Informatica
Universidade Nova de Lisboa
1899 Lisboa, Portugal

Any Prolog programmer sooner or later feels the need for a predicate
capable of producing the set of all solutions to a given problem.

Those not fortunate enough to have a Prolog system offering such
a predicate as a built-in feature usually resort to ad-hoc techniques
for achieving its effect in a particular setting. We show a compact,
reasonably efficient and sound implementation of such a predicate, that
anybody can use since it is written in Prolog itself.

The predicate is

al{T,G.L}

and it reads “ all instances of the term T for which the goal G is satisfied
are the members of list L ”. L is required to be non-empty, so ‘all’ fails
if G has no solution.

The term T is just a template for building L, so free variables within
will not be bound upon execution of ‘ali’.

G can be any valid goal expression in Prolog, including ‘cut's (which
only affect the evaluation of G within the evaluation of 'all') and
‘alt's {whose nesting is very useful for structuring sets of solutions).
Furthermore, G can be of the special form

G1 same T1

where G1 is any goal expression and T1 is any term. This variant allows
the distinction between two roles of the free variables appearing in G
but not in T:

If G is not of the 'same’ type, the different solutions of G for which
instances of T are put in L can correspond to different instantiations
of any free variable in G, and ‘all’ acts as a deterministic predicate.

If, however, G is of the form ‘G1 same T1', the different solutions
of G1 for which instances of T are put in L must correspond to the same
instance of T1, which remains enforced within the execution of ‘all’;

backtracking into ‘all’ will produce another instance of T1 and another
corresponding list L, until no more solutions to G1 exist and ‘all’ finally
fails.

All this is best seen with an example. Suppose we have the
following micro data base:

drinks{john,tea,hot).
drinks{john,milk,hot).
drinks{john,mitk,cold).
drinks{john,milk,warm).
drinks(john,beer,cold).
drinks(john,wine,cold).
drinks(bill,milk,cold).
drinks(bill,beer,cold).
drinks(bill,beer,warm).
drinks{joe,beer,cold).
drinks(joe,wine,cold).
drinks{joe,wine,warm).
drinks{joe,tea,hot).
drinks(joe, tea,warm).

drinks(joe,tea,cold).

Some natural language questions follow, along with the corres-
ponding formulation in terms of the ‘all’ predicate, and its solution(s).

Who drinks? alll P, drinks(P,_,_), X).

X = [john, bill, joe].

Who drinks the same drink? alll P, drinks(P,D,_} same D, X).
john, joe] , D = tea

X =
X = [john, bill] , D = milk

Who drinks each drink? all{ D-Ps, all{ P, drinks(P,D,_} same D, Ps), X).

X = [tea-[john,joe]. milk-{john.bill], ...].

Who drinks (and at which temperatures) each drink?

ali(D-PT, all{ P:Ts, all{ T, drinks{P,D,T) same (D,P), Ts) same D, PT), X).

X = [tea-[john:[hot], joe:[hot,warm,cold]], milk-[john:[hot,...],..],...].
The Prolog definition of ‘all’ now follows:

?- op(50,xfx,same).

all(T,G same X,S) :— |, all(T same X,G,Sx), produce(Sx,S,X).

all(T.G,S) :— asserta(onelend)), solve(G), assertalone(T)), fail.

al7,G,S) : — set(S).

solve(G) :— G.

set(S) :— build{S,[]), { S=[], !, fail ;
asserta(set(S)), fail).

short communications

set(S) :— retract(set(S)).

build(NS,S) :— retractione(X)), { nonvar(X), X=end, NS=S ;
join{S,X,XS), build(NS,XS)), \.

join(S,X,S) 1— in(S.X).

jointS, X, [XIS)).

in{{XI_].X).

in{(-1S].X) :— in(S,X).

produce([T1 same X1ITn},S.X) :— split(Tn,T1,X1,51,52),

{ S=[T1S1], X=X1 ;
I, produce{S2,S.X) }.

split([}.—.— 1.0
split([T same XITn),T,X,$1,52) :— split(Tn,T.X,$1,S2).
split([T1 same XITn].T.X,[T11S11,52) :— split(Tn,T.X,$1,52).

split{[T1ITn], T.X,S1,[T11S2])) :— split(Tn,7.X,51,52).

Some remarks should be made:

1) The non-logical predicates ‘asserta’ and ‘retract’ are called from ‘all
and ‘build’ just to implement a stack where solutions are kept during
backtracking within G.

2) The predicate ‘get’ is defined so as to recover the space used by the
recursive execution of ‘build’, instead of calling ‘build’ directly from ‘all’.

3) ‘solve’ is necessary, so that any ‘cut's within G do not affect the
clauses for ‘all’.

4) There is some time lost in keeping L free of repeated elements. For
applications where this feature is not necessary one can define a faster
‘all’ by changing the clauses for ‘build’, ‘produce’ and ‘split’ as follows:

build(NS,S) :— retractione(X), { nonvar(X), X=end, NS=S ;
build(NS,[XIS))), !.

produce([T1 same X1ITn],S,X) :— split(Tn,X1,51,52),
{S=[T11S1], X=X1 ;
1, produce(S2,5.X)).
split((].—.[0.[)-
split{(T1 same XiTn],X,[T11S1],52) :— split(Tn,X,$1,52).

split([T11Tn],X,51,[T11S2]) :— split(Tn,X,81,52).

5) Where, using DECsystem-10 Prolog’s predicate ‘setof’, one would
write

setof(X, pX,Y), S} and setof(X, YpiX.Y). S,
we would write, respectively,
all{ X, p(X.Y) same Y, S) and all{ X, piX.Y}, S).
with the difference that we do not sort S.
For natural language processing we prefer our version, since hidden
variables do not have to be existentially quantified explicitly.

6) This ‘all’ has been tested and used extensively.

