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1 Introduction and Motivation

The Andorra Kernel Language (AKL) computational model is very different from Prolog’s,
ie. a computation does not explore the solution space by deploying a derivation tree but rather
by a sequence of configurations (see [?]).

AKL (and the Andorra family of and-or parallel Prolog systems) already makes good use of
two search-space narrowing techniques: The Andorra Principle, also known as “Sidetracking”,
which consists in focussing attention first on goals known to be determinate, and Constraint
propagation.

It may therefore be questionable whether it is worth adding more overhead to the runtime
execution of these systems in order to obtain a shorter proof (in terms of number of inference
steps). We argue that it is, because both search-space narrowing techniques built into the
AKL model rely exclusively on forward execution, not on any knowledge of whatever occurred
during backward execution, especially the information contained in the occurrence of failures.
Our previous work in this direction (see [?]) shows that there is a non-negligible gain to be
obtained from the failure information, even with “simple-minded” techniques.

Our present work explores techniques susceptible of pruning the search-space so as to obtain
consistent gains for combinatorial problems, while retaining an execution efficiency close to
that of the original system. To achieve this we propose to make use of binding dependency
information to guide the unfolding of an AKL computation. One way this is accomplished is
by improving the accuracy of the methods explored in [?].

The basic problem of intelligent backtracking (IB) in Prolog (see [?, ?]) is to locate the culprit
bindings responsible for the occurrence of a failure, and backtrack directly to their originator,
so that unnecessary work (ie. irrelevant to the conflict) is eschewed. To do so, schemes to
implement IB in Prolog (for example see [?, ?, ?]) always refer to the Prolog runtime data
structures used to implement nondeterminism, namely choice-points; ie. a binding is said to
depend on a given goal if it is associated with that goal’s choice-point.

∗An earlier version of this work was presented at the WELP’93 Workshop.
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AKL provides no such concept, nondeterminism being handled differently, by the use of choice-
boxes which are one of the constructors for configurations. Our approach will tie bindings
susceptible of being revised to the entities which may provide alternative bindings: the choice-
boxes, and also provides a few other structuring concepts lacking in the computational model.
We call our system AKL/IP for “AKL with Intelligent Pruning”.

2 AKL with Intelligent Pruning

In order to introduce dependency-based execution in AKL, we provide the following structural
devices:

• Alternative generators.

These associate to each binding susceptible of being revised a reference to its alternative
generator. The latter may be either a choice-box or an and-continuation.

The binding of a variable V to a value X in AKL has an associated binding environment
designated as env(V ), which is simply an and-box. In AKLIP variable bindings will
have an extra component, the alternative generator , designated as alt(V ) which is a
choice-box or an and-continuation, the latter being the “residue” of a choice-box after
a determinate promotion. AKLIP choice-boxes also have an alt component.

• Shared binding information.

Shared bindings are the result of the choice split operation, and even though the current
AKL implementation (AKL/PS 0.8) does not provide actual sharing, the information
is needed in order to figure out where a given binding is being used, other than the
current and-box.

The point is to allow us to forcibly remove from the configuration all and-boxes that
involve a binding that is known to be invalid. This occurs as the result of a conflict’s
culprit being a given binding; it is then important to be able to locate all instances of
that particular binding in order to fail the and-boxes where they occur.

For this purpose we define a new component for bindings, and call it other. other(V ),
where V is a bound variable, will be an and-box, which shares the binding of V with
V ′s environment (as a result of a choice-split operation).

The AKL configuration transitions are extended to deal with the new constructs:

In the forward execution configuration transitions (local forking, determinate promotion,
choice split, cut and commit), these structures must be maintained.

During backward execution (environment synchronization, failure propagation and choice
elimination), they’re used to perform further modifications to the configuration such as:

• Reordering as in [?]. The most significant difference here is that we can now bring
the re-incident instances of the failing goal to immediately after the producer of the
conflicting binding, which is arguably a near-optimal location.
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• Performing a choice split in the alternative generator of one of the bindings involved in
the conflict. This has the effect of calling the AKL engine’s attention to that particular
goal.

As a first approach, the representation of bindings and configuration constructors (and-boxes,
choice-boxes and and-continuations) are extended to include circular linked lists for the al-
ternative generators and the shared bindings. Support for the re-incident instances of goals
is already available, from the work described in [?].

We’re now starting work on the implementation and so cannot at the time of this writing
provide any experimental results. Results from [?] indicate that the re-incident instance
relocation alone should provide significant speedups for highly combinatorial programs. It
is our expectation that having a dependency-directed scheme will eliminate the apparently
random effect that the methods described in [?] can have on some programs.
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