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ABSTRACT
A race for technological supremacy in AI could lead to serious
negative consequences, especially whenever ethical and safety pro-
cedures are underestimated or even ignored, leading potentially
to the rejection of AI in general. For all to enjoy the benefits pro-
vided by safe, ethical and trustworthy AI systems, it is crucial to
incentivise participants with appropriate strategies that ensure mu-
tually beneficial normative behaviour and safety-compliance from
all parties involved. Little attention has been given to understand-
ing the dynamics and emergent behaviours arising from this AI
bidding war, and moreover, how to influence it to achieve certain
desirable outcomes (e.g. AI for public good and participant com-
pliance). To bridge this gap, this paper proposes a research agenda
to develop theoretical models that capture key factors of the AI
race, revealing which strategic behaviours may emerge and hypo-
thetical scenarios therein. Strategies from incentive and agreement
modelling are directly applicable to systematically analyse how
different types of incentives (namely, positive vs. negative, peer vs.
institutional, and their combinations) influence safety-compliant
behaviours over time, and how such behaviours should be config-
ured to ensure desired global outcomes, studying at the same time
how these mechanisms influence AI development. This agenda will
provide actionable policies, showing how they need to be employed
and deployed in order to achieve compliance and thereby avoid
disasters as well as loosing confidence and trust in AI in general.

CCS CONCEPTS
•Computingmethodologies→Model development and anal-
ysis; Cognitive science; •Mathematics of computing→ Stochas-
tic processes.
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1 INTRODUCTION
Research and development in different areas of fundamental and
applied Artificial Intelligence (AI) have been making encouraging
progress. Within the research community, there is a growing ef-
fort to make progress towards Artificial General Intelligence (AGI).
AI brings enormous potential benefits across many sectors, being
recognised as a strategic priority by a range of actors and stake-
holders, including representatives of various businesses, private
research groups, companies, and governments [2]. The media atten-
tion as well as the (un)announced business and political ambitions
indicate that an AI bidding war has been triggered, competing to
be the first to develop and deploy a powerful, transformative AI
[3, 6, 7, 10, 11, 37]. These AI systems could be either AGI, able to per-
form a broad set of intellectual tasks while continually improving
itself, sufficiently powerful specialised AIs or even AI specifically
developed for espionage and cyberterrorism.

An AI race for technological advantage towards powerful AI
systems could lead to serious negative consequences, especially
when ethical and safety procedures are underestimated or even ig-
nored [3, 11]. Safety and ethical agreements and regulations can be
adopted to ensure that all parties involved in the race will comply
with a set of mutually agreed standards and norms [31, 31]. How-
ever, as experience with many international treaties, such as climate
change, fisheries and timber agreements [5, 13, 27] has shown, the
autonomy and sovereignty of the parties involved will make mon-
itoring and compliance enforcement difficult (if not impossible).
Therefore, for all to enjoy the benefits provided by a safe, ethical
and trustworthy AI, it is crucial to enact appropriate incentivising
strategies in order to ensure mutual benefits and safety-compliance
from all sides involved.

This position paper sets out a research agenda (i) to develop theo-
retical models (both analytic and simulated) that capture key factors
of an AI race, in order to provide understanding on the dynamics
and emergent strategic behaviours for different hypothetical race
scenarios; and furthermore, (ii) to examine how incentives can be
used to ensure desired outcomes and equilibria in this race. To this
end, we combine research on incentives and agreement modelling,
with the dynamical approaches that analyse population-wide dy-
namics, typically employed in Evolutionary Game Theory (EGT)
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[23, 32]. Together, they will permit us to systematically explore
how different types of incentives (namely, positive vs. negative,
peer vs. institutional, and their combinations) can influence safety-
compliance behaviours over time, and how such behaviours should
be configured to ensure desired global outcomes (i.e. high levels
of safety-compliance, possibly including compliant information
sharing).

This research agenda is expected to lead to specific outcomes
concerning the AI bidding war we are currently observing. On the
one hand, it will provide methodologies for the investigation of
AI race dynamics, including intervention mechanisms to influence
outcomes. On the other, it will provide systematic understanding on
how to promote safety compliance and the production of AI systems
that benefit the many as opposed to the few. Moreover, conclusions
derived from this project have the potential to resolve issues in other
multiparty interaction domains, such as business transactions and
international environmental agreements, for which commitments
have been proven crucial [27, 35].

The rest of the paper is structured as follows. The next section
describes relevant factors influencing the AI race and existing ap-
proaches for agreements and incentives modelling. It then describes
our research agenda, which includes three directions aiming to pro-
vide a methodolgy for AI race modelling. Some preliminary results
will be briefly described, elaborated further in the Supplementary
Information section.

2 BACKGROUND AND CHALLENGES
Below we review relevant issues and potential factors in AI race
modelling, and EGT [32] research on incentives, commitment and
agreement modelling.

2.1 AI race and modelling
Potential AI disaster scenarios are many [3, 28, 37]. However the
uncertainties in accurately predicting these outcomes are high. In
general, the first AGI are likely to be extremely powerful and, if
not developed and controlled properly, might not be guaranteed
human friendly [3, 8, 10]. Those that first successfully develop more
powerful AI will have significant benefits over others, and even
‘the winner takes all’ scenario might come about [2]. It is generally
agreed that an AI-related disaster is more likely to occur when
safety measures are ignored more often, which might be fostered
by the speed and competition of the race. The risk of AI-related
disaster increases when teams/developers do not devote sufficient
attention and resources to safety in such a powerful system [2] as
a result of the on-going race’s pressure.

Regardless of this disaster risk, people and teams can have differ-
ent (biased) perceptions or beliefs about the level and nature of the
risk as well as adopt different risk-taking behaviours (e.g. with dif-
ferent levels of risk-aversion). A high belief in risk might lead to fear
mongering concerning both AI and AGI, thereby leading to overreg-
ulation and unnecessary obstruction to the development of AI and
the realisation of social/economic benefits. On the other hand, a low
belief in risk might lead to more risk-taking behaviours, and hence
safety measures being omitted more often. Furthermore, envisaging
the AI race at diverse temporal scales is likely to bring about distinct
aspects that should be focused on [1]. For instance, each teammight

anticipate different speeds of reaching the first general AI system.
A low belief about fast AGI arrival could result in miscalculating
the risks of unsafe AGI deployment by non-compliant rogue teams.

Other important strategic aspects in the AI development race con-
cern different types of openness, including openness about source
code, science, data, safety techniques, capabilities, and goals [7].
Some forms of openness, e.g. about safety measures, are plausibly
positive both short-term and long-term. Others, such as openness
about source code, science, and possible capabilities, could intensify
the competitive situation. A central concern is that openness could
exacerbate a racing dynamic: competitors trying to be the first to
develop true AIs may accept higher levels of (existential) risk in
order to accelerate their progress. On the other hand, openness may
reduce the probability of AI benefits being monopolized by a small
group and facilitate counter measures.

Given the several factors and biases driving the strategic safety-
compliant behaviours and the dynamics of interactions among
development teams, the outcome of the race (e.g. whether or not
disaster occurs) is difficult to predict. Very few efforts have been
made in modelling AI disaster and race dynamics among teams. In
[3], the authors provide a game-theoretical model of an AI race,
under the assumption that the first AI will be very powerful and
transformative, so that each team is encouraged to finish first and
thus skimp on safety precautions. This work, however, does not
consider dynamical aspects of the race (e.g. how teams might adapt
their strategies over time), and which strategic behaviours emerge
in different race scenarios. Also, this work does not study how
positive or negative incentives can be used to enhance teams’s
safety compliance.

To the contrary, there has been a significant body of compu-
tational modelling research regarding game-theoretical and EGT
analyses of other disasters, such as climate change and nuclear
war [4, 30]. However, the AI race and its related risks are quite
unique, according to an analysis of 12 large global catastrophic
risks in [28]. Climate change disaster analyses primarily focus on
the unwillingness of participants to take on themselves a personal
cost for a jointly desired collective target, and is conjoined to col-
lective risk by all parties involved [30]. In contrast, in AI racing,
the winner(s) will derive significant relative advantage over others,
risk being more individualized. The AI race is also different from
the nuclear arms race, in that the former potentially poses greater
effective achievement or otherwise risks to its creator, whereas
nuclear powers are generally not at direct risk originating from
their own arsenals [3].

Finally, despite a number of proposals and debates on how to
prevent, regulate, or solve the AI race, there is significant lack of
rigorous modelling studies [6, 11, 14, 31, 36]. Our proposed research
agenda aims to bridge this gap by providing basic models to sys-
tematically understand the dynamics of the race and what strategic
behaviours would likely emerge, in different hypothetical scenarios
and conditions of the race concerning disaster risk, risk-perception
behaviours, level of information openness, number of racing teams,
incentives deployment, etc. These models can then be used and
perfected in discussions with stakeholders as well as policy makers.



2.2 Reward and punishment
Punishment and reward are major forms of incentives, widely
adopted for enforcing cooperative behaviours among self-interested
agents and enacting norm compliance in both social interactions
and computerised systems [12, 21, 33]. Various forms of such in-
centives have been studied, which can be roughly categorised into
peer and institutional ones.

To provide a peer incentive, agents pay a personal cost to punish
a violator (peer punishment) or reward a cooperator (peer reward),
after an interaction. As a result, the punished violator and rewarded
cooperator incur a decrease or increase, respectively, in their payoff.
In the context of AI race behaviours, examples of peer incentives use
are when teams refuse to support, and so do not share development
progress and knowledge with non-compliant teams, consequently
slowing down their development. They can also arrange, for in-
stance, cyber-attacks against non-compliant teams, or even ascribe
and spread their bad reputation, leading to those teams being un-
able to recruit and retain developers. On the other hand, highly
compliant teams can be rewarded, obtaining more support, such as
knowledge and experience sharing, and thus move faster along in
the development race.

In contrast to peer incentives, institutional incentives assume
instead the existence of an institution (with a budget) to take care
of the incentivising process [12]. Pool and coordinated group incen-
tives, where agents can put together a fund before an interaction
occurs to provide incentives subsequent to the interaction, can be
considered as a first step towards institutionalisation of incentives
[9, 34]. Examples of institutions providing incentives are modern
courts and policing systems, as well as international organisations
such as the United Nations (UN), the European Union (EU), the
World Trade Organization (WTO) or the Organisation for Economic
Co-operation and Development (OECD). Setting-up and maintain-
ing institutions are costly, but the presence of a powerful authority
can effectively restrict individuals’ strategic options and provide
stronger incentives [22]. In the context of an AI race, a centralised
access to AI-related knowledge, algorithms and tools, as in the EU
platform call (H2020-ICT-2018-2020) for instance, might provide
institutional incentives such as strong support and punishment (e.g.
allowing high levels of access or exclusion from the centralised
pool of AI knowledge).

For both peer and institutional incentives, the critical conditions
for cooperation to be achieved and sustained in evolutionary mod-
els, as well as observed in lab experiments, require that incentives
‘fit the crime’ [9, 34]. That is, they increase with the severity of the
violation or the merit of the cooperation. Moreover, they need to
be cost-effective, that is, the effect of an incentive for its receiver
should be sufficiently large compared to the cost to the provider. In-
terestingly, for institutional incentives, the centralisation by which
an institution might observe a global population state enables more
efficient approaches. For instance, the ‘first carrot, then stick’ policy
that switches the incentive from reward to punishment whenever
the frequency of cooperators in a population exceeds a threshold,
is highly efficient at establishing full cooperation, better than either
reward or punishment alone [21]. Furthermore, local institutions
that provide incentives based on local neighbourhood properties
(such as its cooperativeness level) have proved more efficient than

large global governance overseeing the whole population, in the
context of climate change games and cooperation dilemmas [16, 38].
It may be that recourse to costly institutional supervision is only
enacted when spontaneous peer cooperation becomes insufficient
or inadequate.

2.3 Commitment modelling in dynamical
systems

Commitment-based formalisms have been widely adopted in Multi
Agent Systems (MAS) as modelling and engineering tools [35],
with important applications in business protocols, transactions,
and software-oriented architectures. Representing commitments
that agents have to one another specifies their expected interac-
tion and correct behaviour (e.g. cooperation and norm compliance).
The formalisms allow flexible capturing of contractual relationships
amongst the agents concerned and, as such, incentivise their correct
desirable behaviour. In a commitment-based MAS, it is crucial to
understand how an adopted commitment formalism, including its
compliance incentivising approach, influences agents’ behaviours
and the dynamics of their interactions and, as a result, determines
whether it can actually help foster and secure substantial commit-
ment compliance and correct behaviour. This is typically studied
in the literature on dynamical MAS, using methods from EGT. In
this dynamical context, agents interact and adapt their behaviours
over time, e.g. via social learning [17, 32, 34].

In fact, commitments have been shown to provide important
pathways to reaching mutual cooperation in the context of social
dilemma interactions (namely, in the Prisoners Dilemma (PD) [18]
and Public Goods Game (PGG) [17] settings), within populations of
self-interested agents. This dynamical approach has provided impor-
tant insights into the design of commitment-based MAS, enabling
identification of areas of strengths and weaknesses of commitment-
based mechanisms. Consequentially, it is now possible to make
specific efforts to improve on concrete issues. This approach also
provides novel understanding towards the long quest for the evolu-
tion of commitments and their roles in the evolution of cooperation
[27]; with important practical ramifications for social and economic
interactions, ranging from personal relationships to business con-
tracts and to international agreements [5, 13].

However, these modelling studies focus on standard cooperation
dilemmas settings, i.e. the PD and PGG (for both one-shot and re-
peated interactions). When moving to AI race interactions, several
factors need to be taken into account, as described above, such as
the risk of disaster, risk perception and levels of openness. And the
incentives need to be accordingly designed to account for these
new factors. For instance, by requiring that signatories to an AI
race treaty or agreement will commit to allow internationally gov-
erned inspections concerning a defined minimal transparency or
the detection of secret of undertakings. Our study may incorporate
specific distinct punishments or rewards for the case of violation
or otherwise, or lack of due diligence, in both such cases. Public
and employee opinion and consumer practice can also be mustered
as another form of incentive.



3 RESEARCH AGENDA: PROBLEMS TO BE
STUDIED

The literature reviewed above clearly shows the importance and
gaps in modelling research to understand the dynamics of inter-
actions and emergent behaviours in an AI race, as well as how
incentive mechanisms might be used effectively to promote desired
behaviours, such as safety standards and norms compliance from
all parties involved in the race.

Our research agenda below aims to bridge this gap, and the
following three directions or parts are envisaged to achieve that
goal. The first one will develop baseline models for an AI race, on
the basis of which the incentives for influencing the race will be
studied in subsequent projects.

3.1 Development of baseline AI race models
The first direction aims to develop new, baseline strategic decision-
making models that capture key factors relevant to the competition
and cooperation among AI teams, and that investigate how they
influence the outcome of the AI race. Namely, we will develop EGT
models to answer the following questions:

• Which strategic behaviours emerge in the AI race?
• How does increasing the number of competing teams influ-
ence the evolutionary dynamics and outcome of the race,
namely in preventing disaster?
• How does the risk-perception probability of AI disaster in-
fluence the race outcome?
• How does the heterogeneity of teams’ development capaci-
ties influence the race outcome and strategic behaviours?

We envisage multi-player game models of multiple stages and/or
repeated interactions, where a team might react to the development
of strategic behaviours of other teams. The first teams to success-
fully develop AI will have significant benefits over others, and even
the ‘winner takes all’ scenario might come about. Although we
focus on multiplayer games, for there are most likely multiple com-
peting AI teams, as the race evolves the game might end up at
a later stage with only a few or even two (strongest) teams. Our
analysis will start with pair-wise interactions, modelled as two-
player games, which will afterwards be generalised to multi-team
interactions, modelled as multiplayer games, in order to provide a
more comprehensive understanding.

We start with the most basic scenario where at each round of the
race a team or player is faced with two possible choices: to follow
the safety precaution (SAFE) or to ignore this safety precaution
(UNSAFE). Since it takes more time and effort to comply with the
precautionary requirements, playing SAFE is not only costlier, but
also implies a slower development speed, compared to playing
UNSAFE. As a generalisation of this binary-choice model we will
consider continuous games where a player can choose the level
of safety-precaution to adopt (i.e. SAFE and UNSAFE correspond
to the two extreme cases of complete precaution and none at all,
respectively).

Teams can collect benefits from their intermediate AI products.
However, differently from the standard repeated games [32] where
all players collect benefit at every round, we will need to consider
a new time scale, where different teams might collect benefits at

different speeds. That would mean a possible time delay in play-
ers’ decision-making, during the course of a repeated interaction,
because they might want to wait for the outcome of a co-player’s
decision to see what choice he/she has adopted and/or will adopt in
the next development round. Thus, a player has to decide whether
to make an immediate move based on just present information (and
hence be quicker to collect the next benefit and move faster in the
race) but at the risk of making a worse choice, different from one
that would have been chosen had the player already known the
co-player’s decision. Moreover, since noise is a key factor driving
the emergent strategic behaviours in the context of repeated games
[32]—for instance when a team might (non-deliberately) make a
mistake in the safety process, which might intensify the on-going
race and trigger long-term retaliation [19, 24, 25]—we will consider
conflict resolution mechanisms such as apology and forgiveness
[24, 26] for simmering down the noise effects on the race.

There will be a perception probability (by teams) that an AI
disaster will occur wherein all teams lose the race, incurring a
significant reduction in their payoff, and this risk-probability will
follow a certain probability distribution. It is natural to assume that
this probability increases with the frequency with which teams
violate the safety requirements (i.e. play UNSAFE). Given the dis-
aster probability, teams might have a different perception of the
risk. For example, risk-taking (risk-avoiding) teams might under-
estimate (overestimate) this risk, leading to more (less) violations
of the safety requirements. As in the case of climate change games
[30], the perception of risk is a key factor driving the evolutionary
outcome (whether or not disaster happens). The main difference is
that in climate change models the risk (of failure in avoiding disas-
ter) is collective, whereas in the AI race risk is more individualised:
should an individual team ignore safety requirements too often, the
more likely their AI product will lead to disaster.

Additionally, assuming that teams have distinct development
capacities, i.e. that they might move at different speeds in the race,
how does that change the strategic behaviours in the race by the
different teams? Stronger teams might want to spend more effort
with safety to guarantee no disaster occurs and ensure all the bene-
fits from a powerful AI. On the other hand, weaker teams might
want to water down or cease the safety efforts in order to catch up
with the stronger teams.

3.2 Peer and group incentives for
safety-compliance

This part of the agenda strives to investigate how peer incen-
tives, such as peer punishment and reward, can be efficiently used,
whether separately or jointly, for enhancing safety-compliance be-
haviours in the AI race games developed in the first part. Namely,
we will address the following questions:

• What is the influence of using different types of peer incen-
tives (separately or jointly), on safety-agreement compliance
in the two-team AI race game?
• Generalising to multi-team agreements, how can peer in-
centives be used efficiently, taking into account the level of
participation in the agreements as well as in a coordinated
manner (i.e. pool and coordinated incentives)?



• How should incentives be customised to account for the level
of risk (that an AI disaster will occur) as well as for teams
with different capabilities of development and of commit-
ment?

We shall start by extending the regimented agreement models for
pair-wise and multiparty games, in both one-shot and repeated
games, introduced in previous works [17, 18, 24], where interac-
tions occur in three (decision-making) stages: (i) Before the interac-
tion, agents choose whether to propose an agreement; (ii) When
receiving a proposal, agents decide whether to accept or reject it;
(iii) During the course of the (repeated) interaction, agents choose
whether to play SAFE or UNSAFE, depending on whether the agree-
ment was formed; and in the case of multiplayer games, also on
how many players committed to following the safety precaution,
because a minimum number of committing players may be required
for an agreement to be formed and put into effect.

The regimentation assumption entails that agents who accept
an agreement proposal yet dishonour it by defecting during the
interaction (i.e. fake committers [18]), always honour and pay a
compensation. Removing this assumption, another stage or decision
point will be added: (iv) After each round of the (repeated) inter-
action, agents decide whether to use any type of peer incentives,
depending on the decisions made by co-players and by themselves
in the previous three stages.

This new decision-making stage adds extra layers of complexity,
not just on how commitment behaviours are influenced by incen-
tives, but also on how different types of incentives interact. Namely,
we need to distinguish between incentives when an agreement is
in place (i.e. incentives for agreement fulfillers or for violators), and
when agreement is absent (i.e. incentives for mere cooperators or
defectors). Considering all strategic behaviours concerning how
to use incentives in co-presence in a population, we will examine
how these two incentive sorts should be treated differently to foster
safety-agreement compliance. Moreover, in order to have a clear un-
derstanding of the strength and weakness of each type of incentives,
we will start from minimal models where only one type of (peer)
incentive is present at a time. Increasingly more complex models,
which include other types of incentive, will then be constructed
and analysed to see how they interact and influence together the
outcome of the race. So doing will provide deeper systematic under-
standing of how different types of incentives, whether separately
or jointly, can be used to achieve high levels of safety compliance.

Rogue AI actors and teams might likely exercise antisocial in-
centives or bullying [1, 21]. We will consider this possibility in
our models. Antisocial or bullying teams most likely refuse to join
a safety agreement and are detrimental to cooperation. However,
setting up a pre-agreement can provide an efficient solution. One
can implement measures to restrict access of non-participating
(rogue) teams to AI knowledge [17]; while misbehaving participat-
ing teams can be appropriately handled through the agreement’s
terms and conditions, both by coordinated and institutional pun-
ishments [9, 34]. This relates to the AI race, when a small number
of major monopolizing actors or teams need to be confronted by
the collective as a whole. Furthermore, promoting guilt [29] may
be envisaged as a further way to simmer down the AI race, viz. the
recent developments regarding Facebook policy change promises

and Cambridge Analytica’s declared bankruptcy, by appealing to
public discomfort and the chastising of data bullies, again, possibly
with the help of crowd sourcing or inside employees.

Our analysis will first examine two-player games since they will
permit us to focus on the effects of different types of peer incen-
tives. We will then extend the analysis to multiplayer games, which
will include strategic behaviours conditional on the level of partic-
ipation of teams in a safety-agreement; that is, how many teams
agree to comply with the safety requirements. Previous works have
shown that increasing the number of players in interaction sig-
nificantly magnifies the complexity of the evolutionary dynamics
and outcome. Firstly, since the number of behavioural equilibria
might significantly increase, it is important to study under what
conditions and how likely is it that desirable equilibria can be
reached; and, moreover, how different types of incentives should
be used, separately or jointly, to improve the chance of reaching
such desirable outcomes. Secondly, it appears that collective de-
cisions are more difficult to be made for larger groups [15]. We
will study how increasing group size influences the probability
of safety-agreement formation and, once formed, which are the
players’ compliant behaviours. Indeed, as shown in previous works
for regimented commitments within group interactions, it is cru-
cial to closely monitor the minimum level of participation when
deciding whether a commitment should be effectively formed in
order to achieve an optimal cooperation outcome [17]. Such a min-
imum membership requirement can be found in the creation of
treaties that address international environmental issues and is also
important for AI regulation agreements, as full consensus is rarely
reached (as are the cases for cyberspace agreements organized by
the UN [36]). Removing the regimentation, we will examine how
different types and arrangements of incentives influence the par-
ticipation level and how this level should be monitored to ensure
safety-agreement compliance. Last but not least, in multiplayer
agreements a new possibility arises where a group of players might
coordinate to provide incentives with more substantial effects (e.g.
gang up on free-riders). We will start by applying the existing
models of coordinated and pool incentives [9, 34], where a group
of incentive providers can share the cost of providing incentives
and can decide to actually provide the incentives only if there is
sufficient interest in sharing the cost.

In both pair-wise andmultiplayer games, wewill closely examine
how incentives should be used differently, taking into account the
diverse risk levels or probabilities that an AI disaster will occur.
Does a high risk require stronger (or less so) incentives to ensure a
high level of safety compliance? Also, considering that teams might
have different capacities (for AI development), the question arises of
how incentives should be used differently in light of a given capacity.
For instance, stronger punishment might be required against teams
who frequently violate safety requirements, especially if they are
close to the finish line of the race. In contradistinction, stronger
support and reward may be enacted for highly compliant teams, to
ensure they win the race with a safe and powerful AI product.



3.3 Institutional incentives for
safety-compliance

This final part of the agenda aims to examine how institutional
incentives can be efficiently used for enhancing safety-compliance
behaviours in the AI race games, and how they interact with peer
incentives. The following questions will be addressed:
• What is the influence of different institutional incentives,
separately or jointly, on safety-agreement compliance?
• How institutional incentives interact with peer incentives
and how these two types can be jointly used to provide an
efficient hybrid incentive strategy?

We will study institutional incentives in two scenarios: i) in the
absence and ii) in the presence, of peer incentives. The former repre-
sents a fully centralised approach to regulating the AI development
race, while the latter is a hybrid of centralised and decentralised reg-
ulations. In this latter case we explore different ways in which the
two types of incentives interact. For example, being autonomous
entities, the teams can decide by themselves the type of incentives
used to enforce the safety-agreement, i.e. a peer or institutional
incentive. It is natural to ask which option would emerge as the
preferred one in the population and when. This can be answered
by analysing EGT models in which all types of incentives are al-
lowed to be adopted by agents in the population. Since forming a
regulating institution is usually costly [22], we will identify when
peer incentives are sufficiently efficient so that the institutional
setting-up and maintenance cost can be avoided. This outcome is
particularly important given the lack of attention so far to peer
incentives for behavioural regulation in normative MAS, and more-
over, to avoid (institutional) overregulation of AI development from
the start.

In addition, a distinctive feature of the institutional setting is that
the institution can have access to some global information, such as
the current population composition. We explore approaches exploit-
ing this distinctiveness. We will start by extending and generalising
the ‘first carrot, then stick’ policy. The challenge is that there will
be multiple types of strategic behaviours to incentivise, compared
to only two types as in the usual standard institutional incentive
models. At each time step, the institution needs to decide whether
to incentivise (subject to a given budget) one type or even a subset
of distinct types of incentive, depending on their current frequen-
cies in the population. This institutional decision-making process
is a complex multi-agent resource allocation problem [16, 20], for
which appropriate resource allocation optimisation methods (e.g.
from AI literature) can potentially be utilised.

4 PRELIMINARY RESULTS
We have obtained preliminary results for a two-team model of the
AI race1. The race is represented by a repeated game, consisting of
a number of AI development rounds, where in each round teams
can choose either to play SAFE or UNSAFE. The former choice is
not just costlier, but also takes longer (i.e. slower speed of develop-
ment). The team that wins the race will claim a significant benefit,
unless AI disaster occurs. Our analysis considers a population of

1The preliminary results can be obtained from the following link:
tinyurl.com/y2gwhysy

teams who can either play SAFE or UNSAFE in all the development
rounds, or they can choose to adopt a reciprocal strategy (namely,
conditionally SAFE). The teams interact and can adapt their strat-
egy through social learning (i.e. copying the strategy of those who
are more successful than them).

In general the analysis points to the direction that when the
benefit from winning the race is high, teams that always choose
UNSAFE dominate the population for a large range of parameters’
values. This result shows that, in the context of the AI race with
repeated interactions, the strategic nature and the outcome are
different from those of standard repeated games. In the AI race
the rogue teams can move faster in the race by ignoring safety
precautions, and reciprocal strategies such as tit-for-tat still lose
because of being nice initially. This initial finding suggests that, to
drive the race in the more beneficial directions it is important to
enact measures that influence (prohibit or accelerate) the speed of
AI development of teams, since reciprocal behaviours might not
be sufficient to promote cooperative or safety behaviours in this
context.
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